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ABSTRACT

Convolutional neural networks (CNN) have become the most successful and pop-
ular approach in many vision-related domains. While CNNs are particularly well-
suited for capturing a proper hierarchy of concepts from real-world images, they
are limited to domains where data is abundant. Recent attempts have looked into
mitigating this data scarcity problem by casting their original single-task problem
into a new multi-task learning (MTL) problem. The main goal of this inductive
transfer mechanism is to leverage domain-specific information from related tasks,
in order to improve generalization on the main task. While recent results in the
deep learning (DL) community have shown the promising potential of training
task-specific CNNs in a soft parameter sharing framework, integrating the recent
DL advances for improving knowledge sharing is still an open problem. In this
paper, we propose the Deep Collaboration Network (DCNet), a novel approach
for connecting task-specific CNNs in a MTL framework. We define connectivity
in terms of two distinct non-linear transformation blocks. One aggregates task-
specific features into global features, while the other merges back the global fea-
tures with each task-specific network. Based on the observation that task relevance
depends on depth, our transformation blocks use skip connections as suggested by
residual network approaches, to more easily deactivate unrelated task-dependent
features. To validate our approach, we employed facial landmark detection (FLD)
datasets as they are readily amenable to MTL, given the number of tasks they
include. Experimental results show that we can achieve up to 24.31% relative im-
provement in landmark failure rate over other state-of-the-art MTL approaches.
We finally perform an ablation study showing that our approach effectively allows
knowledge sharing, by leveraging domain-specific features at particular depths
from tasks that we know are related.

1 INTRODUCTION

Over the past few years, convolutional neural networks (CNNs) have become the leading approach in
many vision-related tasks (Krizhevsky et al., 2012). By creating a hierarchy of increasingly abstract
concepts, they can transform complex high-dimensional input images into simple low-dimensional
output features. Although CNNs are particularly well-suited for capturing a proper hierarchy of con-
cepts from real-world images, successively training them requires large amount of data. Optimizing
deep networks is tricky, not only because of problems like vanishing / exploding gradients (Hochre-
iter, 1998) or internal covariate shift (Ioffe & Szegedy, 2015), but also because they typically have
many parameters to be learned (which can go up to 137 billions (Shazeer et al., 2017)). While pre-
vious works have looked at networks pre-trained on a large image-based dataset as a starting point
for their gradient descent optimization, others have considered improving generalization by casting
their original single-task problem into a new multi-task learning (MTL) problem (see Zhang & Yang
(2017) for a review). As Caruana (1998) explained in his seminal work: “MTL improves general-
ization by leveraging the domain-specific information contained in the training signals of related
tasks”. Exploring new ways to efficiently gather more information from related tasks — the core
contribution of our approach — can thus help a network to further improve upon its main task.
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The use of MTL goes back several years, but has recently proven its value in several domains.
As a consequence, it has become a dominant field of machine learning (Zhang & Zhou, 2014).
Although many early and influential works contributed to this field (Evgeniou & Pontil, 2004), re-
cent major advances in neural networks opened up opportunities for novel contributions in MTL.
Works on grasping (Pinto & Gupta, 2017), pedestrian detection (Tian et al., 2015), natural language
processing (Liu et al., 2015), face recognition (Yim et al., 2015; Yin & Liu, 2017) and object de-
tection (Misra et al., 2016) have all shown that MTL has been finally adopted by the deep learning
(DL) community as a way to mitigate the lack of data, and is thus growing in popularity.

MTL strategies can be divided into two major categories: hard and soft parameter sharing. Hard pa-
rameter sharing is the earliest and most common strategy for performing MTL, which dates back to
the original work of Caruana (1998). Approaches in this category generally share the hidden layers
between all tasks, while keeping separate outputs. Recent results in the DL community have shown
that a central CNN with separate task-specific fully connected (FC) layers can successfully leverage
domain-specific information (Ranjan et al., 2016; Zhang et al., 2014; Pinto & Gupta, 2017; Yin &
Liu, 2017). Although hard parameter sharing reduces the risk of over-fitting (Baxter, 1997), shared
layers are prone to be overwhelmed by features or contaminated by noise coming from particular
noxious related tasks (Liu et al., 2017).

