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ABSTRACT

Recent advancements on Generative Adversarial Network (GAN) have inspired a
wide range of works that generate synthetic images. However, current processes
have to generate an entire image at once, and therefore resolutions are limited
by memory or computational constraints. In this work, we propose COnditional
COordinate GAN (COCO-GAN), which generates a specific patch of an image
conditioned on a spatial position rather than the entire image at a time. The gen-
erated patches are later combined together to form a globally coherent full-image.
With this process, we show that the generated image can achieve competitive qual-
ity to state-of-the-arts and the generated patches are locally smooth between con-
secutive neighbors. One direct implication of the COCO-GAN is that it can be ap-
plied onto any coordinate systems including the cylindrical systems which makes
it feasible for generating panorama images. The fact that the patch generation
process is independent to each other inspires a wide range of new applications:
firstly, “Patch-Inspired Image Generation” enables us to generate the entire image
based on a single patch. Secondly, “Partial-Scene Generation” allows us to gen-
erate images within a customized target region. Finally, thanks to COCO-GAN’s
patch generation and massive parallelism, which enables combining patches for
generating a full-image with higher resolution than state-of-the-arts.

1 INTRODUCTION

This paper explores the idea of enforcing both the generator and the discriminator of generative ad-
versarial networks (GANs) (Goodfellow et al., 2014) to deal with only partial views via conditional
coordinating. Via training and inference with partial views only, the minimum memory require-
ment can be largely reduced. However, as shown in Section 3.3, naive approaches fail to generate
high quality images, either having clear seams or totally failing to generate reasonable structures.
We investigate this problem and propose a new GAN architecture: COnditional COordinate GAN
(COCO-GAN).

Given a latent vector and multiple spatial positions, the generator of COCO-GAN learns to produce
image patches independently according to the spatial positions. On the other hand, the discrimi-
nator learns to judge whether adjacently generated patches are structurally sound and visually ho-
mogeneous. During the inference phase, the generated patches can directly be used to compose a
complete full-image without further post-processing. Owing to the adversarial loss provided by the
discriminator, the composed full-image is locally smooth and globally convincing. We show several
randomly-selected full-images generated by COCO-GAN in Figure 2a. In Section 3.2, we visualize
the interpolation between two spatial positions, showing COCO-GAN has inter-class continuity as
common conditional GANs do. Further quantitative evaluations with “Frchet Inception Distance”
(FID) (Heusel et al., 2017) score are presented in Table 1. Without additional hyper-parameter tun-
ing, the evaluations on CelebA (Liu et al., 2015) and LSUN (Yu et al., 2015) datasets suggest that
COCO-GAN is competitive with other state-of-the-art GANs. To further demonstrate the effective-
ness of COCO-GAN, we perform ablation study in Section 3.3.

In Section 3.4, we demonstrate COCO-GAN is a flexible coordinate-system-aware framework that
is suitable for different spatial coordinate systems. Common learning frameworks are confined to

The code and data used in the paper will be made available immediately upon publication.
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Figure 1: An overview of COCO-GAN (training phase). The full-images are only generated during
testing phase (Figure 9 in the Appendix).

Cartesian coordinate system, which restricts those frameworks from learning the characteristics of
certain image formats. For instance, panoramas should be trained with a cylindrical coordinate
system, which has a “cyclic topology” in the horizontal direction. In comparison, COCO-GAN
directly learns with a cylindrical coordinate system. In Figure 6 and Figure 14, the generated full
scenes are naturally cylindrical and continuous while crossing the left and right borders.

Besides, we find COCO-GAN has multiple interesting applications and characteristics. We select
three representative new applications as case studies:

Patch-Inspired Image Generation takes a real image patch as input. COCO-GAN can be in-
spired by the given patch and further generates a full-image proposal. This proposal is partially
similar to the given patch, while globally realistic and reasonable. This setting is different from con-
ventional image completion/reconstruction since the information loss during cropping is extreme
and the spatial position information is not provided to the model. Therefore, COCO-GAN has to
infer the position of the given patch before generating the whole image. Further experiments are
presented in Section 3.5.

Partial-Scene Generation shows that COCO-GAN can generate partial scenes without spending
additional computation outside certain designated regions. This capability is exclusively beneficial
to applications that are only interested in partial information of the full scene. For instance, virtual
reality (VR) is only interested in the user’s viewport direction, and COCO-GAN can seamlessly
adapt to such viewport-aware settings.

Computation-Friendly Generation demonstrates the computational related merits. First, since
the patches are produced independently, the generator is able to generate patches with high paral-
lelism. Second, as the full-image generation is decomposed to patches generation, the minimum
memory requirement of generating images can be reduced. This characteristic enables COCO-GAN
to generate images of very high resolution or containing much more complex structures.

