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ABSTRACT

In Evolutionary Biology, species close in the tree of evolution are identified by
similar visual features. In computer vision, deep neural networks perform image
classification by learning to identify similar visual features. This leads to an in-
teresting question: is it possible to leverage the advantage of deep networks to
construct a tree of life? In this paper, we make the first attempt at building the
phylogenetic tree diagram by leveraging the high-level features learned by deep
neural networks. Our method is based on the intuition that if two species share
similar features, then their cross activations in the softmax layer should be high.
Based on the deep representation of convolutional neural networks trained for im-
age classification, we build a tree of life for species in the image categories of
ImageNet. Further, for species not in the ImageNet categories that are visually
similar to some category, the cosine similarity of their activation vectors in the
same layer should be high. By applying the inner product similarity of the activa-
tion vectors at the last fully connected layer for different species, we can roughly
build their tree of life. Our work provides a new perspective to the deep repre-
sentation and sheds light on possible novel applications of deep representation to
other areas like Bioinformatics.

1 INTRODUCTION

Deep learning transforms the data into compact intermediate representations akin to principal com-
ponents, and derives layered structures by removing the redundancy in representations (Li Deng,
2014). In recent years, deep learning has demonstrated great success with significant improve-
ment in various artificial intelligence applications, including speech recognition (Sak et al., 2015),
image recognition (Ciresan et al., 2012; Cir; Krizhevsky et al., 2012), and natural language process-
ing (Vinyals et al., 2015; Socher et al., 2013).

Convolutional Neural Networks (CNNs) are mainly designed for image and video recognition. Typ-
ical CNN architecture alternates convolutional layers and pooling layers, followed by several fully
connected or sparsely connected layers with a final softmax as the classification layer. Milestones
include the 16-layer AlexNet (Krizhevsky et al., 2012), the 19-layer VGG (Simonyan & Zisserman,
2014), and the 22-layer GoogleNet (Szegedy et al., 2015). By adding identity function as a short
cut, He et al. (2015) are able to build a substantially deeper ResNet with 152 layers, which received
the first place on the ILSVRC 2015 image classification task (Russakovsky et al., 2015). Other very
deep networks include the highway network with depths up to 100 layers (Srivastava et al., 2015).
Eldan & Shamir (2016) provide a theoretical justification that reveals the utility of having deeper
networks rather than wider networks, implying that future progress will lead to the development of
even deeper networks.

Understanding the deep representations of neural networks has become increasingly difficult
as the state-of-the-art models have more layers. This problem is important because it will help us
understand the intrinsic mechanism of deep neural networks and explore possible novel applications
based on the understanding. Ballester & de Araújo (2016) show how CNNs, trained to identify ob-
jects primarily in photos, could be used for abstract sketch recognition. Gatys et al. (2015a;b) utilize
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the correlations between feature maps to synthesize natural textures and transfer artistic style with
high perceptual quality. In Bioinformatics, deep neural networks are used for the analysis of medi-
cal images for cancer detection (Cirean et al., 2013) as well as drug discovery and toxicology (Dahl
et al., 2014; Ramsundar et al., 2015; Wallach et al., 2015). A deep-learning approach based on the
autoencoder architecture has been adopted to predict Gene Ontology annotations and gene-function
relationships (Chicco et al., 2014).

The Tree of Life refers to the compilation of a comprehensive phylogenetic (or evolutionary)
database rooted at the last universal common ancestor of life on Earth. Over the course of hundreds
of millions of years, the splitting and subsequent divergence of lineages has produced the tree of life,
which has as its leaves the many species of organisms (Darwin, 1859). Here we refer to a phyloge-
netic tree, evolutionary tree or tree of life as a branching diagram showing the inferred genealogical
relationships (Evaluate how close two species are in the evolutionary history, as evaluated by ob-
served heritable traits, such as DNA sequences) among various biological species (Hug et al., 2016).
This is an important problem in evolutionary biology and many attempts have been made (Darwin,
1859; Doolittle & Bapteste, 2007; Bapteste et al., 2009; Edwards, 2009). Originally tree of life was
manually built based on the understanding of the evolution history or the visual similarity of the
species. Today modern techniques have been applied based on the gene similarity.

