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ABSTRACT

We study the role of latent space dimensionality in Wasserstein auto-encoders
(WAEs). Through experimentation on synthetic and real datasets, we argue that
random encoders should be preferred over deterministic encoders.

1 INTRODUCTION

Wasserstein auto-encoders (WAEs) are a recently introduced auto-encoder architecture with justifica-
tion stemming from the theory of Optimal Transport (Tolstikhin et al., 2018). Similarly to Variational
auto-encoders (VAEs), WAEs describe a particular way to train probabilistic latent variable models
(LVMs) PG. LVMs act by first sampling a code (feature) vector Z from a prior distribution PZ de-
fined over the latent space Z and then mapping it to a random input point X ∈ X using a conditional
distribution PG(X|Z) also known as the decoder.

Instead of minimizing the KL divergence between the LVM PG and the unknown data distribution
PX as done by VAEs, WAEs aim at minimizing any optimal transport distance between them. Given
any non-negative cost function c(x, x′) between two images, WAEs minimize the following objective
with respect to parameters of the decoder PG(X|Z):

min
Q(Z|X)

E
PX

E
Q(Z|X)

[
c
(
X,G(Z)

)]
+ λDZ(QZ , PZ), (1)

where the conditional distributions Q(Z|X) are commonly known as encoders, QZ(Z) :=∫
Q(Z|X)PX(X)dX is the aggregated posterior distribution, DZ is any divergence measure be-

tween two distributions over Z , and λ > 0 is a regularization coefficient. In practice Q(Z|X = x)
and G(z) are often parametrized with deep nets, in which case back propagation can be used with
stochastic gradient descent techniques to optimize the objective. We will consider only random
encoders Q(Z|X = x) mapping inputs to a distribution over the latent space.

The objective (1) is similar to that of the VAE and has two terms. The first reconstruction term aligns
the encoder-decoder pair so that the encoded images can be accurately reconstructed by the decoder
as measured by the cost function c (e.g. l2 or cross-entropy loss). The second regularization term is
different from VAEs: it forces the aggregated posterior QZ to match the prior distribution PZ rather
than asking point-wise posteriors Q(Z|X = x) to match PZ simultaneously for all data points x.
This means that WAEs explicitly control the shape of the entire encoded dataset while VAEs constrain
every input point separately.

In this work, we address one of the important design choices of WAEs related to the properties of
the latent space which were not discussed in Tolstikhin et al. (2018) — whether to use deterministic
encoders or random (probabilistic) encoders.

We illustrate different ways in which a mismatch between the latent space dimensionality dZ and
the intrinsic data dimensionality dI may hurt the performance of WAEs and argue that WAEs can
be made adaptive to the unknown intrinsic data dimensionality dI by using random encoders rather
than the deterministic encoders used in all experiments of Tolstikhin et al. (2018). The performance
of random encoders is on par with the deterministic ones when dZ ≤ dI , and potentially better
when dZ � dI which is typical for real-world applications, suggesting that random encoders should
generally be preferred when using WAEs.
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Figure 1: Illustrations of the 2-dimensional latent space of the WAE trained on the dataset with
dI = 1 with deterministic (left pair) and random (right pair) encoders and a uniform prior PZ over
the box; Within each pair: (left) 1000 points sampled from the aggregated posterior QZ (dark red)
and prior PZ (blue). For the random encoder black points show the mean values of the encoder
E[Q(Z|X = x)]; (right) decoder outputs at the corresponding points of the latent space.

2 DIMENSION MISMATCH IS HARMFUL FOR DETERMINISTIC ENCODERS

What happens if a deterministic-encoder WAE is trained with a latent space of dimension dZ that
is larger than the intrinsic dimensionality dI? We empirically investigated this setting by training
WAEs on a simple synthetic dataset consisting of fixed-size and -position grey squares on a black
background. Each image is identifiable from the colour of its square, which is uniformly distributed
on the interval [0, 1] and hence the intrinsic dimensionality of this dataset is 1.

We trained both random-1 and deterministic-encoder WAEs with a latent dimension of 2. As such, it
is possible to fully visualise both the learned encoder and decoder (see Figure 1). The deterministic-
encoder WAE is forced to reconstruct the images well, while at the same time trying to fill the latent
space uniformly with the 1-dimensional data manifold. This is not possible, but the WAE does the
best it can by curling the manifold up in the latent space. The random-encoder WAE in contrast
can use 1 latent dimension to encode useful information to the decoder, while filling the unneeded
dimension with noise, thus succeeding in matching Q(Z) and P (Z).

To what extent is it actually a problem that the deterministic WAE represents the data as a curved
manifold in the latent space? There are two issues.