2 COCO-GAN

Overview. COCO-GAN consists of three networks: a generator G, a discriminator D, and a aux-
iliary head Q. These three networks are trained with four loss terms: patch Wasserstein loss LW ,
patch gradient penalty loss LGP , spatial consistency loss LS , and content consistency loss LC .
Compared to conventional GANs that use full images as input for both G and D, COCO-GAN only
uses micro patches for G, and macro patches for D. The details of micro and macro patches will
be described in the paragraph “Spatial coordinate system design”. D has two auxiliary prediction
heads: the content vector prediction head (Q) and the spatial condition prediction head. Q is trained
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with an extra optimizer independent to G and D. It aims to minimize LC and is used to estimate
the original latent vector of the given sample. The spatial condition prediction head, on the other
hand, is jointly trained with the discriminator. It aims at minimizing LS and is used to estimate the
macro spatial position of the given sample. Both of the two auxiliary prediction heads are simple
feed-forward networks that take inputs from one of the high-level feature maps of the discriminator.

COCO-GAN considers two coordinate systems: a micro coordinate system m, which refers to the
annotated component that related to the finer coordinate system, on the generator’s side, and a macro
coordinate systemM , which is related to the coarser macro coordinate system on the discriminator’s
side. The discriminator learns to distinguish between the generated macro patch p̃M and the real
macro patch pM . The discriminator also learns to predict two auxiliary outputs: a predicted macro
coordinate c̃M and a predicted latent vector z̃M . Outputs from these two networks are then used to
compute two auxiliary losses: Spatial Consistency Loss (LS) and Content Consistency Loss (LC).

The objective function of the discriminator D is LW +LGP +LS +LC , the generator G is−LW +
LS + LC , and the content vector prediction head Q is −LW + LC .

Spatial coordinate system. Before presenting the details of these four loss terms, we introduce
our notations first. We start with designing two spatial coordinate systems, a micro coordinate
system Cm for the generator G and a macro coordinate system CM for the discriminator D. Let
SN be a space of spatial position sequences, each spatial position sequence s = 〈cmi 〉Ni=1 ∈ SN is
an ordered sequence, which cmi ∈ Cm. During COCO-GAN training, R is some predefined spatial
constraints for sampling s from a uniform distribution U(SN , R). The generator G is conditioned
by each spatial position cmi , and learns to accordingly produce micro patches p̃mi = G(z|cmi ). The
〈p̃mi 〉Ni=1 = 〈G(z|cmi )〉Ni=1 is a sequence of micro patches produced independently while sharing the
same latent vector z across the spatial position sequence s.

The design of R may need to be slightly changed with respect to the selection of CM and Cm. The
design principle of R is that the accordingly generated micro patches 〈p̃mi 〉Ni=1 should be spatially
close to each other. Then the micro patches are merged by a merging function T(m→M) to form
a complete macro patch p̃M = T(m→M)(〈p̃mi 〉Ni=1) as a coarser partial-view of the full-scene x̃.
Meanwhile, we assign p̃M with a new spatial position cM under the macro coordinate system for s.

In Figure 1, we illustrate one of the simplest design for the above heuristic functions that we have
adopted throughout our experiments. The four micro patches are always a neighbor of each other
and can be directly combined into a square macro patch with T(m→M), which is just simple con-
catenation. Figure 3 shows some examples of micro and macro patches generation.

On the real samples side, we also sample s ∼ S, but we directly infer s to macro position cM . Then
we design a transformation T(X→M) with respect to T(m→M) to transform a real full-image x to
a real macro patch pM by T(X→M)(x|cM ). The shape of pM should be the same as p̃M . In our
simplest experiment setting, T(X→M) is a simple cropping function that crops x into pM , which has
the same shape as p̃M .

During the testing phase, depending on the design of Cm, we can directly infer a corresponding spa-
tial position sequence 〈cmj 〉Kj=1. It is used to independently produce spatially-disentangled patches
that constitute the full-image. Figure 9 demonstrates how the full-image is generated during the
testing phase. Figure 2a shows some examples of the full-image generation.

Loss functions. The patch Wasserstein loss LW is a patch-level Wasserstein distance loss similar
to Wasserstein-GAN (Arjovsky et al., 2017) loss. It forces the discriminator to discriminate between
the real macro patch pM and the generated macro patch p̃M , and on the other hand, encourages the
generator to confuse the discriminator with seemingly realistic p̃M . Its complete form is

LW = E
[
D(T(X→M)(x|cM ))

]
− E

[
D(T(m→M)(〈G(z|cmi )〉Ni=1))

]
, (1)

where x ∼ Pr and 〈cmi 〉Ni=1 ∼ U(SN , R). Note that Pr is the real data distribution. We also apply
Gradient Penalty (Gulrajani et al., 2017) to the patches generation:

LGP = E
[
(‖∇p̃MD(p̃M )‖2 − 1)2

]
, (2)

where p̃M ∼ Pg . Note that Pg is the generator distribution.
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The spatial consistency loss LS is similar to ACGAN loss (Odena et al., 2017). A slight difference
is that cmi has relatively more continuous values than the discrete setting of ACGAN. As a result, we
apply a distance measurement loss for LS , which is an L2-loss between c̃M and cM . It aims to train
the generator of COCO-GAN to generate the corresponding micro patch by G(z|cmi ) with respect
to the given spatial condition cmi . The spatial consistency loss is

