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ABSTRACT

Neural networks have recently shown excellent performance on numerous classi-
fication tasks. These networks often have a large number of parameters and thus
require much data to train. When the number of training data points is small,
however, a network with high flexibility will quickly overfit the training data,
resulting in a large model variance and a poor generalization performance. To
address this problem, we propose a new ensemble learning method called Inter-
Boost for small-sample image classification. In the training phase, InterBoost first
randomly generates two complementary datasets to train two base networks of the
same structure, separately, and then next two complementary datasets for further
training the networks are generated through interaction (or information sharing)
between the two base networks trained previously. This interactive training pro-
cess continues iteratively until a stop criterion is met. In the testing phase, the
outputs of the two networks are combined to obtain one final score for classifica-
tion. Detailed analysis of the method is provided for an in-depth understanding of
its mechanism.

1 INTRODUCTION

Image classification is an important application of machine learning and data mining. Recent years
have witnessed tremendous improvement in large-scale image classification due to the advances of
deep learning (Simonyan & Zisserman, 2014; Szegedy et al., 2015; Krizhevsky et al., 2012; Gu
et al., 2015). Despite recent breakthroughs in applying deep networks, one persistent challenge
is classification with a small number of training data points (Santoro et al., 2016). Small-sample
classification is important, not only because humans learn a concept of class without millions or
billions of data but also because many kinds of real-world data have a small quantity. Given a small
number of training data points, a large network will inevitably encounter the overfitting problem,
even when dropout (Srivastava et al., 2014) and weight decay are applied during training (Zhang
et al., 2016). This is mainly because a large network represents a large function space, in which
many functions can fit a given small-sample dataset, making it difficult to find the underlying true
function that is able to generalize well. As a result, a neural network trained with a small number of
data points usually exhibits a large variance.

Ensemble learning is one way to reduce the variance. According to bias-variance dilemma (Geman
et al., 1992), there is a trade-off between the bias and variance contributions to estimation or clas-
sification errors. The variance is reduced when multiple models or ensemble members are trained
with different datasets and are combined for decision making, and the effect is more pronounced if
ensemble members are accurate and diverse (Granitto et al., 2005).

There exist two classic strategies of ensemble learning (Zhou et al., 2002; Schwenk & Bengio,
1998). The first one is Bagging (Zhou, 2012) and variants thereof. This strategy trains independent
classifiers on bootstrap re-samples of training data and then combines classifiers based on some
rules, e.g. weighted average. Bagging methods attempt to obtain diversity by bootstrap sampling,
i.e. random sampling with replacement. There is no guarantee to find complementary ensemble
members and new datasets constructed by bootstrap sampling will contain even fewer data points,
which can potentially make the overfitting problem even more severe. The second strategy is Boost-
ing (Schwenk & Bengio, 2000; Moghimi et al., 2016) and its variants. This strategy starts from a
classifier trained on the available data and then sequentially trains new member classifiers. Taking
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Adaboost (Zhou, 2012) as an example, a classifier in Adaboost is trained according to the training
error rates of previous classifiers. Adaboost works well for weak base classifiers. If the base clas-
sifier is of high complexity, such as a large neural network, the first base learner will overfit the
training data. Consequently, either the Adaboost procedure is stopped or the second classifier has to
be trained on data with original weights, i.e. to start from the scratch again, which in no way is able
to ensure the diversity of base networks.

In addition, there also exist some “implicit” ensemble methods in the area of neural networks.
Dropout (Srivastava et al., 2014), DropConnect (Wan et al., 2013) and Stochastic Depth techniques
(Huang et al., 2016) create an ensemble by dropping some hidden nodes, connections (weights)
and layers, respectively. Snapshot Ensembling (Huang et al., 2017) is a method that is able to, by
training only one time and finding multiple local minima of objective function, get many ensemble
members, and then combines these members to get a final decision. Temporal ensembling, a paral-
lel work to Snapshot Ensembling, trains on a single network, but the predictions made on different
epochs correspond to an ensemble prediction of multiple sub-networks because of dropout regu-
larization (Laine & Aila, 2017). These works have demonstrated advantages of using an ensemble
technique. In these existing “implicit” ensemble methods, however, achieving diversity is left to
randomness, making them ineffective for small-sample classification.