Soft parameter sharing has been proposed as an alternative to alleviate this drawback, and has been
growing in popularity as a potential successor. Approaches in this category separate all hidden
layers into task-specific models, while providing a knowledge sharing mechanism. Each model can
then learn task-specific features without interfering with others, while still sharing their knowledge.
Recent works using one network per task have looked at regularizing the distance between task-
specific parameters with a `2 norm (Duong et al., 2015) or a trace norm (Yang & Hospedales, 2016),
training shared and private LSTM submodules (Liu et al., 2017), partitioning the hidden layers into
subspaces (Ruder et al., 2017) and regularizing the FC layers with tensor normal priors (Long &
Wang, 2015). In the domain of continual learning, progressive network (Rusu et al., 2016) has
also shown promising results for cross-domain sequential transfer learning, by employing lateral
connections to previously learned networks. Although all these soft parameter approaches have
shown promising potential, improving the knowledge sharing mechanism is still an open problem.

In this paper, we thus present the deep collaboration network (DCNet), a novel approach for connect-
ing task-specific networks in a soft parameter sharing MTL framework. We contribute with a novel
knowledge sharing mechanism, dubbed the collaborative block, which implements connectivity in
terms of two distinct non-linear transformations. One aggregates task-specific features into global
features, and the other merges back the global features into each task-specific network. We demon-
strate that our collaborative block can be dropped in any existing architectures as a whole, and can
easily enable MTL for any approaches. We evaluated our method on the problem of facial landmark
detection in a MTL framework and obtained better results in comparison to other approaches of
the literature. We further assess the objectivity of our training framework by randomly varying the
contribution of each related tasks, and finally give insights on how our collaborative block enables
knowledge sharing with an ablation study on our DCNet.

The content of our paper is organized as follows. We first describe in Section 2 works on MTL
closely related to our approach. We also describe Facial landmark detection, our targeted applica-
tion. Architectural details of our proposed Multi-Task approach and its motivation are spelled out
in Section 3. We then present in Section 4 a number of comparative results on this Facial landmark
detection problem for two CNN architectures, AlexNet and ResNet18, that have been adapted with
various MTL frameworks including ours. It also contains discussions on an ablation study showing
at which depth feature maps from other tasks are borrowed to improve the main task. We conclude
our paper in Section 5.

2 RELATED WORK

2.1 MULTI-TASK LEARNING

Our proposed deep collaboration network (DCNet) is related to other existing approaches. The first
one is the cross-stitch (CS) (Misra et al., 2016) network, which connects task-specific networks
through linear combinations of the spatial feature maps at specific layers. One drawback of CS is
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that they are limited to capturing linear dependencies only, something we address in our proposed
approach by employing non-linearities when sharing feature maps. Indeed, non-linear combina-
tions are usually able to learn richer relationships, as demonstrated in deep networks. Another
related approach is tasks-constrained deep convolutional network (TCDCN) for facial landmarks
detection (Zhang et al., 2014). In it, the authors proposed an early-stopping criterion for removing
auxiliary tasks before the network starts to over-fit to the detriment of the main task. One drawback
of their approach is that their criterion has several hyper-parameters, which must all be selected man-
ually. For instance, they define an hyper-parameter controlling the period length of the local window
and a threshold that stops the task when the criterion exceeds it, all of which can be specified for
each task independently. Unlike TCDCN, our approach has no hyper-parameters that depend on
the tasks at hand, which greatly simplifies the training process. Our two transformation blocks con-
sist of a series of batch normalization, ReLU, and convolutional layers shaped in a standard setting
based on recent advances in residual network (see Sec. 3). This is particularly useful for compu-
tationally expensive deep networks, since integrating our proposed approach requires no additional
hyper-parameter tuning experiments.

Our proposed approach is also related to HyperFace (Ranjan et al., 2016). In this work, the authors
proposed to fuse the intermediate layers of AlexNet and exploit the hierarchical nature of the fea-
tures. Their goal was to allow low-level features containing better localization properties to help
tasks such as landmark localization and pose detection, and allow more class-specific high-level
features to help tasks like face detection and gender recognition. Although HyperFace uses a single
shared CNN instead of task-specific CNNs and is not entirely related to our approach, the idea of
feature fusion is also central in our work. Instead of fusing the features at intermediate layers of
a single CNN, our approach aggregates same-level features of multiple CNNs, at different depth
independently. Also, one drawback of HyperFace is that the proposed feature fusion is specific to
AlexNet, while our method is not specific to any network. In fact, our approach takes into account
the vast diversity of existing network architectures, since it can be added to any architecture without
modification.