LS = E
[
‖cM − c̃M‖2

]
. (3)

On the other hand, the content consistency loss LC is similar to a hybrid of infoGAN loss (Chen
et al., 2016) and the latent space constraint loss (Chang et al., 2018). The former one uses a separate
optimizer to optimize an auxiliary network Q, which aims to reconstruct the original latent vector.
The latter one suggests that the latent space consistency loss can be a distance measurement instead
of minimizing the KL-divergence as the original infoGAN does. In our experiments, we train the
extra Q network with a separate optimizer and directly minimize L1-loss between z̃ and z. LC aims
to force the generator to produce shared context between patches that share the same latent vector
but locate at different micro coordinate positions. The content consistency loss is defined by

LC = E [‖z − z̃‖1] . (4)

To ensure that Z, Cm, and CM share the similar scale, which are directly concatenated and feed to
G. We evaluate the maximum possible pixel position of Cm and CM , then normalize the range into
[−1, 1]. For the latent space Z, although uniform sampling between [−1, 1] should be numerically
more compatible with the normalized spatial condition space, we empirically do not observe signif-
icant differences even if we switch to random sampling with a zero-mean and unit-variance normal
distribution. For simplicity, we adopt uniform sampling strategy throughout our experiments.

Training details. Our generator and discriminator architectures follow the idea of projection dis-
criminator (Miyato & Koyama, 2018), both with ResNet (He et al., 2016) based architecture and
adding class-projection to the discriminator. All convolutional and feed-forward layers of generator
and discriminator are added with the spectral-normalization scheme (Miyato et al., 2018) as sug-
gested in (Zhang et al., 2018). A more detailed architecture diagram is illustrated in Appendix B.

We also add conditional-batch-normalization (CBN) (Dumoulin et al., 2016) to the generator. In our
design, CBN is conditioned on the given spatial positions and the input latent vector. It learns to
normalize the feature maps with respect to the given conditions. However, our implementation has
a crucial difference from the one described in (Miyato & Koyama, 2018): our spatial positions are
real values rather than discrete classes. We alternatively adopt similar strategy to (de Vries et al.,
2017) with a slight modification. Instead of using MLPs to produce ∆γ and ∆β, we make MLPs
directly output γ and β. For a K-channel input feature map iK with mean recorder µK and variance
recorder σK , we creates two learnable MLP layers, MLPγ and MLPβ . The output feature map oM
is calculated as oM = ((iK − µK)/σK) ∗MLPγ(iK) + MLPβ(iK).

We use Adam (Kingma & Ba, 2014) optimizer with β1 = 0 and β2 = 0.999 for both the gen-
erator and the discriminator. The learning rates are based on the Two Time-scale Update Rule
(TTUR) (Heusel et al., 2017), setting 0.0001 for the generator and 0.0004 for the discriminator.
We do not specifically balance the generator and the discriminator by manually setting how many
iterations to update the generator once as described in the WGAN paper (Arjovsky et al., 2017).

3 EXPERIMENTS

Although COCO-GAN framework supports the spatial positions to be uniformly and continuously
sampled within normalized range [−1, 1], we empirically find that only sampling the discrete spa-
tial positions that is used to inference will result in better generation quality. For instance, if the
full-image is formed by concatenating four micro patches on each axis, the model only uniformly
samples spatial positions from the set of four discrete points, {−1,−1/3, 1/3, 1} on each axis of
the coordinate system. We adopt this uniform and discrete sampling strategy throughout the experi-
ments. The root cause of degradation in generation quality is still unclear. One possible hypothesis is
that the task difficulty dramatically increases while sampling with continuous spatial positions. We
flag further analysis and solution toward this phenomenon as an important future research direction.
Some comparisons between continuous sampling and discrete sampling are shown in Appendix F.
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(a) CelebA (128×128). (b) LSUN (256×256).

Figure 2: Without any post-processing, the gen-
erated full-images of COCO-GAN are visually
smooth and globally coherent. More full-image
generation results are shown in Figure 12.

(a) Micro patch (32×32). (b) Macro patch (64×64).

Figure 3: Generated samples of micro/macro
patches. Each micro patch, macro patch, and
full-image in Figure 2a at the same relative posi-
tion uses the same latent vector.

Table 1: The FID score suggests that COCO-GAN is competitive with other state-of-the-art GANs.
FID scores are measured between 50,000 real and generated samples based on the original imple-
mentation provided at https://github.com/bioinf-jku/TTUR.

