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Abstract—Detection of anomalies among a large number of
processes is a fundamental task that has been studied in multiple
research areas, with diverse applications spanning from spectrum
access to cyber-security. Anomalous events are characterized by
deviations in data distributions, and thus can be inferred from
noisy observations based on statistical methods. In some scenarios,
one can often obtain noisy observations aggregated from a chosen
subset of processes. Such hierarchical search can further minimize
the sample complexity while retaining accuracy. An anomaly search
strategy should thus be designed based on multiple requirements,
such as maximizing the detection accuracy; efficiency, be efficient
in terms of sample complexity; and be able to cope with statistical
models that are known only up to some missing parameters (i.e.,
composite hypotheses). In this paper, we consider anomaly detec-
tion with observations taken from a chosen subset of processes that
conforms to a predetermined tree structure with partially known
statistical model. We propose Hierarchical Dynamic Search (HDS),
a sequential search strategy that uses two variations of the Gener-
alized Log Likelihood Ratio (GLLR) statistic, and can be used for
detection of multiple anomalies. HDS is shown to be order-optimal
in terms of the size of the search space, and asymptotically optimal
in terms of detection accuracy. An explicit upper bound on the error
probability is established for the finite sample regime. In addition
to extensive experiments on synthetic datasets, experiments have
been conducted on the DARPA intrusion detection dataset, showing
that HDS is superior to existing methods.

Index Terms—Active hypothesis testing, anomaly detection,
composite hypotheses testing, sequential design of experiments.

I. INTRODUCTION

HE task of detecting anomalies in data streams arises
in a wide variety of applications. These applications
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include dynamic spectrum access and sensing in wireless com-
munication [2]; detecting attacks and intrusions in computer
networks [3]; and detecting anomalies in infrastructures that
may indicate catastrophes [4]. Such tasks involve distinguishing
anomalous processes from typical ones based on noisy observa-
tions.

The noisy nature of the observations implies that the typical
behavior can be modeled by a normal or benign distribution, and
the anomalous behavior is captured by an abnormal distribution.
The goal of a decision-maker boils down to deciding whether to
reject the null hypothesis and to declare a process as anomalous.
Here we consider the task of detecting an anomalous process
(or processes) out of a large set of data streams. This requires
to sample (observe) each process at least once, and preferably
more for better detection accuracy due to uncertainty. Hence, a
decision-maker should design an efficient sampling policy, that
for a given detection accuracy minimizes the number of samples
needed to reach a decision, or alternatively, given a sampling
budget maximizes the detection accuracy.

The class of problems involving a sequential design of ex-
periments for active binary hypothesis testing problem was
pioneered by Chernoff [5]. Chernoff proposed a randomized
strategy and showed that it is asymptotically optimal as the error
probability approaches zero. However, the Chernoff test results
in a linear sample complexity in the size of the search space.
When the number of processes (data streams) is very large, as is
often the case in practice, it is likely to be inefficient to sample
each process multiple times. Therefore, sampling strategies with
a sub-linear sampling complexity are desirable. The need for
efficiency requires to exploit a certain structure in the data, which
may lead to a significant performance gain. A common structure
that can be utilized for this end is the ability to access the data
in a hierarchical fashion.

The hierarchical structure model represents settings where a
massive number of data streams can be observed at different
levels of granularity. Such modeling faithfully captures the
operation of various applications. In finance, transactions can
be aggregated at different temporal and geographic scales [6].
In visual monitoring applications, the ability to zoom-in or
zoom-out is equivalent to the aggregation of pixels, and can
lead to faster detection of anomalies (targets, interesting events)
by giving suspicious pixels more attention than others [7]. In
internet traffic monitoring, there is a need for detecting heavy
hitters, i.e., a small number of flows that accounts for most of
the total traffic, and thus representing the measurements as a
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Fig. 1. A binary tree observation model with M = 8 processes, log, M = 3

levels, and a single anomaly. The anomaly is measurable at the red nodes.

tree structure, where each node represents an aggregated flow
can lead to efficient detection [8]. Other applications include
direction of arrival estimation [9] and system control [10].

In light of the aforementioned potential gains of the hier-
archical structure, here, we consider the problem of detecting
anomalous processes (targets), for which there is uncertainty
in the distribution of observations. We assume that in each
time step, a decision-maker can observe a chosen subset of
processes that conforms to a predetermined tree structure, and
get access to aggregated observations that are drawn from a
general distribution that depends on a chosen subset of pro-
cesses as schematically depicted in Fig. 1. The uncertainty
in the anomalous distribution yields a composite hypothesis
case, where measurements drawn when observing a subset of
processes follow a common distribution parameterized by an
unknown vector when containing the target. The objective is to
design a sampling policy (a search strategy), that minimizes a
Bayesian risk that accounts for sample complexity and detection
accuracy, by selecting which subset to observe, and when to
terminate the search and make a decision, in an adaptive way.

Dynamic search strategies were proposed for various forms of
anomaly detection problems. In [11], the Information-Directed
Random Walk (IRW) algorithm was proposed, for cases where
the statistical model is fully known. IRW was shown to be
asymptotically optimal in terms of detection accuracy and order
optimal with respect to the number of processes. When the
anomalous hypothesis is composite, the IRW policy serves as
a benchmark for the performance one can achieve with partially
known modeling. The recent studies [12], [13], [14] considered
hierarchical search under unknown observation models. The
search strategies in [12], [13] are based on a sample mean
statistic, which fails to detect a general anomalous distribution
with a mean close to the mean of the benign distribution. The
work in [14] does not assume a structure on the abnormal distri-
bution, and uses the Kolmogorov-Smirnov statistic, which fails
to utilize the parametric information considered in our setting.
This motivates the derivation of a dynamic search policy for data
of hierarchical structure which can cope with partially known
anomalous distributions and reliably detect based on statistics
of a higher order than a sample mean.

In this work we consider for the first time the task of hier-
archical anomaly detection over a general and known family of
distributions with unknown parameters. Here, the measurements
can take continuous values and the decision-maker is allowed

to sample an aggregated subset of processes that conforms to a
tree structure. To cope with this observation model in a dynamic
search setting with possibly multiple anomalies of different
types, we develop a dedicated sequential search strategy, dubbed
HDS. HDS uses two carefully chosen statistics to harness the
information on the null hypothesis and the structure of the hier-
archical samples, allowing it to achieve asymptotically optimal
performance. The proposed policy is shown to be asymptotically
optimal with respect to the detection accuracy and order optimal
with respect to the size of the search space.

Extensive numerical experiments on synthetic and real
datasets support the theoretical results. Our numerical evaluation
shows that HDS effectively captures changes in the traffic that
are associated with network anomalies. HDS with active local
tests for the high level nodes is also analyzed numerically and
is shown to outperform the fixed sample-size local test and
approach the performance bound of IRW. Our non-synthetic
experiments numerically evaluate the performance of HDS in a
cyber-security task using the DARPA intrusion detection dataset.
We show that the proper modeling of the network traffic data in
a hierarchical fashion combined with the application of HDS
can successfully detect denial of service (DoS) attacks from a
limited number of samples.