Therefore, there is a need for new ensemble learning methods able to train diverse and comple-
mentary neural networks for small-sample classification. In this paper, we propose a new ensemble
method called InterBoost for training two base neural networks with the same structure. In the
method, the original dataset is first re-weighted by two sets of complementary weights. Secondly,
the two base neural networks are trained on the two re-weighted datasets, separately. Then we up-
date training data weights according to prediction scores of the two base networks on training data,
so there is an interaction between the two base networks during the training process. When base
networks are trained interactively with the purpose of deliberately pushing each other in opposite
directions, they will be complementary. This process of training network and updating weights is
repeated until a stop criterion is met.

In this paper, we present the training and test procedure of the proposed ensemble method and
evaluate it on the UIUC-Sports dataset (Li & Fei-Fei, 2007) and the LabelMe dataset (Russell et al.,
2008) with a comparison to Bagging, Adaboost, SnapShot Ensembling and other existing methods.

2 THE PROPOSED INTERBOOST METHOD

In this section, we present the proposed method in detail, followed by discussion.

2.1 INITIALIZATION OF COMPLEMENTARY TRAINING DATASETS

We are given a training dataset {xd,yd}, d∈ {1, 2, ..., D}, where yd is the true class label of xd.
We assign a weight to the point {xd,yd}, which is used for re-weighting the loss of the data point in
the loss function of neural network. It is equivalent to changing the distribution of training dataset
and thus changing the optimization objective of neural network. We randomly assign a weight
0 < W1d < 1 to {xd,yd} for training the first base network, and then assign a complementary
weight W2d = 1−W1d to {xd,yd} for training the second base network.

2.2 INTERBOOST TRAINING

The core idea of the InterBoost method is to train two base neural networks interactively. This is in
contrast to Boosting, where base networks are typically trained in sequence, namely the subsequent
network or learner is trained on a dataset with new data weights that are updated using the error rate
performance of the previous base network.

As shown in Figure 1, the procedure contains multiple iterations. It first trains a number of epochs
for two base networks using two complementary datasets {xd,yd,W

(1)
1d } and {xd,yd,W

(1)
2d }, d ∈

{1, 2, ..., D}, separately, and then iteratively update data weights based on the probabilities that the
two base networks classify xd correctly, namely P (yd|xd,θ

(1)
1 ) and P (yd|xd,θ

(1)
2 ), where θ1 and

θ2 are parameters of the two base networks. During the iterative process, the weights always have the
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Figure 1: InterBoost training procedure. n is the number of iteration. W1d and W2d are the weights
of data point {xd,yd}, d∈ {1, 2, ..., D} for two base networks. θ1 and θ2 are the parameters of two
base neural networks. W (n)

1d +W
(n)
2d = 1 and 0 < W

(n)
1d ,W

(n)
2d < 1. P (yd|xd,θ

(n)
i ), i ∈ {1, 2} is

the probability that the ith base network can classify xd correctly after nth iteration.

constraints W1d +W2d = 1 and 0 < W1d,W2d < 1. That is, they are always kept complementary
to ensure the trained networks are complementary. Training networks and updating data weights run
alternately until a stop condition is met.

To compute θ(n)1 and θ(n)2 in the nth iteration, we minimize weighted loss functions are follows.

L
(n)
1 =

D∑
d=1

W
(n)
1d L(xd,yd,θ

(n−1)
1 ) (1)

L
(n)
2 =

D∑
d=1

W
(n)
2d L(xd,yd,θ

(n−1)
2 ) (2)

where L(xd,yd,θ1) and L(xd,yd,θ2) are loss functions of of xd for two base networks, respec-
tively.

To update W1d and W2d, we devise the following updating rule: If the prediction probability of a data
point in one base network is higher than that in another, its weight in next iteration for training this
network will be smaller than its weight for training another base network. In this way, a base network
will be assigned a larger weight for a data point on which it does not perform well. Hence the
interaction make it be trained on diverse datasets in sequence, which can be considered as “implicit”
Adaboost. Moreover, considering the fact that the two networks are always trained based on loss
functions with different data weights, this interaction makes them diverse and complementary.