Dataset DCGAN + TTUR PGGAN WGAN-GP + TTUR COCO-GAN

CelebA (64×64) 12.5 - - 4.99
CelebA (128×128) - 7.30 - 8.35

LSUN - Bedroom (64×64) 57.5 - 9.5 -
LSUN - Bedroom (128×128) - - - 3.06
LSUN - Bedroom (256×256) - 8.34 - 16.59

3.1 QUALITY OF GENERATED IMAGES

We start with validating COCO-GAN on CelebA (Liu et al., 2015) and the bedroom category of
LSUN (Yu et al., 2015). For CelebA dataset, the resolutions of full-image, micro patch, and macro
patch are 128×128, 32×32, and 64×64, respectively. We choose 32×32 for micro patches in this
experiment since smaller patch size would be too small for the model (neither for human) to observe
useful information. On the other hand, larger patch size makes macro patch size too similar to the
full-image size, which is hard to demonstrate the idea of COCO-GAN can learn without access to
the full-image. For LSUN dataset, the full-image is with 256 × 256 resolution, micro patches with
64×64 resolution and macro patches with 128×128 resolution. We choose 64×64 for micro patch
size since the micro patch to full-image ratio is the same with the CelebA experiment.

We report Frchet Inception Distance (FID) (Heusel et al., 2017) in Table 1 as quantitative compar-
isons with state-of-the-art GANs. Since many other state-of-the-art models do not use full-resolution
of the datasets, we accordingly run COCO-GAN in different resolutions without changing hyper-
parameters other than input size and micro/macro patch size. Throughout these experiments, we
choose to always retain the micro patch size to be 1/16 (1/4 for height and 1/4 for width) of the full-
image size and macro patch size to be 1/4 (1/2 for height and 1/2 for width) of the full-image size.
Without additional hyper-parameter tuning, the results suggest COCO-GAN is both qualitatively
and quantitatively competitive with other state-of-the-art GANs.

In Appendix H, we also provide Wasserstein distance and FID score through time as training indi-
cators. The curves suggest that COCO-GAN is stable during training.

3.2 LATENT SPACE CONTINUITY

To demonstrate more precisely the space continuity, we perform the interpolation experiment in three
directions: micro patches interpolation, spatial positions interpolation, and full-images interpolation.
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(a) Micro patches interpolation. (b) Full images interpolation.

Figure 5: (a) Micro patches interpolation with fixed spatial position. Note that each left-right pair of
interpolation sample uses the same latent vectors. (b) Full-images interpolation between two latent
vectors. More interpolation results are shown in Appendix D.

Micro Patches Interpolation. The simplest interpolation experiment is the in-class (e.g. fixed
spatial condition) interpolation between latent vectors. With a fixed spatial position cmicroi , we ran-
domly sample two latent vectors z1 and z2. Then perform interpolation between z1 and z2 through
a slerp-path (White, 2016). The results in Figure 5a suggest that for each of the spatial position, the
latent space Z has continuity.

Figure 4: An example of spatial positions in-
terpolation for showing the spatial continuity of
the micro patches. The spatial conditions are
interpolated between range [−1, 1] of the micro
coordinate with a fixed latent vector. More ex-
amples are shown in Appendix I.

Spatial Positions Interpolation. Another sim-
ple interpolation experiment is inter-class (e.g.
between classes) interpolation with a fixed latent
vector. We directly linearly-interpolate spatial
position between [−1, 1] when the latent vector
z is fixed. The results in Figure 4 show that,
although we only uniformly sample spatial po-
sitions within a discrete spatial position set, the
spatial position interpolation is still continuous.

An interesting observation is about the interpola-
tion at the position between the eyebrows. In this
example, COCO-GAN does not know the exis-
tence of the smooth area (glabella) between two
eyes due to the discrete and sparse spatial posi-
tions sampling strategy. Instead, it learns to di-
rectly deform the shape of eye to switch from one
eye to another. This phenomenon raises an inter-
esting discussion, even the model learns to pro-
duce high-quality face images, it still may learn
wrong relationship of objects behind the scene.

Full-Images Interpolation. The hardest inter-
polation is to directly interpolate full-images between two latent vectors. All micro patches gener-
ated with different spatial positions must all change synchronously to make the full-image interpo-
lation smooth. We randomly sample two latent vectors z1 and z2. With any given interpolation point
z′ in the slerp path between z1 and z2, the generator uses the full spatial position sequence 〈cmj 〉Kj=1
to generate all corresponding patches. Then we merge all generated micro patches with T(m→M)

and forms a full-image x′. The interpolation results in Figure 5a and Figure 5b show that all micro
patches can interpolate smoothly and synchronously. This result suggests that COCO-GAN learns
the main latent space Z as well as the correlation between micro patches, and the spatial conditions
Cm are disentangled.

3.3 ABLATION STUDY

The ablation study is conducted in two folds: we first show that a straightforward approach fails in
COCO-GAN setting, then we study the trade-offs of each component of COCO-GAN.

A straightforward approach. One straightforward approach to the learning and inference with
partial views is using a full-sized generator and a patch discriminator, and then pre-calculating the
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locations of feature maps that are associated with a specific partial view. We refer to this method as
M afterward. DespiteM still implicitly uses conditional coordinating in feature map selection, we
observe that it fails to generate high-quality samples in comparison with COCO-GAN. We show the
FID score results in Table 2. More experimental details are shown in Figure 15 and some generated
samples in Figure 16.

Table 2: Best FID scores in the first 150
epochs. COCO-GAN usually converges
well in CelebA 64× 64 setting.