The rest of this paper is organized as follows: in Section II
we present the system model and discuss its relationship with
the existing literature. Section III designs the HDS policy and
analyzes its performance. We numerically evaluate HDS in
Section IV, and provide concluding remarks in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we describe the statistical setting of our system
model and discuss some of the relevant related literature on
dynamic search policies.

A. Problem Formulation

Anomaly Detection: We consider the problem of detecting
K anomalous (targets) processes (data streams) out of a large
set of M processes, where K is assumed to be known. Here,
the decision-maker should actively collect evidence (data, ob-
servations, samples), and identify the K anomalous processes.
Since there is cost on gaining samples, this problem presents an
inherent trade-off between the need to maximize the detection
accuracy to the need to minimize the length of the exploration
phase.

In particular, in each time step ¢, where ¢ € {1,2,...}, the
decision-maker can access only one process and sample an
observation y; in an i.i.d. manner. The main challenge is to
know when to stop exploring and to reach a decision. We
denote the data collected in the time horizon 7 and provide a
decision based on D, = {y; };_;. Given the collected evidence,
the decision rule boils down to simultaneous testing of multiple
binary hypotheses. Let H,,, = 0 denote the null hypothesis, i.e.,
the process m is not anomalous, then the decision-maker should
decide whether to reject the null hypothesis, and declare process
m as anomalous, i.e., H,, = 1, or not. Assuming that at time ¢,
process m was chosen to be sampled by the decision-maker,
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then its sampling distribution is given by

6 =20,,
yt~f(y|0)7 {06@01

where f(-) is a known family of a parametric probability distri-
butions. While 6 is a known parameter describing the distribu-
tion of the non-anomalous samples, for anomalous processes,
the parameter is not assumed to be known, but only that it
is restricted to belong to a known finite set ®;. Note that in
this paper we consider the case where ®1 is equal for all K
anomalous processes. Also, the setting is homogeneous, where
the distribution of a benign process is the same for all M — K
benign processes, and the distribution of an abnormal process is
the same for all K abnormal processes.

Hierarchical Sampling: To reach a decision, the decision-
maker must actively sample information from the M processes.
Generally speaking, if the complexity of an active sampling
policy is linear, when the number of processes M scales up,
such policy becomes inefficient and can be computationally
infeasible. Therefore, to cope more efficiently with a large
number of processes, and to reduce the sampling complexity,
we consider the case of hierarchical data streams. Here, in
addition to observing individual processes, the decision-maker
can measure aggregated processes that conform to a binary tree
structure. Sampling an internal node of the tree gives a blurry
image of the processes beneath it, as depicted in Fig. 1. The key
to utilizing the hierarchical structure of the sampling space to
its full extent, is to determine the number of samples one should
obtain at each level of the tree, and when to zoom in or out on
the hierarchy.

To model hierarchical sampling, let the tuple (I, ) denote
node j at level [ of the tree, with [ =0,...,logy, M and j =
1,...,2982M=l The tree structure encodes the relationship
between the nodes. The abnormal distribution of a target leads
to an abnormal distribution in every ancestor of the target, i.e.,
every node on the shortest path from this target to the root.
We denote by H; ;) = 0 the hypothesis that node (/, j) is not
anomalous, and H(L = 1 denotes that it is anomalous.

The observations y; of an internal node j on level £ of the tree
follow a similar statistical model as in (1):

Hpm =0
W, =1 ey

0=0" Hin =0
~ 0 R 0 > (l}]) 2
e~ Joly]6) {0 ce@”, Hy,=1 @

where fo(-), 0(()@, and @5‘” are the probability distribution, the
known parameter of the non-anomalous distribution, and the
set of the anomalous parameter, respectively, at level ¢, and
fo() = (), 080) = 6,, G)go) = ©;. Here, we assume that the
observations at all levels are informative, as formulated in the
following:

AS1 The Kullback Leibler (KL) divergence Dy (-||-) between

fe(-|x) and fy(- | 2) satisfies:

D, (eg@”o) >A, Dy (e||9g"'>) > A, voeol,
3

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

for some A > 0 independent of M for all [, where

“

Dlalls) £ By 106 T .

flylz)

Note that AS7 implies that the anomalous and non-anomalous
distributions are distinguishable. We allow a general relation
between f;(y|0) and fo(y|@), which often depends on the
specific application. We next provide two examples for the
internal observation model.

Example 1: Consider the problem of detecting a heavy hit-
ter [12] among Poisson flows where the measurements are
exponentially distributed packet inter-arrival times. For the leaf
nodes, the benign processes have an exponential distribution
with parameter )\, i.e., 89 = Ag, and the anomalous process has
an exponential distribution, where it is known that its parameters
lie in the set ©®1 = {\1, A2}, where Ay > \; > A\g. Moreover,
in the case of heavy hitter detection where the measurements
are packet counts of an aggregated flow as in this example,
fe(y|0) is given by multi-fold convolutions of f(y | ). For
independent Poisson flows, fy(y|®0) is also exponential with
mean values given by the sum of the mean values of its children
at the leaf level. That is, in this case, f¢(y|@) is also expo-
nential, with 80 = 2)\y and ©'% = {(2¢ — 1)Ag + Ay, (2¢ —
1)Ao + A2 }. As is the case in most of the practical applications,
we expect that observations from each individual process are
more informative than aggregated observations. More precisely,
we expect Dy (0(()@||0) > Dy (0(()#1) ||6) and D, (0||0(()£)) >
D1 (6] \9(()6_1)) forall £ > 0 (note that these inequalities indeed
hold in the example above). However, the results in this work
hold for the general case without these monotonicity assump-
tions.

Example 2: Consider the Bernoulli distribution, which is
widely adopted in the literature of hypothesis testing and group
testing and also arises in distributed detection of aggregating
local binary decisions. Assume that f,(y | @) follows Bernoulli
distributions with parameters p, and 1 — yu, for the benign pro-
cesses and the anomalous processes, respectively. The parameter
te can be set according to the specific application, and the
observation is not a summation over all its leaf nodes. A special
case of this example is the size-independent Bernoulli noise
studied in [15]. Applying our setting to this special case implies:
pe = pp for all 1, I’. We provide more concrete examples in our
numerical experiments in Section I'V.

Search Policy: An active search (i.e., sampling and decision)
policy (strategy), denoted as m, is defined by the tuple (¢, 7,0).
Here, ¢ is a sampling selection rule, i.e., a mapping from the
time ¢ and the data collected to a node from which we need to
sample next, namely

a stopping rule 7, i.e., the time at which the decision-maker
decides to end the search; and a decision rule §

§:(D;) — {0, 1}, (6)
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which is a mapping from the evidence collected until stopping
time 7, to a Boolean vector of size M, where §,,, = 1 corresponds
to the decision that process m is anomalous.