Poor sample quality: Only a small fraction of the total volume of the latent space is covered by the
deterministic encoder. Hence the decoder is only trained on this small fraction, because under the
objective (1) the decoder learns to act only on the encoded training images. While it appears in this
2-dimensional toy example that the quality of decoder samples is nonetheless good everywhere, in
high dimensions, such “holes” may be significantly more problematic. Indeed, Figure 2 (left) show
that WAEs with deterministic encoders produce bad samples when dZ � dI

Wrong proportion of generated images: We found that although in this simple example all of the
samples generated by the deterministic-encoder WAE are of good quality, they are not produced in
the correct proportions. By analogy, this would correspond to a model trained on MNIST producing
too few 3s and too many 7s.

3 RANDOM ENCODERS WITH LARGE dZ
To test our new intuitions about the behaviour of deterministic- and random-encoder WAEs with
different latent dimensions, we next consider the CelebA dataset. All experiments reported in this
section used Gaussian priors and, for the random-encoder WAEs, Gaussian encoders. A fixed
convolutional architecture with cross-entropy reconstruction loss was used for all experiments. To
keep computation time feasible, we used small networks.

Figure 2 (left) shows the results of training 5 random- and 5 deterministic-encoder WAEs with
dZ = 32, 64, 128 and 256. We found that both deterministic- and random-encoder WAEs exhibit
very similar behaviour: the FID scores Heusel et al. (2017) of random samples generated by the
models after training first decrease to some minimum and then subsequently increase (lower FID
scores mean better sample quality).

1The random-encoder maps an input image to a uniform distribution over an axis aligned box in Z .
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dZ FID score
Det. Rand.

32 75.0± 0.7 74.8± 0.5
64 71.6 ± 0.8 71.1 ± 1.0
128 76.8± 1.3 76.8± 1.2
256 147.6± 2.3 139.8± 4.2

FID scores vs L1 regularisation
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Figure 2: Left: FID scores for deterministic- and random-encoder WAEs trained on CelebA for
various latent dimensions dZ . FID scores suffer for dZ � dI . Right: FID scores for random-
encoder WAEs with latent space dimension dZ = 256 for different L1 regularisation coefficients λ1.
Dashed/dotted black lines represent the mean ± s.d. for deterministic-encoder WAEs with dZ = 256.
Dashed/dotted green lines represent the mean ± s.d. for deterministic WAEs dZ = 64, for which the
FID scores were best amongst all latent dimensions we tested. Overlaid images are random samples
coming from experiments indicated by the red circle. These plots show that when appropriately
regularised (λ = 10−1), random encoders with high dimensional latent spaces are able to produce
samples of similar quality to the deterministic encoders with the best latent space dimension.

For deterministic encoders, this agrees with the intuition we gained from the previous experiment.
Unable to fill the whole latent space when dI < dZ , the encoder leaves large holes in the latent space
on which the decoder is never trained. When dI � dZ , these holes occupy most of the total volume,
and thus most of the samples produced by the decoder from draws of the prior are poor.

For random encoders we did not expect this behaviour. Rather than automatically filling unnecessary
dimensions with noise when dI � dZ similarly to the previous experiment, thus making QZ

accurately match PZ and preserving good sample quality, the random encoders would “collapse” to
deterministic encoders. That is, the variances of Q(Z|X = x) tend to 0 for almost all dimensions
and inputs x.

Resolving variance collapse through regularization The cause of this variance collapse is uncertain
to us. We found that we could effectively eliminate it by adding additional regularisation in the form
of an L1 penalty on the log-variances, providing encouragement for the variances to remain closer to
1 and thus for the encoder to be remain stochastic. More precisely, we added the following term to
the objective function to be minimised:

λ1
N

N∑
n=1

dZ∑
i=1

∣∣log (σ2
i (xn)

)∣∣ (2)

where i indexes the dimensions of the latent space Z , n indexes the inputs in a mini-batch and λ1 ≥ 0
is a regularization hyper-parameter.

Using latent dimensions 256 to consider over-shooting the intrinsic dimensionality of the dataset
we trained 5 L1-regularized random-encoder WAEs for a variety of values for λ1. Figure 2 shows
the test reconstruction errors and FID scores obtained at the end of training. These results show that
L1 regularisation can significantly improve the performance of random-encoder WAEs compared to
their deterministic counterparts. In particular, tuning for the best λ1 parameter results in samples of
quality comparable to deterministic encoders with the best latent dimension size. Through appropriate
regularisation, random-encoder WAEs are able to adapt to the case that dZ � dI and perform well.

4 CONCLUSION

The reader will notice that we have merely substituted the problem of searching for the “right” latent
dimensionality dZ with the problem of searching for the “right” regularisation λ1. However, these
results show that random encoders are capable of adapting to the intrinsic data dimensionality; future
directions of research include exploring divergence measures other than MMD and whether the L1

regularisation coefficient λ1 can be adaptively adjusted by the learning machine itself.
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