Model FID
M 72.82

M + PD (100 epochs) 90.87
M + PD + macro D 60.36

COCO-GAN (cont. sampling) 6.13
COCO-GAN + optimal D 4.05
COCO-GAN + optimal G 6.12
COCO-GAN + without Q 4.87

Multiple G 7.26
COCO-GAN (ours) 4.99

The trade-offs of each component. We perform ab-
lation study in CelebA 64 × 64 setting with five con-
figurations: “continuous sampling” demonstrates that
using continuous uniform sampling strategy for spatial
positions during training will result in moderate gener-
ation quality drop; “optimal D” lets the discriminator
directly discriminate the full image while the genera-
tor still generates micro patches; “optimal G” lets the
generator directly generate the full image while the dis-
criminator still discriminates macro patches; “without
Q” removes the Q network from COCO-GAN; “mul-
tiple G” trains an individual generator for each spatial
position.

The results in Table 2 suggestQ network is not a neces-
sary component if not considering the “Patch-Inspired
Image Generation” application. Surprisingly, despite
the convergence speed is different, “optimal discrimi-
nator”, COCO-GAN, and “optimal generator” (ordered by convergence speed from fast to slow) can
all achieve similar FID scores if with sufficient training time. The difference in convergence speed
is expected, since “optimal discriminator” provides the generator with more accurate and global
adversarial loss. In contrast, the “optimal generator“ has relatively more parameters and layers
to optimize, which causes the convergence speed slower than COCO-GAN. Lastly, the “multiple
generators” setting cannot converge well. Although it can also concatenate micro patches without
obvious seams as COCO-GAN does, the full-image results often cannot agree and are not globally
coherent. More experimental details and generated samples are shown in Figure 17 and Figure 18.

3.4 PANORAMA GENERATION AND PARTIAL SCENE GENERATION

Generating panoramas using GANs is an interesting problem but has never been carefully investi-
gated. Different from simple image generation, panoramas are expected to be cylindrical and cyclic
in the horizontal direction. However, normal GANs do not have built-in ability to handle such
cyclic characteristic if without special types of padding mechanism support (Cheng et al., 2018).
In contrast, COCO-GAN is a coordinate-system-aware learning framework. We can easily adapt a
cylindrical coordinate system, and generate panoramas that are cyclic in the horizontal direction as
shown in Figure 6 and Figure 14.

To train COCO-GAN with a panorama dataset under a cylindrical coordinate system, the spatial
position sampling strategy needs to be slightly modified. In the horizontal direction, the sampled
value within the normalized range [−1, 1] is treated as an angular value θ, and then is projected
with cos(θ) and sin(θ) individually to form a unit-circle on a 2D surface. Along with the normal
sampling on the vertical axis, a cylindrical coordinate system is formed.

We first take the sky-box format of Matterport3D (Chang et al., 2017) dataset to obtain panoramas
for training and testing. The sky-boxes consist of six faces of a 3D cube. We preprocess and
project the sky-box to a cylinder using Mercator projection, the resulting cylindrical image size is
768 × 512. Since the Mercator projection creates extreme sparsity near the northern and southern
poles, which lacks information, we directly remove the upper and lower 1/4 areas. Eventually, the
size of panorama we used for training is 768× 256 pixels.

We also find COCO-GAN has interesting connection with virtual reality (VR). VR is known to have
tight computational budget due to high frame-rate requirement and high resolution demand. It is
hard to generate full-scene for VR in real time using standard generative models. Some recent VR
studies on omnidirectional view rendering and streaming (Corbillon et al., 2017b; Ozcinar et al.,
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0° 360° 720°

Figure 6: The generated panorama is cyclic in the horizontal direction since COCO-GAN is trained
with a cylindrical coordinate system in this experiment. Here we paste the same generated panorama
twice (from 360◦ to 720◦) to illustrate that it indeed has the cyclic property.

2017; Corbillon et al., 2017a) are focusing on reducing computational cost or network bandwidth
by adapting the user’s viewport. COCO-GAN can easily inherit the same strategy and achieve user-
viewport-aware partial-scene generation based on its effectiveness in spatial disentanglement and
panorama generation. This can largely reduce unnecessary computational cost outside the region of
interest, thus making image generation in VR more applicable.

3.5 PATCH-INSPIRED IMAGE GENERATION

The content consistency loss equips the discriminator with the ability to approximate the original
latent vector of generated macro patch p̃macro using the discriminator’s auxiliary content vector
prediction z̃. This property can also generalize to any real macro patch pmacro. The approximation
process does not require a spatial position; the spatial position is implicitly inferred by the spatial
position prediction c̃M . The generator can accordingly generate a full-image x′ with respect to z̃.
The generated x′ should be partially similar to the given macro patch and also be globally coherent.
Such x′ can be seen as a generated sample inspired by the given macro patch. One important
footnote is that most of the information of a real full-image is lost while retrieving pM . As a result,
the produced guess of full-image is not guaranteed to be identical to the original real image. We
provides some examples of patch-inspired image generation in Figure 7. The results show that x′
can loosely retain some local structure or global characteristic of the original image, such as gender,
face direction, and facial expression.