2.2 FACIAL LANDMARK DETECTION

Facial landmark detection (FLD) is an essential component in many face-related tasks (Sun et al.,
2013; Zhang et al., 2016; Jourabloo & Liu, 2016; Baltrušaitis et al., 2016). This problem can be
described as follows: given the image of an individual’s face, the goal is to predict the (x, y)-
position on the image of specific landmarks associated with key features of the visage. Applications
such as face recognition (Ding & Tao, 2015), face validation (Taigman et al., 2014), facial feature
detection and tacking (Zhang & Zhang, 2014) rely on the ability to correctly find the location of
these distinct facial landmarks in order to succeed. Localizing facial key points like the center of the
eyes, the corners of the mouth, the tip of the nose and the earlobes is however a challenging problem
when many lighting conditions, head poses, facial expressions and occlusions increase diversity of
the face images. In addition to integrating this variability into the estimation process, a FLD model
must also take into account a number of correlated factors. For instance, although both an angry
person and a sad person have frowned eyebrows, an angry person will have pinched lips while a
sad person will have sunken mouth corners (Fabian Benitez-Quiroz et al., 2016). A particularity
of datasets geared towards FLD is that, on top of containing the position of these various facial
landmarks, they also contain a number of other labels that can be seen as tasks on their own, such as
gender recognition, smile recognition, glasses recognition or face orientation. For this reason, FLD
datasets are particularly well-suited to evaluate MTL frameworks.

3 DEEP COLLABORATION

Given T task-specific convolutional neural networks (CNNs), our goal is to share domain-specific
information by connecting task-specific networks together using their respective feature maps. Un-
like CS, our proposed approach will define this feature sharing in terms of two distinct non-linear
transformations. Linear transformations like those used in CS can limit feature sharing ability, unlike
ours that can learn complex transformations and properly connect each network.

For the sake of simplicity, we suppose that the networks have the same structure, which we refer to
as the underlying network. Note that our approach also works with different architectures. Let us
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Figure 1: Example of our collaborative block applied on the feature maps of five task-specific net-
works. The input feature maps (shown in part 1) are first concatenated depth-wise and transformed
into a global feature map (part 2). The global feature map is then concatenate with each input fea-
ture map individually and transformed into task-specific feature maps (part 3). Each resulting feature
map is then added back to the input feature map using a skip connection (part 4), which gives the
final outputs of the block (part 5).

further decompose the underlying network as a series of blocks, where each block can be as small
as a single layer, as large as the whole network itself, or based on simple rules such as grouping all
layers with matching spatial dimensions or grouping every n subsequent layers. The arrangement
of the layers into blocks does not change the nature of the network, but instead facilitates the under-
standing of applying our method. In particular, it makes explicit the depth at which we connect the
feature maps via our framework.

Since our approach is independent on depth, we will drop the depth index on the feature maps to
further simplify the equations. As such, we will define the feature map output of a block at a certain
depth as xt, where t ∈ {1 . . . T}, for each task t. Our approach takes as input all xt task-specific
feature maps and processes them into new feature maps yt as follows:

z = H([x1, . . . , xT ]) , yt = xt + Ft([xt, z]) , (1)

whereH and Ft represent the central and the task-specific aggregations respectively, and [·] denotes
depth-wise concatenation. We refer to (1) as our collaborative block. The goal of H is to combine
all task-specific feature maps xt into a global feature map z representing unified knowledge, while
the goal of F is to merge back the global feature map z with each input feature map xt individually.
As shown in Fig. 1,H and F have the following structure:

H = Conv(1×1) ◦BN ◦ δ ◦ Conv(3×3) ◦BN ◦ δ , (2)

F = Conv(1×1) ◦BN ◦ δ ◦ Conv(3×3) ◦BN , (3)
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Figure 2: Deep Collaboration Network (DCNet) using ResNet18 as underlying network in a MTL
setting on the MTFL dataset. The top part shows the block structure of ResNet18 interleaved with
our proposed collaborative block. While the detailed composition of each ResNet block and the
task-specific fully-connected blocks are shown at the bottom left and bottom right respectively, we
refer to Fig. 1 for the description of our collaborative block.

where BN stands for batch normalization, δ for the ReLU activation function and Conv(h×w) for a
standard convolutional layer with filters of size (h×w). The first Conv(1×1) layer inH divides the
number of feature maps by a factor of 4, while the first Conv(1×1) layer in F divides it to match the
size of xt.