Aim: We aim to find a policy 7* out of the set of possible
policies II that minimizes the Bayesian risk, namely

' = argmin {R(m)}, (7)
where
R(7) £ Peu(7) + - Q(7). (8)

The term P, (7) is the error probability, Q(7) is the sample
complexity, and ¢ € (0, 1) is the sampling cost assigned for each
observation. Specifically, let H be a set of all Boolean vectors
of size M with exactly K entries equal to 1, such that |H| =
(JIV{[ ) . Let H;, € H be any Boolean vector of size M with exactly
K entries equal to 1, and H € H be a Boolean vector of size
M corresponding to the true hypothesis, where an mth entry
equals to 1 implies that process m is anomalous. Then, the error
probability given that H = Hj is:

Pe(n|H = Hy) = P(§(D,) # Hy|m, H = Hy), (9)

and the error probability is averaged under given prior p; for
hypothesis H = Hy:

Pen(m) £ > py Pea(r|H = Hy), (10)
HbGH
I where
2 P(H = Hy). (11)

Similarly, the sampling complexity is averaged under prior p
for hypothesis H = Hj, and is given by:

Q(m) £ E[r|n].

Generally, the priors p;, are determined according to the specific
application using offline measurements, as commonly done in
the Bayesian approach in the statistics literature. For example,
when detecting an anomaly in an image, some areas might be
more likely to contain the anomaly (e.g., due to the geographical
characteristics of the area). When detecting attacks in computer
networks, for example, some devices might be more vulnerable
to attacks compared to other devices.

12)

B. Related Literature

Target search problems have been widely studied under var-
ious scenarios. Optimal policies for target search with a fixed
sample size were derivedin [16], [17], [18], [19] under restricted
settings involving binary measurements and symmetry assump-
tions. Results under the sequential setting can be found in [20],
[21], assuming single process observations. In this paper we

"Note that the error probability is defined with respect to the event of detecting
a wrong process as abnormal, and thus is averaged under given prior py
over the hypotheses. Therefore, the setting and error analysis coincides with
a multi-hypothesis testing, and it is more general than averaging over type I and
type II errors under binary hypothesis testing. We will show later that the error
probability is bounded by O(c). When translating to binary hypothesis testing in
the special case of two hypotheses, the power of test is thus of order 1 — O(c).

address the optimality question under the asymptotic regime as
the error probability approaches zero. Asymptotically optimal
results for sequential anomaly detection in a linear (i.e., non-
hierarchical) search under various setting can be found in [22],
[23], [24], [25]. In this paper, however, we consider a composite
hypothesis case with finitely many parameter values, which
was not addressed in the above. Results under the composite
hypothesis case with linear search can be found in [26], [27],
[28], [29], [30]. Detecting anomalies or outlying sequences has
also been studied under different formulations, assumptions, and
objectives [31], [32], [33], [34], [35], [36]; see survey in [37].
These studies, in general, do not address the optimal scaling in
the detection accuracy or the size of the search space.

As mentioned in Section I, the problem considered here also
falls into the general class of sequential design of experiments
pioneered by Chernoff in [5]. Compared with the classical
sequential hypothesis testing pioneered by Wald [38] where
the observation model under each hypothesis is fixed, active
hypothesis testing has a control aspect that allows the decision-
maker to choose different experiments (associated with different
observation models) at each time. The work [15] developed a
variation of Chernoft’s randomized test that achieves the optimal
logarithmic order of the sample complexity in the number of
hypotheses under certain implicit assumptions on the KL di-
vergence between the observation distributions under different
hypotheses. These assumptions, however, do not always hold
for general observation models as considered here.

In contrast to Chernoff’s randomized policy, in this paper
we propose an active deterministic strategy. The work [39]
have showed that a simpler deterministic algorithm applies in
this setting and obtained the same asymptotic performance as
Chernoff’s policy, with better performance in the finite sample
regime under a linear search setting with known distributions.
A modified algorithm has been developed in [40] for spectrum
scanning with time constraint. This setting was extended in [41]
to the composite case, which proposed an asymptotically opti-
mal deterministic policy. The problem addressed in this work
is fundamentally different, focusing on efficient exploitation of
aggregated and potentially low-quality measurements to achieve
an optimal sublinear order with the size of the search space.

Note that we consider the case where the densities of the
non-anomalous and anomalous distributions are known, except
for some unknown parameters in the anomalous distribution. In
this case, the GLLR and ALLR tests have great properties in
practice, with strong optimality characteristics (which lead to
the asymptotic optimality properties of HDS). These tests rely
on all the available statistical knowledge, which goes beyond
first and second-order statistical moments, thus inherently using
higher-order moments for detection. Consequently, the usage
of higher-order moments is encapsulated in the formulation
of the tests comprising the proposed HDS algorithm. In cases
where a side knowledge is given about the distribution moments,
one can propose a modification of the algorithm that takes this
into account, e.g., moment-based methods in [12], [13], and
may result with better performances in some special cases.
However, such algorithms require additional assumptions on
the distributions (e.g., large statistical distance which can be
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detected efficiently by moment-based detection methods) and
are not robust when the assumptions are violated.

Another related problem considered in the literature deals
with detecting the first disorder of a system involving multiple
processes, refer to as change point detection [42], [43], [44].
In this problem, a change occurs at some unknown time in the
distribution of a sequence of random vectors that are monitored
online, and the goal is to detect this change as quickly as possible
subject to a certain false alarm constraint. A cumulative sum
(CUSUM) test was established under this setting [45]. In this
paper, however, the goal is to detect the abnormal processes (and
not a change point), where the process states are fixed during the
detection process.

Tree-based search in data structures is a classical problem in
computer science (see, for example, [46], [47]). It is mostly
studied in a deterministic setting; i.e., the observations are
deterministic when the target location is fixed. The problem
studied in this work is a statistical inference problem, where the
observations taken from the tree nodes follow general statistical
distributions. This problem also has intrinsic connections with
several problems studied in different application domains, that
are particularly geared towards handling high dimensional data.
We discuss here three representative paradigms most pertinent
to this paper and emphasize the differences in our approach from
these existing studies:

1) The firstis group testing, where the objective is to identify
the defective items in a large population by performing
tests on subsets of items that reveal whether the tested
group contains any defective items. Formulations of group
testing can be mapped to our setting by mapping the
individual items to the leaf nodes of a tree. The action
of testing a node on the tree corresponds to a group test.
Differ from our setting, most existing work on Boolean
group testing assumes error-free test outcomes, or limited
noise models (e.g., binary symmetric noise or one-sided
noise [48], [49]). Moreover, most of the existing results
on noisy group testing focus on non-adaptive open-loop
strategies [50], [51], [52], and the issue of sample com-
plexity in terms of the detection accuracy is absent in the
basic formulation.

2) The second is compressed sensing (CS), and particularly
the Boolean CS setting [48], where the objective is to re-
cover a sparse binary signal with aggregated observations.
Thatis, in CS we are given an N -dimensional sparse signal
with support size K. Random projections of the sparse
signal are obtained. The goal is to identify the support set
while minimizing the number of projections. Similarly
as in group testing, the individual signal components in
Boolean CS can be mapped to the leaf node in a tree, and
the action of testing a node on the tree corresponds to a
test of aggregated observations. Our setting, for which the
proposed HDS policy is designed, aims for an adaptive so-
lution to solve the compressed sensing with little offline or
online computation and low memory requirement. The
policy works for the general noisy observation models.