This process is also similar to image inpainting (Liu et al., 2018a; Yeh et al., 2017; Yang et al.,
2017) except two key differences. First, the spatial position of the macro patch is not explicitly
given. Existing image inpainting frameworks assume that the remaining parts of the image are
already at their optimal positions, whereas COCO-GAN can infer by itself. Take human face for
instance, if only given a cropped patch of a face image without further providing the position of the
patch in the original image, COCO-GAN can still infer the position of the patch and reconstruct a
full face image, while common inpainting frameworks may not reconstruct a correctly structured
and well centered human face. Second, most inpainting frameworks do not assume the image is
extremely damaged, like loosing 75% of information in our examples. In Figure 8, we accordingly
compare COCO-GAN with partial convolution (Liu et al., 2018a), which is one of the state-of-the-
art image inpainting methods. For the partial convolution method, we simply place the macro patch
at the center since the spatial position of the macro patch is unknown. The results show that, unlike
COCO-GAN , the partial convolution method (Liu et al., 2018a) cannot handle this situation well.

3.6 COMPUTATION-FRIENDLY GENERATION

Recent studies in high-resolution image generation (Karras et al., 2017; Mescheder et al., 2018)
have gained lots of success. We observe a shared conundrum of these existing works is the mem-
ory requirement. They usually require some workarounds to improve memory consumption during
training, such as decreasing the batch size (Karras et al., 2017) or cutting down the number of feature
maps (Mescheder et al., 2018). The memory requirement problem cannot be easily resolved without
specific hardware support, which makes the generation of over 1024× 1024 resolution images hard
to achieve. These types of high-resolution images are commonly seen in panoramas, street views,
and medical images.
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(a) Real full-images. (b) Real macro patches. (c) Patch-inspired macro
patch generation.

(d) Patch-inspired full-
image generation.

Figure 7: Patch-inspired image generation can loosely retain some local structure or global char-
acteristic of the original image. The red boxes are the sampled spatial positions that crop the full-
images in (a) into the macro patches in (b). (c) & (d) show the patch-inspired generated macro
patches and full-images based on z̃. The blue boxes visualize the predicted spatial positions c̃m.
Since the information loss of the cropping process (from (a) to (b)) is critical, we do not expect (a)
and (d) to be identical. Instead, (b) and (c) should be visually similar and (d) should be globally
coherent. More examples are shown in Appendix G.

In contrast, COCO-GAN only requires partial views of the full-image for both training and infer-
ence. This characteristic largely reduces the minimum memory requirement while dealing with
high-resolution images. In Section 3.1, we show that COCO-GAN can generate and compose a
128×128 image with patches of 32×32 resolution. In other words, we can train a CIFAR-10-sized
model to generate 128×128 resolution images while the results are still high quality. The character-
istic of spatial disentanglement is the first step toward super-high-resolution image generation with
limited memory resource. Moreover, some state-of-the-art structures of deep models tend to require
more parameters (if without reducing number of channels), such as the skip-connection structure (He
et al., 2016) used in projection discriminator (Miyato & Koyama, 2018), inception (Szegedy et al.,
2015), and self-attention (Zhang et al., 2018). COCO-GAN is able to equip many of these complex
structures since our COCO-GAN model is relatively light-weight with a smaller receptive field and
a shallower structure.
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Figure 8: Patch-inspired image genera-
tion is globally more coherent than the
partial convolution method.

Furthermore, the spatial disentanglement makes the gen-
eration of micro patches independent after the latent vec-
tor and the spatial positions are decided. This character-
istic enables the generation of micro patches to have high
parallelism and take advantage of modern computation
architectures.

4 RELATED WORK

Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) has shown its potential and flexibility to
many different tasks. Recent studies on GANs are focus-
ing on generating high-resolution and high-quality syn-
thetic images in different settings. For instance, generat-
ing images with 1024 × 1024 resolution (Karras et al.,
2017; Mescheder et al., 2018), generating images with
low-quality synthetic images as condition (Shrivastava
et al., 2017), and by applying segmentation map as con-
ditions (Wang et al., 2017). However, these prior work
share the similar assumptions: the model must access and generate the full-image in a single shot.
This assumption consumes an unavoidable and significant amount of memory when the size of the
targeting image is relatively large, and therefore making it difficult to satisfy memory requirements
for both training and inference. Searching for a solution towards this problem is one of the initial
motivations of this work.
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COCO-GAN shares some similarities to Pixel-RNN (van den Oord et al., 2016), which is a pixel-
level generation framework while COCO-GAN is a patch-level generation framework. Pixel-RNN
transforms the image generation task into a sequence generation task, maximizes the log-likelihood
directly. In contrast, COCO-GAN aims at disentangling the spatial dependencies between micro
patches. It also utilizes the adversarial loss to ensure smoothness between adjacent micro patches.