Our contributions are two-fold:

1) Provides a potential solution to the important problem of constructing a biology evolutionary tree.

We propose a novel approach in constructing a tree of life using the deep representation of CNNs
trained for image classification. We conjuncture that the hierarchical feature representation learned
by deep networks can be leveraged to quantify the visual similarity of the species. In this way, we
might be able to construct tree of life using their feature similarity.

2) Gives insight into the representations produced by deep neural networks.

We conjecture that if images of two training categories share some similar features, then their cross
activations in the softmax layer should be high. Hence we could evaluate the genetic distance of
species within the training categories. Based on the deep representation of several typical CNNs,
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014) and ResNet (He et al.,
2015) that are trained for ImageNet classification, we construct tree of life for dozens of species in
the thousands of ImageNet categories of the training dataset.

For species not in the training categories that are visually similar to some species in the training
dataset, could we still utilize their deep representation in order to judge the relationship among
different species? We conjuncture that they show high cosine similarity of the activation vectors in
high-level layers. By applying the inner product similarity of the activation vectors at the last fully
connected layer for different species, we present empirical evidence that through transfer learning
we could roughly construct their tree of life.

Experiments show that the proposed method using deep representation is very competitive to human
beings in building the tree of life based on the visual similarity of the species. We also try on net-
works at different epochs during the training, and the quality of tree of life increases over the course
of training. The performance among the three networks, AlexNet, VGG and ResNet, improves with
the improvement of their classification quality.

2 THE PROPOSED METHOD

2.1 DATA COLLECTION

We have two important criterions in mind while constructing our image dataset. 1) We would like
each image category, which corresponds to a node in the tree (i.e. a species), to have enough samples
such that a statistic from the network activations is reasonably robust to noise. 2) There exists a
ground truth hierarchy on the image categories, so we can objectively evaluate the effectiveness of
our method.
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Fortunately, the ImageNet 2012 Classification dataset provides the raw material we need. This
dataset contains 1000 categories of common life objects, and each category contains 1000 images
as the training data. Also, those categories correspond exactly to nodes in the WordNet hierarchy.
WordNet (Miller, 1995) is a large lexical database of English, where words are grouped into sets
of cognitive synonyms (synsets), each expressing a distinct concept and synsets are interlinked by
means of conceptual-semantic and lexical relations.

For the reference network, we select three popular CNNs (AlexNet, VGG-16 and ResNet-152)
trained on ImageNet. The top 5 classification errors of AlexNet, VGG and ResNet are 15.3%,
9.9% and 6.7% respectively. So they all learn the features of the images very well and we could
leverage their deep representations for the ToL construction.

To find a small branch of the phylogenetic tree in order to do the reconstruction, we choose a set
A of genealogically close species (species close in the evolutionary tree of life as evaluated by the
branch distance) from the 1000 ImageNet categories. And for each category A ∈ A, we use all the
1000 images from the training dataset to get robust result.

For the ground truth, in the smallest WordNet subtree that contains A: 1) we could just consider the
categories inA and their positions in this WordNet subtree and build a smallest ground truth tree T 1

A.
2) we could additional consider some categories outsideA in this WordNet subtree. Then the ground
truth tree T 2

A contains some categories outside the ImageNet training categories. Note that nodes
in T 1

A is basically the intersection of nodes in T 2
A and nodes in the 1000 ImageNet categories. For

each category outside the 1000 training categories, we also use the 1000 images from the ImageNet
database 1.

2.2 SIMILARITY EVALUATION

We input all selected images for species in T 1
A or T 2

A to a reference network and execute the feed
forward pass. The feature maps (i.e. the activation vectors) of the last fully connected (FC) layer
and the softmax layer are used to build the distance matrix.

1) The Probability Method. For T 1
A, each class is in the training set and their ground truth labels

are among the ones represented by the softmax layer. So we utilize the probability distribution of
the images at the softmax layer in order to build a distance matrix. Specifically, for two classes of
images A and B in the categories of A, we consider their cross activations in the softmax layer. For
each image a ∈ A, we obtain the predicted probability Pa2B that this image belongs to node B, and
we calculate the average of these values, named PA2B .