Figure 2: Function w1 = p2/(p1 + p2) (left) and function w1 = ln(p1)/(ln(p1) + ln(p2)) (right),
where 0 < p1, p2 < 1.

To implement the rule of updating data weights, a simple method is to use function w1 = p2/(p1 +
p2), and then assign W1d = w1 and W2d = 1 − W1d. Here, for convenience, we use p1 and
p2 to represent the probabilities that the point xd is classified by the two base networks correctly.
Moreover, this is problematic, as illustrated on the left side of Figure 2. For example, when both
p1 and p2 are large and close to each other, w1 will be close to 0.5. In this situation, there will be
no big difference between W1d and W2d. In addition, this situation will occur frequently as neural
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networks with high flexibility will fit the data well. As a result, the function have difficulty to make
a data point have different weights in two base networks.

Instead, we use function w1 = ln(p1)/(ln(p1) + ln(p2)), as shown on the right side of Figure
2, to update data weights. It is observed that the function is more sensitive to the small differences
between p1 and p2 when they are both large. Specifically, for {xd,yd}, d ∈ {1, 2, ..., D}, we update
its weights W (n)

1d and W
(n)
2d by Equation (3) and (4).

W
(n)
1d =

lnP (yd|xd,θ
(n−1)
1 )

lnP (yd|xd,θ
(n−1)
1 ) + lnP (yd|xd,θ

(n−1)
2 )

(3)

W
(n)
2d = 1−W

(n)
1d (4)

The training procedure of InterBoost is described in Algorithm 1. First, two base networks are
trained by minimizing loss functions L1 and L2, respectively. Secondly, weights of data point
on training data are recalculated using Equation (3) and (4) on the basis of the prediction results
from two base networks. We repeat the two steps until the proposed ensemble network achieves a
predefined performance on the validation dataset or the maximum iteration number is reached.

Algorithm 1 InterBoost training procedure

Input:
Training set X = {(xd,yd)|d ∈ {1, 2, ..., D}}, validation set V = {(xd,yd)|d ∈ {1, 2, ..., V }}
and maximum number of iterations N .

Steps:
Initialize weights for each data point, W (1)

1d , W (1)
2d , and parameters of two base neural networks

θ
(0)
1 and θ(0)2 . n← 0, val acc← 0.

repeat
n← n + 1
Update θ(n)1 and θ(n)2 by minimizing (1) and (2)

Update W
(n+1)
1d , W (n+1)

2d , d ∈ {1, 2, ..., D}, according to (3) and (4)
Computing accuracy on V, temp acc, by (5)
if temp acc ≥ val acc then

val acc← temp acc
θ′1 ← θ

(n)
1

θ′2 ← θ
(n)
2

end if
until val acc == 1 or n == N
return Parameters of two base neural networks, θ′1 and θ′2

2.3 INTERBOOST PREDICTION

Through the interactive and iterative training process, the two networks are expected to be well
trained over various regions of the problem space, represented by the data. In other words, they
become “experts” with different knowledge. Therefore, we adopt a simple fusion strategy of linearly
combining the prediction results of two networks with equal weights and choose the index class with
a maximum prediction value as the final label, as detailed in (5).

O(xnew) = arg max
c∈{1,2,...,C}

{P (c | xnew,θ1) + P (c | xnew,θ2)}, (5)

where P (c | xnew,θi), i ∈ {1, 2} is the cth class probability of the unseen data point xnew from the
ith network, and O(xnew) is the final classification label of the point xnew. Because base networks
or “experts” have different knowledge, in the event that one base network makes a wrong decision,
it is quite possible that another network will correct it.
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Figure 3: Generated training datasets during the InterBoost training process. The datasets on the left
side are for the first base network, and the datasets on the right side are for the second base network.