CoordConv (Liu et al., 2018b) is another similar work but with fundamental differences. Coord-
Conv provides spatial positioning information directly to the convolutional kernels in order to the
coordinate transform problem and shows multiple improvements in different tasks. In contrast,
COCO-GAN uses spatial conditions as an input condition of the generator and an auxiliary output
of the discriminator. This setting enforces both the generator and the discriminator to learn coordi-
nating and correlations between the generated micro patches. We have also considered incorporating
CoordConv into COCO-GAN . However, empirical results show little visual improvement.

Group convolution (Krizhevsky et al., 2012) is another work that is highly related to COCO-GAN
. While group convolution aims at reducing computational costs by disentangling channels inside a
convolution layer, our model learns to disentangle on the spatial level and is highly parallelizable.
However, the micro-patch generation of COCO-GAN uses padding in all feature maps while apply-
ing convolution. This problem causes a large number number of FLOPs for each image generation.
We are particularly interested in this phenomenon and flag utilizing the spatial disentanglement to
reduce the total number of FLOPs as an important future work.

5 CONCLUSION AND DISCUSSION

In this work, we propose COCO-GAN , a new generative model toward dividing full image genera-
tion into non-overlapping patches generation. Through the experiments, we show that COCO-GAN
can learn and inference with limited partial views. Although the model is restrained from accessing
the full scene, it can still generate high-quality samples without extra hyper-parameter tuning. We
also demonstrate COCO-GAN is a coordinate-system-aware framework, and take panorama genera-
tion within a cylindrical coordinate system as case study. Furthermore, we highlight the advantages
of COCO-GAN by showcasing three applications, including “Patch-Inspired image generation”,
“User-Viewport-Aware Partial Scene Generation”, and “Computation-Friendly Generation”.

Despite the generation quality of COCO-GAN being competitive with other state-of-the-art GANs
without any post-processing, sometimes we still observe that local structures of generated samples
may be discontinued or mottled. This indicates that extra refinements and blending methods are still
important for COCO-GAN to generate more stable and reliable samples.

We adopt a discrete uniform sampling strategy over spatial positions since we observe a huge drop
in generation quality with continuous uniform sampling. Although in practice COCO-GAN suc-
cessfully learns spatial continuity using discrete sampling, continuous sampling, in theory, should
still be preferred since the spatial domain is continuous. Achieving such a goal would require deeper
understanding and insights about the root cause of the generation quality drop.

We demonstrate that COCO-GAN can generate panoramas under a cylindrical coordinate system.
However, another commonly used panorama format is sky-sphere under a hyperbolic coordinate
system. Considering that the image patches with the hyperbolic coordinate is not square-shaped,
further studies on incorporating special convolution schemes like Spherical-CNN (Cohen et al.,
2018) and implementing COCO-GAN under a hyperbolic coordinate system would be required.
Furthermore, to allow a more flexible and general coordinate system, some learnable coordinating
methods (Balakrishnan et al., 2018) might be correlated to COCO-GAN and could further enhance
the flexibility.

The size of micro patches is crucial to the results of COCO-GAN. A rule-of-thumb is that the size
should be large enough to cover sufficient information. The precise lower bound requires experi-
ments to examine if COCO-GAN learns undesired spatial patterns. In “Spatial Positions Interpola-
tions” of Section 3.2, we mention the model can be misled to learn reasonable but incorrect spatial
relationship. An effective evaluation for the lower bound of the patch size needs future investigation.
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APPENDIX A COCO-GAN DURING TESTING PHASE
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Figure 9: An overview of COCO-GAN during testing phase. The micro patches generated by G are
directly combined into a full-image as the final output.

APPENDIX B MODEL ARCHITECTURE DETAILS

Input shape: (B, 128)

G_Residual_Block
Output shape: (B, 4, 4, 512)

y

Output shape: (B, 32, 32, 3)
Generator 32x32

G_Residual_Block
Output shape: (B, 8, 8, 256)

G_Residual_Block
Output shape: (B, 16, 16, 128)

G_Residual_Block
Output shape: (B, 32, 32, 64)

Conv2D

Batch Normalization

ReLU

tanh

Linear + Reshape
Output shape: (B, 2, 2, 1024) 

(a) Generator Overall Architecture

ReLU
Output shape: (B, H, W, C)

Input shape: (B, H, W, C)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Up Scale
Output shape: (B, Hx2, Wx2, C)

CBN
Output shape : (B, Hx2, Wx2, D)

y

ReLU
Output shape : (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Up Scale
Output shape: (B, Hx2, Wx2, C)

Element-wise Add
Output shape: (B, Hx2, Wx2, D)

Output shape: (B, Hx2, Wx2, D)

Generator Residual Block

(b) Generator Residual Block

Figure 10: The detailed generator architecture of COCO-GAN for generating micro patches with
a size of 32 × 32 pixels. We directly duplicate/remove the last residual block if we need to en-
large/reduce the size of output patch.
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(a) Discriminator Overall Architecture
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(last feature map of discriminator)

Input shape: (B, 512)

Leaky ReLU
Output shape : (B, Hx2, Wx2, D)

Output shape: (B, 1)

Discriminator Auxiliary Head

Batch Normalization

Linear
Output shape: (B, 128)