PA2B =
∑
a∈A

Pa2B (1)

For each image b ∈ B, we obtain the predicted probability Pb2A that this image belongs to node A,
and we calculate the average of these values, named PB2A.

PB2A =
∑
b∈B

Pb2A (2)

The closer the genealogical relationship of A and B, the higher the cross predicted probability value
should be. As the cross confidence is close to zero, we use the logistic function to enlarge the value.
Then we add “−” to assign lower value to closer species and to keep the value nonnegative.

DAB =

{
0 if A = B

−log(0.5PA2B + 0.5PB2A) if A 6= B
(3)

2) The Inner Product Method. For T 2
A, as some species are not in the 1000 classification cate-

gories, we use the centroid vector of the activations at the last fully connected (FC) layer for each
species, and calculate the dot product of the two unitized centroid vectors to get their cosine simi-
larity. Then we add “−” to assign lower value to closer species.

DAB = −log
(

vA · vB
||vA|| ||vB ||

)
(4)

1The only exception is for Bassarisk which only contains 694 images.
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2.3 CONSTRUCTING THE TREE OF LIFE

Based on the distance matrix, we have three methods, namely “Approximation Central Point”, “Min-
imum Spanning Tree”, and “Multidimensional Scaling”, to construct a tree of life.

1) The “Approximation Central Point”(ACP) based method. In the ACP based method, we build
a tree bottom up by recursively merging two species points, say A and B, with the smallest distance,
and setting the distance of the new point to other points as the average distance of A and B to other
points respectively.

2) The “Minimum Spanning Tree” (MST) based method. In the MST based method, we first
construct a Minimum Spanning Tree (MST) based on the distance matrix. Then we build a tree
from the root to the leaves, recursively split the current MST subtree into two parts by removing its
longest edge until there is only one node in each subtree. In this way we build a “tree” with all the
leaves corresponding to the species and closest species are splitted in the end.

3) The “Multidimensional Scaling”(MDS) based method. In the MDS based method, according
to D, we know distances among the points which corresponds to the species. We first apply the
MDS (Multi-Dimensional Scaling) (Borg & Groenen, 2005) algorithm to do dimension reduction
and project the species points into a two dimensional subspace. Then we build a tree bottom up by
recursively merging two points with the smallest Euclidean distance in the two dimensional subspace
and regard the midpoint of the two merging points as the new representative point.

Our following experiments show that MST and MDS show similar performance but ACP is consid-
erably weaker.

3 EXPERIMENTS AND ANALYSIS

We conduct a plenty set of experiments to build several branches of the phylogenetic trees of differ-
ent granularity. To test whether our method could distinguish tiny visual differences, we first choose
genealogically very close species, such as a set of fish species or a set of canine species, and con-
struct their tree of life. Then, to test whether our method has good scalability for larger species, such
as dog, cat, fish, etc., we choose 39 different large species to build a more general tree of life and
verify whether different breeds of one large species like dogs could be grouped together. In addi-
tion, to evaluate the ability of constructing hierarchical trees based on the visual similarity of images
outside the Biology, we choose some vehicle categories from the ImageNet dataset (Russakovsky
et al., 2015) and build a vehicle tree.

For the methods, we use the probability method in Section 2.2 to build the distance matrix, and
apply ACP, MST, and MDS based methods to build the tree of life. For the inner product method
in Section 2.2, the results is slightly weaker, but it can deal with species or categories outside the
training set. For details of inner product method, the readers are referred to the Appendix.

3.1 CONSTRUCTING FINE-GRAINED TREE OF LIFE

To construct fine-grained tree of life, we select several fish species of high visual similarity and test
whether we could identify the tiny differences of the features. We pick six fish species from the
ImageNet training set and for each species, we input all the 1000 images in the training dataset to
the ResNet network.