3) Our setting also applies to a special setting of offline
change point detection, arises in the fundamental problem
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of estimating a step function in [0,1] [53]. Suppose that we
are given a stream with a statistical change, and our objec-
tive is to identify when the change occurred. In this case,
the decision maker sequentially chooses sampling points
within the given interval and observes a noisy version
of their values. This problem can be cast as one studied
in this work, by partitioning the interval into d-length
sub-intervals, which form the M = 1/6 leaf nodes, with
the sub-interval containing the change being the target.
Successively combining two adjacent sub-intervals leads
to a binary tree with the root being the entire interval.
The main body of work on adaptive sampling is based
on a Bayesian approach with binary noise of a known
model. Although several strategies (e.g., the Probabilistic
Bisection Algorithm) have been extensively studied in the
literature [54], [55], there is little known about the theoreti-
cal guarantees, especially when it comes to unknown noise
models. HDS, derived in the sequel based on the problem
formulated in Subsection II-A can be considered as a
non-Bayesian approach to the adaptive sampling problem
under general parametric noise models, and its theoretical
guarantees apply in this problem.

III. HIERARCHICAL DYNAMIC SEARCH

In this section we present and analyze the proposed HDS
active search strategy. We start by introducing the algorithm
in the case of one anomaly (i.e., K = 1) in Subsection III-A,
after which we analyze its performance in Subsection III-B. In
Subsection III-C we extend HDS to multi-target setting, and we
conlclude the section with a discussion in Subsection III-D.

A. Algorithm Design

We start by focusing on detecting a single target (K = 1).

Rationale: The anomaly is searched using a random walk on
the process tree that starts at the root node. The individual steps
of the walk are determined by local tests. On internal (i.e., high
level) nodes, the outcome of the test can be moving to the left
or right child, or returning to the parent node (where the parent
of the root is itself). The internal test is constructed to create a
bias in the walk toward the anomalous leaf. On a leaf node of
index m, the possible outcomes are either terminating the search
and declaring process m anomalous, or moving back to parent
node. The leaf test is designed to terminate at the anomaly with
sufficiently high probability.

In particular, HDS uses the fixed sample size GLLR statistic
for the high level nodes test and the sequential Adaptive Log
Likelihood Ratio (ALLR) statistic for the leaf nodes test. The
ALLR statistic, introduced by Robbins and Siegmund [56], [57],
builds upon the one-stage delayed estimator of the unknown
parameter; i.e., the density of the n-th observation is estimated
based on the previous n — 1 observations, while the current
observation is not included in this estimate. As opposed to
the GLLR, the ALLR preserves the martingale properties. This
allows one to choose thresholds in a way to control specified
rates of error probability, and so to ensure the desired asymptotic
properties. In the following, we specify the internal and leaf tests.
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Internal Test: Suppose that the random walk arrives at a node
on level £ > 0. A fixed number K,_; of samples y(4) is drawn
from both children, and are used to compute the GLLRs

. fea (w0 165)
_Zlogfé 1( ()60 1))

A(1-1
where@i ) is the maximum likelihood estimate of the anomaly
parameter, given by

SSiin (Ki1) (13)

Ky
Al—1)
0, ' =argmax [[ fo1(y(i)|6). (14)
96@“ D i=1

The statistics (13) utilize the information on the benign dis-
tribution. If at least one of the children has a strictly positive
GLLR, the random walk moves to the child with the greater
GLLR. Otherwise, it moves to the parent. The sample size K,
for =0,...,logy M — 1 is determined offline, such that the
probability of moving in the direction of the anomaly is greater
than 3. Note that K is finite under AS].

Leaf Test: When the random walk visits a leaf node, we per-
form an ALLR test. Here, samples y(4) are drawn sequentially
from the process and the local ALLR

n oy 16y

(i-1)

SaLir(n) =Y log , (15
= h(ue)e)
is continuously updated, where
.+ (0) i—1
0, (z—l)-argmafoo |0), (16)
969(0) Jj=1

is the delayed maximum likelihood estimate of 050). To ini-

tialize the estimate égo)(O), a fixed number N, > 0 (which
is independent of M, c) of samples is drawn from the leaf. In
Appendix B we elaborate on how to set Niear. As opposed to the
GLLR, Sarir (n) is a viable likelihood ratio, so that the Wald
likelihood ratio identity can still be applied to upper-bound the
error probabilities of the sequential test [38].

At every time step n > 0, the ALLR (15) is examined: If
SaLir(n) > log log"’ M 2 the random walk terminates and the
tested process is declared anomalous, while a negative ALLR
results in returning to the parent node. Thus, the stopping time
7 is defined as

logy M
1 ggi}. (17)

T = 'rlzgfi {SALLR(n) > 10,

The choice of the threshold log log%M is to ensure that the error
probability is in the order of O(c), which in turn ensures the
asymptotic optimality in ¢, as we elaborate in the proof outline
in the next section. The resulting search policy is summarized
in Algorithm 1.

2We note that the design in this paper is based on asymptotic analysis (as
the error approaches zero). Therefore, the implementation and analysis do not
depend on the prior pp,.

Algorithm 1: Single Target HDS.

Input: Inspected node at level £

1 if [ > 0O (internal node) then

2 Measure K,_; samples from each child node;
3 Compute GLLR for each child via (13);

4 if Both GLLRs are negative then

5 ‘ Invoke Algorithm 1 on parent node;

6

7

8

9

else
‘ Invoke Algorithm 1 on child with larger GLLR;
else
Init 0§0) according to (50) and n = 1;
10 | Draw y(n) and compute ALLR (15);
11 if SALLR(”) > log ng then

12 ‘ Identify node as target and terminate;
13 else if S'ALLR(TL) < 0 then

14 ‘ Invoke Algorithm 1 on parent node;
15 Increment n and jump to step 9;

B. Performance Analysis

We next theoretically analyze the HDS policy, denoted myps,
for K = 1.In particular, we establish that mypg is asymptotically
optimal in ¢, i.e.,

R(mHps)

iy SR 1 a®
and order optimal in M, namely,
. R(mups)
i T (19
where R* is a lower bound on the Bayesian risk, i.e.,
R* = inf R(r). (20)

This is stated in the following theorem:

Theorem 1: When ASI holds and ®§£) is finite for all 0 <
¢ <logy M — 1, the Bayesian risk of mypg is bounded by

lo log, M
Dy (950) | |0(()O))

where B is a constant independent of M and c.

Proof: The complete proof is given in Appendix B. Here, we
only present the proof outline, which divides the trajectory of
the random walk into two stages: search and target test.