Batch Normalization
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tanh

(c) Discriminator Auxiliary Head

Figure 11: The detailed discriminator architecture of COCO-GAN for discriminate macro patches
with a size of 64 × 64 pixels. We directly duplicate/remove the first residual block if we need to
enlarge/reduce the input patch size. Both the content vector prediction head (Q) and the spatial
condition prediction head use the same structure shown in (c).
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APPENDIX C MORE FULL-IMAGE GENERATION EXAMPLES

(a) CelebA 128× 128

(b) LSUN (bedroom) 256× 256

Figure 12: More full-image generation examples of COCO-GAN. More results across epochs are
provided in following anonymous link: https://goo.gl/A88ewn and https://goo.gl/hgCAeE.
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APPENDIX D MORE INTERPOLATION EXAMPLES

Micro Patches Interpolation Full-Images Interpolation

(a) CelebA (128× 128).

Micro Patches Interpolation Full-Images Interpolation

(b) LSUN (bedroom category) (256× 256).

Figure 13: More interpolation examples. Given two latent vectors, COCO-GAN generates the micro
patches and full-images that correspond to the interpolated latent vectors.

17



Under review as a conference paper at ICLR 2019

APPENDIX E MORE PANORAMA GENERATION SAMPLES

Figure 14: More examples of generated panoramas. All samples possess the cyclic property along
the horizontal direction. Each sample is generated with a resolution of 768× 256 pixels, and micro
patch size 64× 64 pixels.

APPENDIX F ABLATION STUDY

Figure 15: Comparison with the M method mentioned in Section 3.3 in CelebA 64 × 64 setting
shows that the M method is not competitive to COCO-GAN. Note that PD refers to “projection
discriminator” and macro indicates the discriminator is in macro patch sized.

(a)M. (b)M + PD. (c)M + PD + macro.

Figure 16: Some samples generated by different variants of M. Note that each set of samples is
extracted at the epoch when each M variant reaches its lowest FID score. We also provide more
samples at different epochs: https://goo.gl/ChQhCx.
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Figure 17: FID score curves of different variants of COCO-GAN in CelebA 64× 64 setting. Com-
bined with Figure 18, the results do not show significant differences in quality between COCO-GAN
variants. Therefore, COCO-GAN does not pay significant trade-off for the conditional coordinate
property.

(a) COCO-GAN (ours). (b) COCO-GAN (cont sampling). (c) COCO-GAN (optimal D).

(d) COCO-GAN (optimal G). (e) COCO-GAN (Without Q). (f) Multiple generators.

Figure 18: Some samples generated by different variants of COCO-GAN. Note that each set of
samples is extracted at the epoch when each M variant reaches its lowest FID score. We also
provide more samples for each of the variants at different epochs: https://goo.gl/Wnrppf.
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APPENDIX G PATCH-INSPIRED IMAGE GENERATION

(a) (CelebA 128×128) Real full-images. (b) (CelebA 128×128) Real macro patches.

(c) (CelebA 128×128) Patch-inspired full-image gen-
eration.

(d) (CelebA 128×128) Patch-inspired macro patch
generation.

Figure 19: Patch-inspired image generation can loosely retain some local structure or global char-
acteristic of the original image. The red boxes are the sampled spatial positions that crop the full-
images in (a) into the macro patches in (b). (c) & (d) show the patch-inspired generated macro
patches and full-images based on z̃. The blue boxes visualize the predicted spatial position c̃m.
Since the information loss of the cropping process (from (a) to (b)) is critical, we do not expect (a)
and (c) to be identical. Instead, (b) and (d) should be visually similar and (d) should be globally
coherent.
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(a) (LSUN 256×256) Real full-images. (b) (LSUN 256×256) Real macro patches.

(c) (LSUN 256×256) Patch-inspired full-image gener-
ation.

(d) (LSUN 256×256) Patch-inspired macro patch gen-
eration.

Figure 20: Patch-inspired image generation can loosely retain some local structure or global char-
acteristic of the original image. The red boxes are the sampled spatial positions that crop the full-
images in (a) into the macro patches in (b). (c) & (d) show the patch-inspired generated macro
patches and full-images based on z̃. The blue boxes visualize the predicted spatial position c̃m.
Since the information loss of the cropping process (from (a) to (b)) is critical, we do not expect (a)
and (c) to be identical. Instead, (b) and (d) should be visually similar and (d) should be globally
coherent. Note that the diversity and difficulty of LSUN (bedroom category) is higher than
CelebA. The Q network can only capture the structure, shape, and orientation of the room
and the bed, but it fails to capture detailed texture of objects.
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APPENDIX H TRAINING INDICATORS

(a) Wasserstein distance (b) FID

Figure 21: Both Wasserstein distance and FID through time show that the training of COCO-GAN
is stable. Both two figures are logged while training on CelebA with 128× 128 resolution.

APPENDIX I SPATIAL POSITIONS INTERPOLATION

Figure 22: Spatial interpolation shows the spatial continuity of the micro patches. The spatial con-
ditions are interpolated between range [−1, 1] of the micro coordinate with a fixed latent vector.
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