As seen by the presence of a skip connection in (1), the recent advances in residual network inspired
the structure of our collaborative block. Based on the argument by He et al. (2016) that a network
may more easily learn the proper underlying mapping by using an identity skip connection, we also
argue that it may help our task-specific networks to more easily integrate the domain-information
of each related task. One of the advantages of identity skip connections is that learning identity
mappings can be done by simply pushing all parameters of the residual mapping towards zero.
We integrated this observation in our collaborative block by allowing each task-specific network to
easily remove the contribution of the global feature map z with an identity skip connection, in order
to account for cases where it does not help. As we see in (1), pushing all parameters of Ft towards
zero would remove its contribution, and the output of the block would then simply revert to the
original input xt.

Our motivation for using an identity skip connection around the global feature map z comes from
the fact that the depth at which we insert our collaborative block influences the relevance of each
task towards another. Considering that a network learns a hierarchy of increasingly abstract features,
some task-specific networks may benefit more by sharing their low-level features than by sharing
their high-level features. For instance, tasks such as landmark localization and pose detection may
profit from their low-level features containing better localization properties, while tasks such as
face detection and gender recognition may take advantage of their more class-specific high-level
features. Our collaborative block can take into account task relevance by deactivating a different set
of residual mappings Ft based on the level at which it appears in the network. An example of such
specialization will be shown in our ablative study in Section 4.5.

Fig. 2 presents an example of our Deep Collaboration Network (DCNet) using ResNet18 as the
underlying network. As we can see in the top part of the figure, this comes down to interleaving the
underlying network block structure with our collaborative block. Each collaborative block receives
as input the output of each task-specific block, processes them as detailed in Fig. 1, and sends the
result back to each task-specific network. Adding our approach to any underlying network can be
done by simply following the same pattern of interleaving the network block structure with our
collaborative block.
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Figure 3: Landmark failure rates (%) on the MTFL task. The reported values are the average over
the last five epochs, averaged over three tries. The left plot presents our results with AlexNet as
the underlying network, while the right one with ResNet18. AN-S and RN-S stand for single-
task training, AN and RN for multi-task training with a single central network, ANx and RNx for
multi-task training with a single central network widen to match the number of parameters of our
approach, HF for HyperFace, TCDCN for Zhang et al. (2014)’s approach and XS for Cross-Stitch.
In each instance, the left column (blue) is for un-pretrained networks, while the right column (green)
is for pre-trained networks. Our proposed approach obtains the lowest failure rates overall.

4 EXPERIMENTS

In this section, we detail our multi-task learning (MTL) training framework and present our exper-
iments in facial landmark detection (FLD) tasks. We also analyze our approach by performing an
ablation study and by experimenting with task importance.

4.1 MULTI-TASK LEARNING FRAMEWORK

As described previously, the problem of facial landmark detection is to predict the (x, y)-position
on the image of specific landmarks associated with key features of the visage. While the number
and type of landmarks are specific to each dataset, examples of standard landmarks to be predicted
are the corners of the mouth, the tip of the nose and the center of the eyes. In addition to the facial
landmarks, each dataset further defines a number of related tasks. These related tasks also vary from
one dataset to another, and are typically gender recognition, smile recognition, glasses recognition
or face orientation.

One particularity of our optimization framework is that we treat each task as a classification prob-
lem. While this is straightforward for gender, smile and glasses recognition as they are already
classification tasks, it is a bit more tricky for face orientation and FLD. For face orientation, instead
of predicting the roll, yaw and pitch real value as in a regression problem, we divide each component
into 30 degrees wide bins and predict the label of the bin corresponding to the value. Similarly for
FLD, rather than predicting the real (x, y)-position of each landmark, we divide the image into 1
pixel wide bins and predict the label of the bin corresponding to the value. Note that we still use the
original real values when comparing our prediction with the ground truth, such that we incorporate
our approximation errors in the final score. By doing this, do not artificially boost our performance.