2.4 DISCUSSION ON INTERBOOST

During the training process, we always keep the constraints W1d+W2d = 1 and 0 < W1d,W2d < 1,
to ensure the base networks diverse and complementary. Equation (3) and (4) are designed for up-
dating weights of data points, so that the weight updating rule is sensitive to small differences be-
tween prediction probabilities from two base networks to prevent premature training. Furthermore,
if the prediction of a data point in one network is more accurate than another network, its weight in
next round will be smaller than its weight for another network, thus making the training of individual
network on more different regions.

The training process generates many diverse training dataset pairs, as shown in Figure 3. That is,
each base network will be trained on these diverse datasets in sequence, which is equivalent to that
an “implicit” ensemble is applied on each base network. Therefore, the base network will get more
and more accurate during training process. At the same time, the two networks are complementary
to each other.

In each iteration, determination of the number of epochs for training base networks is also crucial.
If the number is too large, the two base networks will fit training data too well, making it difficult to
change data weights of to generate diverse datasets. If it is too small, it is difficult to obtain accurate
base classifiers. In experiments, we find that a suitable epoch number in each iteration is the ones
that make the classification accuracy of the base network fall in the interval of (0.9, 0.98).

Similar to Bagging and Adaboost, our method has no limitation on the type of neural networks. In
addition, it is straightforward to extend the proposed ensemble method for multiple networks, just
by keeping

∑H
i=1 Wid = 1, d ∈ {1, 2, ..., D}, in which H is the number of base networks and

0 < Wid < 1.

3 EXPERIMENTAL RESULTS

3.1 DATASETS AND PREPROCESSING

Considering our focus on small-sample image classification, we choose the following datasets.

• LabelMe datase (LM): A subset of scene classification dataset from (Russell et al., 2008).
The dataset contains 8 classes of natural scene images: coast, forest, highway, inside city,
mountain, open country, street and tall building. We randomly select 210 images for each
class, so the total number of images is 1680.

• UIUC-Sports dataset (UIUC): A 8 class sports events classification dataset 1 from (Li &
Fei-Fei, 2007). The dataset contains 8 classes of sports scene images. The total number of
images is 1579. The numbers of images for different classes are: bocce (137), polo (182),
rowing (250), sailing (190), snowboarding (190), rock climbing (194), croquet (236) and
badminton (200).

1http://vision.stanford.edu/lijiali/Resources.html
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For the LM dataset, we split the whole dataset into three parts: training, validation and test datasets.
Both training and test datasets contain 800 data points, in which each class contains 100 data points.
The validation dataset contains 8 classes, and each class contains 10 data points.

For the UIUC dataset, we also split the whole dataset into three parts as above. In this dataset, the
number of data points in each class, however, is different. We first randomly choose 10 data points
for every class to form validation dataset, resulting in 80 data points in total. The remaining parts of
the dataset are divided equally into training and test datasets.

For small-sample classification, good discriminative features are crucial. For both LM and UIUC
datasets, we first resize the images into the same size of 256× 256 and then directly use the VGG16
(Simonyan & Zisserman, 2014) network trained on the ImageNet dataset without any additional
tunning, to extract image features. Finally, we only reserve the features of last convolutional layer
and simply flatten them. Hence, final feature dimensions for each image is 512× 8× 8 = 32768.

3.2 BASE NETWORKS

Considering the small number of data points in the two datasets, we only use fully connected network
with two layers. In the first layer, the activation function is Rectified Linear Unit function (Relu). In
the second layer, the activation function is Softmax. We tried different numbers of hidden units, from
1024 to 32, and found overfitting is more severe if the number of hidden units is larger. Finally, we
set the number of hidden layer units as 32. We did not adopt the dropout technique, simply because
we found there was no difference between with and without dropout, and we set the parameter of L2

norm about network weights as 0.01. We used minibatch gradient descent to minimize the softmax
cross entropy loss. The optimization algorithm is RMSprop, the initial learning rate is 0.001, and
the batch size is 32.

3.3 CLASSIFICATION ACCURACIES

In order to evaluate the classification performance of the proposed InterBoost method on LM and
UIUC datasets, we use the training, validation and test datasets described above, and compare it with
(1) SVM with a polynomial kernel (SVM), (2) Softmax classifier (Bishop, 2006), (3) Fully con-
nected network (FC), (4) Bagging, (5) Adaboost and (6) SnapShot Ensembling (SnapShot) (Huang
et al., 2017).