In the search stage the random walk explores the high level
nodes and is expected to eventually concentrate on the true
anomaly. Based on this insight, we partition the tree 7 into
a sequence of subtrees 7o, 71,. .., Tog, i (Fig. 2). Subtree
Tiog, M is obtained by removing the halftree that contains the
target from 7. Subtree 7; is iteratively obtained by removing
the halftree that contains the target from 7\ 7p41. To consists
of only the target node. We then define the last passage time 7
of the search phase from each subtree 7;. An upper bound on
the end of this first stage is found by proving that the expected
last passage time to each of the halftrees that do not contain the

R(WHDS) S CBIOg2 M —+ + O(C) , (21)
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Fig. 2.

An illustration of the subtrees 7o, . .
the HDS algorithm.

-, Tiog, M used in the analysis of

target is bounded by a constant. Summing the upper bound on
the last passage times yields the first term in (21).

The second stage is the leaf target test, which ends by declar-
ing the target with expected time E[7]. To bound E[7y], we first
define a random time 7,7, to be the smallest integer such that
the estimator of the target leaf’s parameter equals to 0§”> for all
n > Tprr, and we show that {7y, ] is bounded by a constant
independent of ¢ and M. We then bound E[r] using Wald’s
equation [38] and Lorden’s inequality [58], which yields the
second and third terms in (21). Finally, we show that the detec-
tion error is of order O(c). By using the martingale properties
of the ALLR statistic we prove that the false positive rate of the
leaf test is bounded by W. In addition, the expected number
of times a benign leaf is tested is in the order of log, M. The
resulting error rate Pg,, (7ups ) is therefore in the order of ¢ (third
term in (21)). [ |

The optimality properties of the Bayesian risk of HDS in both
cand M directly carry through to the sample complexity of HDS,
as stated in the following corollary:

Corollary 1: The sample complexity of HDS is upper
bounded by:

logo M
log log2 M

The sample complexity of any policy 7 is bounded from below
by

Q(WHDS) < B -logys M + + O(l) 22)

log -2

Dy (6]105")

where I,,,x 1S the maximum mutual information between the true
hypothesis and the observation under an optimal action.

Proof: The upper bound (22) follows directly from Theo-
rem 1, while (23) is obtained using [15, Thm. 2]. [ |

Corollary 1 indicates that HDS is asymptotically optimal in ¢
and order optimal in M.

We point out that the leading constants in the bounds might
be tightened for special cases (i.e., if the distributions f;(-) were
specified). Nevertheless, the analysis here focuses on establish-
ing asymptotic/order optimality for general observation models.
Hence, we resort to bounding techniques that are generally
applicable and not restricted to specific distributions.

logy M

Imax

Q(m) >

+0(1), (23)
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declared
anomalous

Fig.3. Multi-target detection illustration. On the third run of the random walk,
the nodes in the dashed box are no longer sampled from or visited.

C. Multi-Target Detection

We next consider the detection of K > 1 anomalous pro-
cesses. Our derivation and analysis is based on the following
additional assumptions:

AS2 The number of anomalous processes K is a-priori
known.

The search policy can remove a declared process from
the tree, e.g., as in group testing the defective item is no
longer tested in subsequent group tests.

The distinguishability assumption AS/ is extended such
that the distribution of a node that contains multiple
anomalies is more similar to a node that contains a
single anomaly, than to a benign node. To formulate

AS3

AS4

mathematically, let @g-é) be the set of parameters of
a node that contains j anomalies. We require, that
there is A > 0 such that (3) holds and that for all
levels ¢ =1,...,logy M, number of anomalies j =
1,...,min (K, 2%) and multi-anomaly parameter 0; c

©'" it holds that

017 € Dy ;116" ) — e (6,1/617) = A.
(24)
This assumption holds in a wide variety of scenarios and
ensures that there is a bounded number of samples K for
the internal test, such that the random walk approaches
the closest anomaly with a probability greater than 0.5.

Algorithm Design: Since K is known by AS2, HDS for-
mulated in Algorithm 1 can be extended to locate the targets
one-by-one. A process is declared anomalous by running the
algorithm detailed in Subsection III-A. This operation is feasible
by AS3. This means that subsequent random walks only visit
nodes that contain undeclared processes (Fig. 3). As a result,
we only have to sample from one of the children during some
internal tests.

For the internal test, we still use the anomalous parameter
set @ﬁ‘) that represents the distribution for one anomaly within
the node. This is justified by Assumption AS4. The resulting
procedure is summarized as Algorithm 2.

Performance Analysis: The theoretical guarantees derived for
a single target in Subsection III-B carry also to the multi-target
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Algorithm 2: K Target HDS.

Input: Number of targets K
1fork=1,...,K do
2 Identify kth target by invoking Algorithm 1 at
level [ = 0;
3 Remove detected anomalous leaf node from tree;
4 end

(=3
(=2
Ti
(=1
=0
To To
Fig. 4. Tllustration of the tree partition 7o, . . ., Tlog, A used in the analysis

of the HDS algorithm for multiple targets.

setting when AS2—-AS4 hold, in addition to AS/. This is stated in
the following theorem:

Theorem2: WhenASI-AS4hold, and @ge) is finite forall 0 <
¢ <logs M — 1, the Bayesian risk of myps with K anomalous
processes is bounded by:

cK log logo M
D, (61"]16}”)

where B is a constant independent of M, ¢ and K.

Proof: The complete proof is given in Appendix C. Here,
we only present the proof outline, which extends on the ratio-
nale of the proof of Theorem 1: Again, we divide the tree 7
into a similar partition 7o, ..., Tiog, a7, Where the sets 7, are
recursively obtained by removing the halftrees at level ¢ that
contain at least one anomaly from 7 \ 7,41 (Fig. 4). Roughly
speaking, due to the assumption in (24), the internal test and
the leaf test have a greater probability of moving toward the
closest anomaly than away from it. This is explicitly shown
in (67) in Appendix C, by breaking the likelihood of 6, with
respect to 6y to the likelihood of testing 8; with respect to 6,
and 0; with respect to 8¢, and then using (24). This results in the
same constant upper bound on the expected last passage times
tothe sets 71, .. ., Tiog, A as in the single-target scenario, which
implies that the first term in (25) is the first term of (21) scaled
by the number of anomalies /. The leaf test is unaffected by
the additional anomalies. Therefore, the sample complexity of
a single random walk in the multi-target scenario has the same
upper bound as in the single-target scenario resulting again in the
sample complexity in the second and third terms being scaled by
K. Finally, the upper bound on the probability of the declaring
a benign process anomalous remains unaffected too. Applying
the union bound over the K random walks yields an error rate
in the order of c in the third term. |

R(TFHDs) < CKBlOgQ M + + O(C) 5 (25)

Similarly to risk guarantees, one can also bound the sample
complexity of Algorithm 2, as stated in the following:

Corollary 2: The sample complexity of mypg for the detection
of K anomalies under AS/-AS4 is bounded via

Klogy

Dy (61”165

Proof: The upper bound (26) follows directly from Theo-
rem 2. |

Corollary 2 and the lower bound in (23) indicate that HDS is
order optimal in M and has an asymptotic ratio of K when ¢
approaches zero.