We report our results using the landmark failure rate metric (Zhang et al., 2014), which is defined as
follows: we first compute the mean distance between the predicted landmarks and the ground truth
landmarks, then normalize it by the inter-ocular distance from the center of the eyes. A normalized
mean distance greater than 10% is reported as a failure.

4.2 MTFL FACIAL LANDMARK DETECTION

As a first experiment, we performed facial landmark detection on the Multi-Task Facial Landmark
(MTFL) dataset (Zhang et al., 2014). The dataset contains 12,995 face images annotated with five
facial landmarks and four related attributes of gender, smiling, wearing glasses and face profile (five
profiles in total). The training set has 10,000 images, while the test set has 2,995 images. We
perform four sets of experiments using an ImageNet pre-trained AlexNet, an ImageNet pre-trained
ResNet18, an un-pretrained AlexNet and an un-pretrained ResNet18 as underlying networks. For
AlexNet, we apply our collaborative block after each max pooling layer, while we do as shown in
Fig. 2 for ResNet18.
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Figure 4: Example predictions of our DCNet with pre-trained ResNet18 as underlying network on
the MTFL task. The first two contains failure cases, while last two contains successes. Elements
in green correspond to ground truth, while those in blue correspond to our prediction. In addition
to providing the facial landmarks (the small dots), we also include the labels of the related tasks:
gender, smiling, wearing glasses and face profile. As shown in the first example, over-exposition
can have a large impact on the prediction quality.

We compare our approach to several other approaches of the literature. We include single-task
learning (AN-S when using AlexNet as underlying network, RN-S when using ResNet18), MTL
with a single central network (AN and RN), MTL with a single central network that is widen to
match the number of parameters of our approach (ANx and RNx), the HyperFace network (HF), the
Tasks-Constrained Deep Convolutional Network (TCDCN) and the Cross-Stitch approach (CS). We
train each network three times for 300 epochs and report landmark failure rates averaged over the
last five epochs, further averaged over the three tries.

Fig. 3 presents our FLD results on the MTFL dataset. The left part of the figure corresponds to
using AlexNet as underlying network, while the right one corresponds to ResNet18. For each case,
the left column (blue) is for un-pretrained network, while the right column (green) is for ImageNet
pre-trained network. Moreover, Fig. 4 shows example predictions from DCNet with pre-trained
ResNet18 as underlying network. The first two examples were reported as failures, while the lsat
two contains two successes. The ground truth elements are colored in green, while our predictions
are colored in blue. In addition to showing facial landmarks as small dots, we also include the labels
of the related tasks: gender, smiling, wearing glasses and face profile. The first example illustrates
the influence of over-exposition on prediction.

One result we can observe from Fig. 3 is that our proposed approach obtained the lowest failure rates
in each case. Indeed, our DCNet with un-pretrained and pre-trained AlexNet as underlying network
obtained 19.99% and 19.93% failure rates respectively, while we obtained 15.32% and 14.34% with
ResNet18. This is significantly lower than the other approaches to which we compare ourselves. For
instance, with AlexNet, HF had 27.75% and 27.32%, XS had 26.41% and 25.65%, and TCDCN had
25.00%1, while with ResNet18, XS had 18.43% and 15.52% respectively. We obtained the highest
improvements when using AlexNet as the underlying network. With un-pretrained and pre-trained
AlexNet, we obtained improvements of 6.42% and 5.07%, while we obtained 1.43% and 1.18%
with ResNet18. Performing MTL with our approach can thus improve performance over using other
approaches of the literature.

An interesting result from Fig. 3 is that although increasing the number of parameters of multi-task
AlexNet (AN) and ResNet18 (RN) can significantly improve performance, connecting task-specific
networks with our approach is more efficient. For instance, while AlexNet (ANx) and ResNet18
(RNx) with widened layers that match the number of parameters of our approach lowers the failure
rates from 20.05% (RN) and 28.02% (AN) to 16.75% (RNx) and 26.88% (ANx) respectively, our
approach with AlexNet and ResNet18 as underlying networks further reduces the failure rates to
15.32% and 19.99%. These results show that while simply increasing the number of parameters
is an effortless avenue for improving performance, developing novel architectures enhancing net-
work connectivity may open more rewarding research directions for further leveraging the domain-
information of related tasks.