Figure 1 shows that the tree of life constructed by MST and MDS coincides with the hierarchial tree
built on WordNet. The hierarchical tree constructed by ACP does not coincide with the ground truth
at all. The reason may be that in any triangle ABC, the edge length from A to the median of BC,
say D, is shorter than the average length of edge AB and AC. If A is far more from symmetric as
evaluated by edge BC, the recalculated distance of AD does not accurately represent the distance
of A to the merged set of {B,C}.
Our results demonstrate that deep CNNs could capture the local features as well as the global fea-
tures simultaneously. As to rebuild tree of life for genealogically close species, we need both features
of different granularity like the animal’s size, skin texture and shape. For instance, the texture of a
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lionfish is very similar to that of a goldfish, then we need other features like the size to distinguish
the two species.

As another example, we choose 11 very similar canine species and build a relatively lager tree, as
illustrated in Figure 3. We can correctly build the canine tree, possibly according to their fur texture
and shape features. The reconstructed quality is as good as what human beings could reconstruct
based on the visual similarity.

ACP method MST method MDS method WordNet

Figure 1: Trees of life for fish species. The first three trees are constructed by our methods, and the
fourth tree is the ground truth using WordNet. The hierarchy of MST and MDS coincides with that
of the WordNet.

ResNet VGG AlexNet

Figure 2: Constructed tree of life for families of species by different networks. Species of the five
families are in different colors. ResNet and VGG can correctly cluster the species but AlexNet does
not. Build by MST based method.

3.2 CONSTRUCTING COARSE-GRAINED TREE OF LIFE

Figure 2 shows the coarse-grained tree of life for clustering species of different families by different
networks: ResNet, VGG and AlexNet. We pick 38 species from five families: bird, canine, plant,
fish and feline.ResNet and VGG can correctly cluster the species by families, while AlexNet has
makes some mistakes. This result indicates that deep networks with higher classification quality
learn the deep representations better, such that the Tree of Life built based on the deep representation
also have different reconstruction quality.

To show that we not only correctly cluster the species, but also ensure the correct hierarchy within
each family, we further construct a tree containing 20 species of five families, as illustrated in Figure
4.
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Figure 3: A constructed tree of life for 11
canine species. Closer species show shorter
distance. Build by MDS based method.

Figure 4: A constructed small tree of life for
different families of species. We not only
correctly cluster each family of species, but
also present correct hierarchy of the species
within each family. Build by MDS based
method.

MST method WordNet

Figure 5: A constructed vehicle tree. Our result looks more reasonable than that of the WordNet.
Build by the MDS method.

3.3 CONSTRUCTING A VEHICLE TREE

To show the ability of building hierarchical tree for other objects other than animals, we pick eight
vehicle categories from the ImageNet training set. Vehicles are very different from the animals.
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Their shapes are kind of fixed and they can only do certain motions like going forward or turning
around. Images of vehicles do not embed abundant features as the animal images do.

Nevertheless, our method still output good results, as shown in Figure 5. We cluster the ambulance,
fire truck and garbage truck together, all of which have big carriages. While in WordNet, the ambu-
lance is close to model T, convertible and cab, but the three do not have carriage and they are much
smaller than ambulance. Our result is more reasonable than the WordNet provides.

4 CONCLUSION

By leveraging the similarity of features extracted automatically by deep learning techniques, we
build a tree of life for various biological species, either belonging to the training categories or not.
The results are highly competitive to the level of human beings in building the tree of life based on
the visual similarity of the images. Our work provides new understandings to the deep representation
of neural networks and sheds light on possible novel applications of deep learning in the area of
Bioinformatics. An intriguing future work would be on how to utilize deep learning techniques to
build a more delicate tree of life based on the gene similarity of the species.
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APPENDIX

To test the inner product method in Section 2.2, that can build tree of the species not in the training
set, we select 5 species not in the training set and 14 species in the training set. We choose 1000
images for each species except for Bassarisk which only contains 694 images. We show the results
on ResNet using the MDS based method. Figure 6 illustrates the result.

MDS method WordNet

Figure 6: Constructing tree of life containing some species not in training set (marked by pink point).
We use inner product method to build the distance matrix. Only coati is in the wrong leaf of the tree.
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