We note that we can modify the problem formulation and
allow for partially correct predictions, i.e., to detect 1 < K <
K anomalies. In this case, we run HDS in the same way, and
stop the algorithm after detecting only K anomalous processes.
The locations of the remaining K — K anomalous processes
are declared arbitrarily. Following similar steps in the analysis,

. . ~ K log 082 M
in this case we have Q;, < KBlog, M, Q; < — % e 4
Do(6y°[16077)

Q(T"HDS) S KB - 10g2 M + + 0(1) (26)

O(1), and the error (defined with respect to detecting only K
anomalous processes) is again of order O(c). Therefore, the
asymptotic optimality properties are preserved.

D. Discussion

The proposed HDS algorithm is designed to efficiently search
in hierarchical data structures while coping with an unknown
anomaly distribution. It can be viewed as an extension of the
IRW method [11] to unknown anomaly parameters, while har-
nessing the existing knowledge regarding the distribution of the
anomaly-free measurements. The uncertainty in the anomaly
distribution makes both the algorithm design and the perfor-
mance analysis much more involved. In contrast to existing hier-
archical algorithms, HDS can incorporate general parameterized
anomaly observation models, resulting in it being order optimal
with respect to the search space size and asymptotically optimal
in detection accuracy.

The derivation of HDS motivates the exploration of several
extensions. First, HDS is derived for hierarchical data that can
be represented as a binary tree, while anomaly search with
adaptive granularity may take the form of an arbitrary tree. In
such case, the path length from each leaf to the root may be
different, and thus the distribution of each node does not depend
solely on its level on the tree. We conjecture that with some
modifications on the HDS algorithm, optimal performances can
be also guaranteed in this case. Another interesting direction
worth pursuing in the future is to extend our problem to online
change point detection setting with multiple processes.

Furthermore, we design HDS for detecting leaf targets, while
in some scenarios one may have to cope with hierarchical targets,
i.e., where intermediate nodes can be anomalous. Additional
extensions regarding the statistical model of the parameter space
are as follows. First, we might consider a composite model for
both benign and anomalous distributions. A second extension
would be to consider an infinite (uncountable) parameter space,
and finally, to consider the heterogeneous setting, where the
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distribution of a benign process might not be the same for all
M — K benign processes, and the distribution of an abnormal
process might not be the same for all i abnormal processes.
Whether asymptotic optimality can be achieved under these
setting remains open. We leave the extension of HDS to these
settings for future work.

IV. NUMERICAL EVALUATIONS

We next empirically compare HDS with the existing search
strategies of Deterministic Search (DS) [41], IRW [11], and
the Confidence Bounds based Random Walk (CBRW) algo-
rithm [12]. The IRW algorithm has access to the true anomaly
parameter 0(16), while the other algorithms only have access to

@5”. IRW and HDS use fixed size internal tests that are not
optimized for the specific simulation. Instead the sample sizes
K, are chosen as small as possible such that the desired drift
toward the target is ensured. The performance of IRW should
therefore be a best-case scenario for HDS. IRW, DS, and HDS
use ¢ = 1072, and CBRW uses pyp = 0.2 and € = 1072. The
values are averaged over 10° Monte Carlo runs.?

Scenario 1: Exponential Distributions

We first simulate a scenario where the decision-maker ob-
serves the inter-occurrence time of Poisson point processes
with benign rate \g = 1 and anomalous rate A\; = 10%. The
rates at the internal nodes are equal to the sum of the rates
of their children. The minimum rate that is considered anoma-
lous i8S Ay min = A";’\l such that the anomaly parameter set
is @5‘” = [M,min, 00). Under this setting, 96 =20\, 050 =
(2¢ — 1)A\o + A1. The minimum rate that is considered anoma-

(0 g0
lousinlevel £is )\gliznm = % such that the anomaly param-
eter set is @5‘) = [Aﬁ‘jfnin, 00). This scenario models the detec-

tion of heavy hitters among Poisson flows where the measure-
ments are exponentially distributed packet inter-arrival times.
CBRW uses the mean threshold 7, such that the generalized
likelihood ratio is one at 7, and exact bounds for the mean of
exponentially distributed random variables with rate Ay = i

Fig. 5 depicts the risk R () as in (8) versus the number of
processes M. We can clearly observe that HDS outperforms
CBRW and DS for most values, and it is within a minor gap of
that of IRW. While for M > 16, HDS only slightly outperforms
CBRYW, it notably outperforms DS. However, it is noted that
CBRW uses sequential internal tests, which should be more
efficient than the fixed size internal tests of HDS. For this reason,
in this scenario we also compare an alternative internal test for
HDS. The results of this study, depicted in Fig. 6, show that
switching to the sequential GLLR statistic for the leaf test instead
of the ALLR statistic yields a performance gain for all M. An
even greater jump in performance is achieved by using an active
test for the internal nodes. The details of the active test are given
in Appendix A.

3The source code can be found in https:/github.com/DrummingBeb/
Composite- Anomaly-Detection-via-Hierarchical-Dynamic-Search.
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Fig. 5. Risk vs. number of processes, scenario 1.
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Fig. 6. HDS with different internal tests (fixed sample size vs. active) and leaf

test statistics (ALLR vs. GLLR), scenario 1. The active test uses a confidence
level of p = % + 10716,

Scenario 2: Bernoulli Interference

Next, we simulate our decision making algorithm when con-
sidering a set of Poisson point processes with rate \g = 0.1.
Here, the measurements of the nodes that contain the anomaly
are corrupted by Bernoulli interference; i.e.,

y(i) ~ Exp(2‘Ao) + 2 - [6 + (a + 6) - Bernoulli(0.5)]. (27)

In (27), z € {0, 1} indicates whether the node is anomalous,
and a is unknown. The node parameter 6 is given by the pair
(2,a), where 6" = (0,0), 6 = (1,10), and ®{" = {1} x
{1,5,10} for all levels 0 < ¢ < logy M. CBRW uses 7, = 1
and sub-Gaussian bounds with £ = 0.05.

In this case the mean values of the benign and abnormal
distribution are close to each other, and the anomalous process
is reflected by higher moments of the distributions. The results
for this setting, depicted in Fig. 7, show that while CBRW
achieves poor performance, HDS detects the anomaly efficiently,
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Fig. 8. Bayesian risk vs. number of processes, scenario 3.

resulting in a larger gap between HDS and CBRW than in the
first scenario.

Scenario 3: Multiple Anomalies

Here we extend scenario 1 to ' = 5 anomalies. In this case,
05" = 220,01 = (2 — j)Xo +j - Asforl < j < 5. Follow-
ing AS4, in our internal tests we consider the parameter set in
level £ to be ('-)(f) (i.e., the set that contains 1 anomaly and not j
anomalies). HDS and IRW use active internal tests. Additionally
HDS uses the GLLR statistic for the leaf tests. Fig. 8 shows a
very similar picture as Fig. 5, in which HDS performs close to
IRW and better than CBRW and DS. However, the performance
HDS surpasses the non-hierarchical DS at M = 30 processes as
opposed to after already M = 10 processes in scenario 1.