1Zhang et. al only provided results with pre-trained AlexNet (Zhang et al., 2014)
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Figure 5: Landmark failure rates (%) on the AFW task. Each network is trained on the MTFL task
and tested without fine-tuning on the AFW task. The left plot presents our results with AlexNet
as the underlying network, while the right one with ResNet18. AN-S and RN-S stand for single-
task learning, AN and RN for multi-task learning with a single central network, ANx and RNx for
multi-task learning with a single central network widen to match the number of parameters of our
approach, HF for HyperFace, TCDCN for Zhang et al. (2014)’s approach and XS for Cross-Stitch. In
each instance, the left column (blue) is for un-pretrained networks, while the right column (green)
is for pre-trained networks. Our proposed approach (last column) obtains the lowest failure rates
overall.

4.3 AFW FACIAL LANDMARK DETECTION

As a second experiment, we performed domain adaptation on the Annotated Face in the Wild (AFW)
dataset (Zhu & Ramanan, 2012). The dataset has 205 Flickr images, where each image can contain
more than one face. Instead of using the images as provided, we process them using the available
facial bounding boxes. We extract all faces with visible landmarks, which gives a total of 377 face
images. We then take each network of Section 4.2 trained on the MTFL dataset and evaluate them
without fine-tuning on these images. Fig. 5 presents the results of this experiment.

As it was the case in Section 4.2, our approach obtained the best results overall. Indeed, our DCNet
with un-pretrained and pre-trained AlexNet as underlying network obtained 43.77% and 45.62%
failure rates respectively, while it obtained 37.75% and 37.84% with ResNet18. This is significantly
lower then the other approaches. For instance, with AlexNet, HF had 48.54% and 51.81%, and XS
had 48.98% and 49.43%, while with ResNet18, XS had 43.24% and 40.58% respectively. Unlike
what we observed in Section 4.2, our approach obtained the highest improvement with AlexNet
when using an un-pretrained underlying network, while it obtained the highest improvement with
ResNet18 when using a pre-trained underlying network. Indeed, DCNet with un-pretrained and pre-
trained AlexNet obtained 4.24% and 2.39% improvements, while it obtained 3.10% and 2.74% with
ResNet18 respectively.

An interesting result we can observe from Fig. 5 is that approaches with pre-trained AlexNet did
not perform as well as those with pre-trained ResNet18, but rather increased the failure rates in
comparison to the ones with un-pretrained AlexNet. For instance, single-task un-pretrained AlexNet
obtained 48.72%, while single-task pre-trained AlexNet obtained a higher 50.84%. We also see a
similar failure rate degradation for HF, XS and our approach. This is not the case when using
ResNet18. Indeed, single-task un-pretrained ResNet18 obtained 44.92%, while single-task pre-
trained ResNet18 obtained a lower 41.20%. Although the dataset is small and more experiments
would help to better understand why this is happening, these results suggests that ResNet18 is more
capable of adapting its pre-trained features for domain adaptation.

4.4 AFLW FACIAL LANDMARK DETECTION

As third experiment, we evaluate the influence of the number of training examples on MTL, using the
Annotated Facial Landmarks in the Wild (AFLW) dataset (Koestinger et al., 2011). The dataset has
21,123 Flickr images, where each image can contain more than one face. Instead of using the images
as provided, we process them using the available facial bounding boxes. We extract all faces with
visible landmarks, which gives a total of 2,111 images. This dataset defines 21 facial landmarks and
has 3 related tasks (gender, wearing glasses and face orientation). For face orientation, we divide the
roll, yaw and pitch into 30 degrees wide bins (14 bins in total), and predict the label corresponding
to each real value.
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Table 1: Landmark failure rate results on the AFLW dataset using a pre-trained ResNet18 as un-
derlying network. The presented values are averaged over the last five epochs, further averaged
over three tries. The first column is the train / test ratio, and the subsequent ones are the networks:
single-task ResNet18 (RN-S), multi-task ResNet18 (RN) and Cross-Stitch network (CS). In all cases
except the first one, our approach obtains the best performance.

Train / Test
Ratio

Networks

RN-S RN XS Ours

0.1 / 0.9 57.39 58.00 73.06 60.20
0.3 / 0.7 31.84 32.00 36.24 29.84
0.5 / 0.5 23.41 23.31 26.02 21.84
0.7 / 0.3 21.47 21.92 22.37 18.42
0.9 / 0.1 13.03 12.80 13.51 11.32
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Figure 6: Landmark failure rate progression (in %) on the AFLW dataset with varying train / test
ratio using a pre-trained ResNet18 as base network. Each curve is the average over three tries. Even
though our approach has the slowest convergence rate, it outperforms the others in four of the five
cases.