For SnapShot, we adopt the code published by the author of it. For Softmax, FC, Bagging, Adaboost
and our method, we implement them based on Keras framework (Chollet, 2015), in which FC is the
base network of Bagging, Adaboost, SnapShot and the proposed method. The code of the proposed
method and the codes of the other referred methods and the features of two datasets used in the
experiment can be found on an anonymous webpage2 on DropBox .

On the two datasets, we test different epochs ranging from 50 to 800 for Adaboost. It is found that
the performance is similar when the epoch number of training base networks is set as 800 and 500.
Hence, epoch numbers for FC, Softmax and the base network of bagging are also set as 800 . For
SnapShot, we get a snapshot network every 800 epochs, and the number of snapshot is 2. For the
base networks of our method, we choose 8 iterations, each iteration has 100 epochs, and thus the
total epoch number remains the same as that of Bagging, Adaboost and Snapshot.

SnapShot does not use a validation dataset, so we merge the train and validation datasets into a new
training dataset while the test dataset remains unchanged. We run these methods on the two datasets
60 rounds each. The average accuracies are reported in Table 1. Meanwhile, to further evaluate the
robustness and stability of the proposed method and other referred methods, we show box plots of
accuracies obtained by FC, Bagging, Adaboost, SnapShot and our method on the two datasets in
Figure 4.

From Table 1, it can be seen that our method obtains performance with an accuracy of 89.0% on the
UIUC dataset, and with an accuracy of 86.4% on the LM dataset. On UIUC dataset, our method
performs better than Bagging and Softmax, similarly to FC and worse than Adaboost, Snapshot and
SVM. On the LM dataset, our method performs better than FC, Bagging and Softmax, but worse
than Adaboost, Snapshot and SVM.

2https://goo.gl/9PG3V5
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Table 1: Comparison of average accuracies on two datasets: UIUC-Sports dataset (UIUC) and a
subset of LabelMe dataset (LM). Methods include SVM with a polynomial kernel , Softmax classi-
fier, Fully connected network (FC), Bagging, Adaboost, SnapShot Ensembling (SnapShot) and the
proposed InterBoost method (Ours). Each method except for SVM runs 60 rounds, and the mean
values of classification accuracies are reported in the Table.

Datasets SVM Softmax FC Bagging Adaboost SnapShot Ours
UIUC 0.897 0.710 0.891 0.872 0.899 0.898 0.890
LM 0.886 0.841 0.860 0.855 0.871 0.880 0.864

In summary, from Table 1 and Figure 4, our method does not have overall superior performance to
other baseline methods on both LM and UIUC datasets.

Figure 4: Comparison of accuracies obtained by FC, Bagging, Adaboost, SnapShot and our method
via box plot on UIUC and LM datasets. The central mark is the median, and the edges of the box are
the 25th and 75th percentiles. The outliers are marked individually. In two boxplots, each method
runs 60 rounds. Epoch number of FC and base network in ensemble methods is 800 epochs, in
which our method has 8 iterations, and each base network in each iteration is trained 100 epochs.

4 CONCLUSION

In the paper, we have proposed an ensemble method called InterBoost for training neural networks
for small-sample classification and detailed the training and test procedures. In the training proce-
dure, the two base networks share information with each other in order to push each other optimized
in different directions. At the same time, each base network is trained on diverse datasets itera-
tively. Experimental results on UIUC-Sports (UIUC) and LabelMe (LM) datasets showed that our
ensemble method does not outperform other ensemble methods. Future work includes improving the
proposed method, increasing the number of networks, experimenting on different types of network
as well as different kinds of data to evaluate the effectiveness of the InterBoost method.

REFERENCES

Christopher M.. Bishop. Pattern recognition and machine learning. Springer, 2006.

François Chollet. Keras:deep learning library for python. runs on tensorflow, theano, or cntk. URL
https://github.com/fchollet/keras, 2015.
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