Scenario 4: Denial of Service Detection

In this scenario, we detect DoS attacks using the DARPA
intrusion detection data set [59]. Every entry in the data set
corresponds to a packet arriving at an interface. We only consider
the timestamp, packet size and label (either benign or DoS

100 B

Bayesian risk

—=- DS

107 e IRW

B —e— CBRW

—— HDS

0 20 40 60 80 100 120
number of processes

140

Fig. 9. Bayesian risk vs. number of processes, scenario 4.

traffic) of each packet. The anomalous process (/X = 1) corre-
sponds to an interface that receives DoS traffic, so we simulate
with permutations the entire data set. The benign processes are
simulated by permutations of the packets that are labeled as
benign traffic.

We use the model in [41] that considered a sample entropy
for packet-size modeling, and demonstrated strong performance
in detecting anomalous data on the DARPA data set. Every
100 ms seconds a sample is drawn by calculating the sam-
ple entropy of the packet sizes observed in the probed node
during the current 100 ms interval. Sampling from an internal
node is naturally done by aggregating the packets of the pro-
cesses within the node. The sample entropy is modeled with
a Gaussian distribution that is parametrized by its mean and
standard deviation. Using 1000 permutations of the training
split (50% of the data), the distribution of the sample entropy
is estimated for benign and anomalous nodes at all levels i.e.

9(@ = (u(()e)va(()e)) and 956) = (u&z),cr%@) are estimated re-
spectively for £ =0,...,logy M — 1. The anomalous sample

entropy is expected to have a smaller mean and variance i.e.

ugé) < ,ugg) and ag) < U(()é). For DS and HDS, the anomaly pa-

rameter sets are @5” = (—oo,u(f)} X (O, cr(f)} where ,u(e) =
2 2

1
2
O _ o' +oi”

MONMOG! .
~———ando;’ = 5——. HDS and IRW use active internal
2
tests, and HDS uses the sequential GLLR for the leaf tests.
(GIRO)
Mo J,»y,l
CBRW uses thresholds 7, = ———= and exact confidence
intervals for the mean of normally distributed random variables
0 ()
o4 +(TL

with standard deviation o(©) = ——5—. Due to instability of
DS, we discarded runs with more than 1000 samples. Therefore,
the evaluation of DS is very generous.

Fig. 9 shows the risk as a function of the number processes.
Interestingly, HDS scales better with the size of the search space
when compared to the other hierarchical algorithms, namely
IRW and CBRW. We attribute this to the fact that the estimates
can be inaccurate at high levels despite using a large training
split and many permutations. IRW loses performance because it
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relies on the point estimate 0%4) while the composite anomaly
model of HDS is more robust.

V. CONCLUSION

In this work we developed a sequential search strategy for
the composite hierarchical anomaly detection problem dubbed
HDS. HDS uses two variations of the GLLR statistic to ensure
a biased random walk for a quick and accurate detection of the
anomaly process. HDS is shown to be order optimal with respect
to the size of the search space and asymptotically optimal with
respect to the detection accuracy. The addition of the hierarchical
search significantly improves the performance over linear search
methods in the common case of a large number of processes
and heavy hitting anomalies. We empirically show that the
performance can be further improved by using different statis-
tics and local tests, and that for real-world data the composite
anomaly model of HDS is more robust to inaccurate estimates
from training than existing algorithms that assume a known
anomalous distribution model.

APPENDIX A
ACTIVE INTERNAL TEST

Instead of the fixed size internal test described in Section
III-A, we can use an active internal test:

Let Sz (t) and Sr(t) be the GLLR of the left and right children
respectively at time ¢ and initialize them with zero at ¢ = 0. As
in the IRW active test [11], we define the thresholds

2 2
v £ —log L . v 2log L (28)
1—-p 1-
where p > % is the confidence level. Let child
xz(t —1) = argmax S;(t — 1) (29)

ie{L,R}

be the child with the higher GLLR at time ¢ — 1. Then, in
every step ¢, we draw a sample from child (¢ — 1) and update
Sz (1) (t). The other child #(t) # x(t) keeps the previous GLLR
i.e., Sz4)(t) = Sz (t — 1). The test terminates at the random
time

k=inf{t € N|S,(t) <wgorSyp(t) >wvi}.  (30)

If Sy (k) (k) > v1, the random walk zooms into child z(k) and if
Sz(k) (k) < wo, the random walk zooms out to the parent.

We observe a significant gain in empirical performance when
compared to the fixed sample internal test (Fig. 6).

APPENDIX B
PROOF OF THEOREM 1

To find an upper bound on the Bayesian risk of HDS, we
analyze the case where it is implemented indefinitely, meaning
that HDS probes the processes indefinitely according to its
selection rule, while the stopping rule is disregarded. We divide
the trajectory of indefinite HDS into discrete steps at times
t € N. A step is not necessarily associated with every sample as
will become clear later. Let 7, mark the first time that indefinite
HDS performs a leaf test on the true anomaly and S'ALLR rises
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above the threshold. It is easy to see that regular HDS terminates
no later than 7,. We divide the initial trajectory t = 1,2, ..., 7
of the indefinite random walk into two stages:

o In the search stage the random walk explores the high level
nodes and eventually concentrates at the true anomaly. This
stage ends at time 7, which is the last time a leaf test is
started on the true anomaly before 7.

® The second stage is the rarget test which ends with the
declaration of the target. The duration of this stage is 7g.

Step 1: Bound the sample complexity of the search stage:

We partition the tree 7 into a sequence of sub-trees
To,Tis- -, Tog, m (Fig. 2) and define the last passage time 7y
as described in Section III-B. Let G(t) indicate the sub-tree of
the node tested at time ¢. The last passage time to 7Tog2 M 1S

Tlog, M = SUp {t € N: G(t) = ﬂogzM} (31)

For the smaller sub-trees 71, ..., Tiog, m—1 the last passage
times are defined recursively such that

Ti=sup{t e N:G(t) =Ti} — Tit1. (32)
Notice, that the search time is bounded by
logy M
Ty = sup 7 < Z 7. (33)
1<t<logy M —1

Next, we bound the expected last passage times E[r;] for 1 <
¢ < logy M. Towards this end, we define a distance D; from the
state of the indefinite random walk at time ¢ to the anomalous
leaf. When an internal node is probed, D; is equal to the discrete
distance to the anomaly on the tree. Since the walk starts at
the root, we have Dy = log, M. when testing a benign leaf,
D, is equal to the sum of the discrete distance on the tree and
the accumulated SALLR of the current leaf test. When the true
anomaly is probed, the distance is negative i.e. Dy = —Sarg.
Let the step W be the random change in the distance at time
t such that D, = D; + W,. Internal tests comprise only a
single step either towards or away from the anomaly, i.e., W; €
{—1,1}. Because the sample sizes K of the internal tests are
constructed such that P(W; = 1) < %, we have

We now show that if the sets of anomalous parameters ®§e) are
finite, there exists a bounded number of samples K, such that
(34) holds for the internal test at all levels. We identify the two
events

Eo
E, =

the tested node does not contain the anomaly  (35)

(36)

the tested node contains the anomaly.