Our experiment works as follows. With a pre-trained ResNet18 as underlying network, we compare
our approach to single-task ResNet18 (RN-S), multi-task ResNet18 (RN) and Cross-Stitch network
(XS) by training on a varying number of images. We use five different train / test ratios, starting
with 0.1 / 0.9 up to 0.9 / 0.1 by 0.2 increment. In other words, we train each approaches on the first
10% of the available images and test on the other 90%, then repeat for all the other train / test ratios.
We use the same training framework as in section 4.2. We train each network three times for 300
epochs, and report the landmark failure rate averaged over the last five epochs, further averaged over
the three tries.

As we can see in Table 1, our approach obtained the best performance in all cases except the first
one. Indeed, we observe between 1.46% and 3.05% improvements with train / test ratios from 0.3 /
0.7 to 0.9 / 0.1, while we obtain a negative relative change of 4.90% with train / test ratio of 0.1 / 0.9.
In fact, since all multi-task approaches obtained higher failure rates than the single-task approach,
this suggests that the networks are over-fitting the small training set. Nonetheless, these results show
that we can obtain better performance using our approach.

Figure 6 presents the landmark failure rate progression on all train / test ratios for each network. One
interesting result we can see from these figures is that our approach has the slowest convergence rate
during the first stage of the training process. For instance, with a train / test ratio of 0.9 / 0.1, our
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Figure 7: Landmark failure rate improvement (in %) of our approach compared to XS when sam-
pling random task weights. We used a pre-trained ResNet18 as underlying network. The histogram
at the left and the plot at the top right represents performance improvement achieved by our proposed
approach (positive value means lower failure rates), while the plot at the bottom right corresponds
to the log of the task weights. Our approach outperformed XS in 86 out of the 100 tries, thus em-
pirically demonstrating that our learning framework was not unfavorable towards XS and that our
approach is less sensitive to the task weights λ.

approach converges at about epoch 100, while the others start converging at about epoch 50. In fact,
while the other methods have similar convergence rate, the epoch at which our approach converges
increases as the number of training images decrease. Indeed, our approach converges at about epoch
130 with a train / test ratio of 0.5 / 0.5, while it converges at about epoch 160 with a train / test ratio
of 0.1 / 0.9. Even though the convergence rate is slower, our approach still converges to a similar
train failure rate. This gives a smaller train-to-test gap, which indicates that our approach has better
generalization abilities.

One particularity that we observe in Table 1 is that the XS network has relatively high failure rates.
In the previous experiments of sections 4.2 and 4.3, XS had either similar or better performance than
the other approaches (except ours). This could be due to our current multi-task learning framework
that is unfavorable towards XS, which may prevent it from leveraging the domain-information of the
related tasks. In order to investigate whether this is the case, we perform the following additional
experiment. Using a pre-trained ResNet18 as underlying network, we compare our approach to
XS by training each network 100 times using task weights randomly sampled from a log-uniform
distribution. Specifically, we first sample from a uniform distribution γ ∼ U(log(1e−4), log(1)),
then use λ = exp(γ) as the weight. We trained both XS and our approach for 300 epochs with the
same task weights using a train / test ratio of 0.5 / 0.5.

Figure 7 presents the results of this experiment. The plot at the top right of the figure represents
the landmark failure rate improvement (in %) of our approach compared to XS, while the plot at
the bottom right corresponds to the log of the task weights for each try. In 86 out of the 100 tries,
our approach had a positive failure rate improvement, that is, obtained lower failure rates than XS.
Moreover, as we can see in the histogram at the left of Fig. 7, in addition being normally distributed
around a mean of 2.78%, our approach has a median failure rate improvement of 3.14% and a
maximum improvement of 8.45%. These results show that even though we sampled at random
different weights for the related tasks, our approach outperforms XS in the majority of the cases.
Our learning framework is therefore not unfavorable toward XS.

4.5 ABLATION STUDY

As a final experiment, we perform an ablation study on our approach using the MTFL dataset with
an un-pretrained ResNet18 as base network. The goal of this experiment is to test whether the
observed performance improvements is due to the increased ability of each task-specific network
to share their respective features, rather than only due to the intrinsic added representative ability
of using additional non-linear layers. Our experiment works as follows: we evaluate the impact of
removing the contribution of each task-specific network by masking their respective feature maps
at the input of the central aggregation transformation. By referring to Fig. 1, this corresponds to
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Figure 8: Results of our ablation study on the MTFL dataset with an un-pretrained ResNet18 as
underlying network. We remove each task-specific features from each respective central aggrega-
tion layer and evaluate the effect on landmark failure rate. The columns represent the task-specific
network, while the rows correspond to the network block structure. Blocks with a high saturated
color were found to have a large impact on performance. For instance, this ablative study shows
that the influence of high-level face profile features is large within our proposed architecture, which
corroborates with the well-known fact that facial landmark locations are highly correlated to profile
orientation. This thus constitutes an empirical evidence of domain-specific information sharing via
our approach.

zeroing out the designated feature maps during concatenation in part 2 of the collaborative block (at
the bottom of the figure). Note that the collaborative ResNet18 is trained on the MTFL dataset using
the same framework as explained in Sec. 4.1, and the ablation study is performed on the test set.

Figure 8 presents the results of our ablation study. The columns represent each task-specific network,
while the rows correspond to the network block structure. The blocks are ordered from bottom
(input) to top (prediction), while the task-specific networks are ordered from left (main task) to right
(related tasks). The color saturation indicates the influence of removing the task-specific feature
maps from the corresponding central aggregation. A high saturation reflects high influence, while a
low saturation reflects low influence.

A first interesting result that we can see from Fig. 8 is that removing features from the facial land-
mark detection network significantly increases landmark failure rate. For instance, we observe a
negative (worse) relative change of 29.72% and 47.00% in failure rate by removing features from
B3 and B2 respectively. This is interesting, as it shows that the main-task network contributes to and
feed from the global features computed by the central aggregation transformation. Note that due to
using a skip connection between the input and the global features, the network can remove the con-
tribution of the global features by simply zeroing out its task-specific aggregation weights. These
results show that the opposite is instead happening, where the task-specific features from the facial
landmark network influence the quality of the computed global features, which in turn influence the
quality of the subsequent task-specific features.

Another interesting result is that B5 from the face profile-related task has the highest influence on
failure rate. Indeed, we observe a negative relative change of 83.87% by removing the corresponding
features maps from the central aggregation. Knowing that face orientation has a direct impact on
the location of the facial landmarks, it makes sense that features from the head related task would
be useful for improving landmark predictions. What is interesting in this case is that B5 has the
highest-level features of all blocks, due to being at the top of the hierarchy of increasingly abstract
features. Since we expect the highest-level features of the head network to resemble a standard
rotation matrix, it is evident that the landmark network would use these rich features to better rotate
the predicted facial landmarks. This is what we observe in Fig. 8. These results constitute an
empirical evidence that our approach not only allows leveraging domain-specific information from
related tasks, but also improves knowledge sharing with better network connectivity.
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5 CONCLUSION AND FUTURE WORK

In this paper, we proposed the deep collaboration network (DCNet), a novel approach for connect-
ing task-specific networks in a multi-task learning setting. It implements feature connectivity and
sharing through two distinct non-linear transformations inside a collaborative block, which also in-
corporates skip connection and residual mapping that are known for their good training behavior.
The first transformation aggregates the task-specific feature maps into a global feature map rep-
resenting unified knowledge, and the second one merges it back into each task-specific network.
One key characteristic of our collaborative blocks is that they can be dropped in virtually any exist-
ing architectures, making them universal adapters to endow deep networks with multi-task learning
capabilities.

Our results on the MTFL, AFW and AFLW datasets showed that our DCNet outperformed several
state-of-the-art approaches, including cross-stitch networks. Our additional ablation study, using
ResNet18 as underlying network, confirmed our intuition that the task-specific networks exploited
the added flexibility provided by our approach. Additionally, these task-specific networks success-
fully incorporated features having varying levels of abstraction. Evaluating our proposed approach
on other MTL problems could be an interesting avenue for future works. For instance, the recurrent
networks used to solve natural language processing problems could benefit from incorporating our
novel method leveraging domain-information of related tasks.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of NVIDIA Corporation for providing a Tesla Titan X for
our experiments through their Hardware Grant Program.

REFERENCES
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