The probability of making a step in the wrong direction with an
internal test is upper bounded by

We first bound the first term in the maximization of (37). Let Py,
be the probability measure when the true state of nature is 8,7 =
0,1, andletEg, be the operator of expectation with respect to the
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measure Py, . Let Sg, and Sg, be the random GLLRs based on K
samples from a benign node and an anomalous node respectively,
where we omit the level ¢ for readability. Then, under Eg, an
error implies that at least one of the GLLRs is strictly positive.
By applying the union bound we get

P[W, = 1|Eo] < 2P[Sa, > 0). (38)

Let § = argmaxgee [[1-, f(y(i) | 8) be the maximum likeli-
hood estimate (MLE) in the set ©® = {6} U ©,. The event that
Se, 1s strictly positive implies that @ # 6 via the definition of
the MLE. Therefore, we find that

> Po,|6=061].

91661

Applying the definition of the MLE, the Chernoff bound and the
independent and identically distributed (i.i.d.) property yields

Po, [0 = 6:] < Po, lZl gm >01

< (oo (o S50 )
(40)

for all s > 0. Notice, that the derivative of the expectation on
the RHS of (40) with respect to s, —D(6y]|601) < —A <0, is
strictly negative for all 8, due to the assumption in (3). Thus,
for all 6, € O there exists a s > 0 such that the RHS of (40)
decays exponentially meaning that there exist a bounded C' > 0
and a v > 0 such that

Sgo > 0 (39)

Pe, {é - 01} < Ce K. 41)
Combining (38), (39) and (41), we find that P[W; = 1|E¢]
decays exponentially with the number of samples K.

Next, we show that P[W; = 1|E4] also decays exponentially.
Under Eq, the event that the GLLR of the anomalous child is
strictly positive and the GLLR of the benign child is negative
implies, that we move towards the anomaly, resulting in

<1-7P[Se, >0]-P[Sp, <0] <P[Se, <0]+P[Se, >0].

We already showed that P[Sg, > 0] decays exponentially with
K, it remains to show the same for P[Sp, < 0]. Using the
definition of the MLE, the Chernoff bound and the i.i.d. property
find

< (5o foo (o106 LHD1ENY

for all s > 0. Once again, the derivative of the expectation on
the RHS of (42) with respect to s, —D(601]|0p) < —A <0, is

strictly negative for all 8, due to the assumption in (3). It follows
that P[W; = 1|E;] decays exponentially with the number of
samples K. Thus, there exists a bounded K such that (34) holds.

On leaf nodes, every single sample of the sequential test
comprises a step. A step is therefore the change in SALLR- Using

the assumption in (3) and the independence of éio) (¢ —1) and

y(7) we find that for benign leafs

folu) 167 - 1) |
f(vwr1e”) |~
(43)

Similarly, we want to show that for the anomalous leaf that

7o (v 16"t~ 1)

fo(v165)

A~ A0
Denoting :05 )(t — 1), we split the term and use the law of
total expectation to find that

Jo (y(t) \é)

fo (y(t) |9(()0)> +lo

E[W,] =E ~A <0.

o log

E[Wt] = Ee(lo) —log <0. (44)

fo(v161)
g
fo(w161)
=0
Do (67 116) (43)

E[W:]

Z]Ee(lo) —log

= —-Dy (9(10) [l 0(()0)) + 7)050) [é #+ 950)]

where we used the fact that Dy (050) [l ego)) = 0. For (44) to
hold, it remains to be shown that

Dy (0§0) I 9(()0))

Do (61" 119)

Notice, that the Ay are strictly positive due to the assumption
1

< inf

A (46)
0c@®Y

9<0>[ 7&91 }

= >\9§0) .

in (3) and assuming that sup, ) 45_go DO(Hgo) Hé) < o0o. For
1 7 1
this purpose, we first introduce the following Lemma:
Lemma I: Let ©'%) be finite, i.e., R = [©\”| < 0o and let

éio) (n) be the ML estimate of 050) using n samples. Let 77, be

(0
the smallest integer such thatgg )(n) = 0%0) forall n > Tarp.
Then, there exist a bounded C' > 0 and a 7 > 0 independent of
M and c such that

PO(O) [TML > n} < Ce . 47

Proof: The event 7j;1, > n implies that there exists a time
t > n such thatégo) (t) # 050) and therefore we have

7)9(0) T™ML > 7’L ZPG(O) [ t) # 0 } (48)

By definition of the maximum likelihood estimate, the event

(0)( t) # 0(0) implies >'_, S5(i) > 0 for some 6 # 6\",

where Sg( ) fy()|6)

—1 .
%8 T ((1)6™)

Applying the Chernoff bound
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and using the i.i.d. property yields

t
I\t
P | 85(0) 2 0| < (Bge [0} 49)
i=1
for all s > 0. The moment generating function (MGF) ¢*%(%)

is equal to one at s = 0. The derivative of the MGF at s =0
is Ee§°> [S5(i)] = —Do (GEO)HH) < 0. Because the derivative is
negative and assuming that the distribution of Sg(i) is light-

tailed®, there exist s > 0 and v > 0 such that E[e*5¢(")] =
e~ 7 <1 and the RHS of (49) decays exponentially with t.
Summing over all 6 # 9(10), we get 779<10) [é(lo) (t) # 9(10)} <
Re~"", and thus the RHS of (48) is bounded by >,  Re 7" =
15 e ", |

In light of lemma 1, we propose the following mechanism to
ensure that (46) holds: Whenever a leaf test is started, before
beginning with the sequential test described in Section III-A, a
fixed number Nje,r > 0 of samples {yi}?z_ Nyt 1 18 drawn from

C e . . ~(0 . .
the leaf to initialize the estimate 95 ), meaning, instead of (16)
we write

7—1
6" (i—1)—argmax  [[ foWw()|0). (50)

0c0(” j= Nit1
This has the effect, that at every step of the subsequent sequential
. A(0) . .
test, the estimate 0& ) is based on at least Ny, samples. Since
0+ 950) implies that 7p77, > Nie,r, We have

Poo) {é # Oﬁo)] < Py [Tarr > Niear]- (51

Using A\ = infem) © A 0 and lemma 1 we find that (46) is
1 €6, 0]

satisfied if Niear > — %. Notice, that Njear is chosen indepen-
dent of the size of search space M and the cost c.

With (34), (43) and (44) we established that HDS has the
same drift behavior as IRW. Furthermore, we assume that the
_SoW@19)_ i Jight-tailed for all § € .

distribution of log Ry
fo(y(i)1657)
Thus, we canapply [11, Lemma 1, 2] and find that the expected
last passage times E[;] for 1 < i < log, M are bounded by a
constant § independent of M and c. Applying (33) yields

E[r,] < Blogy M. (52)

Let Kiax = SUPg<p<iog, m—11/¢} be the maximum number
of samples taken from a child during an internal test. Then
every step W; takes at most Nyax = max {2K max, Near + 1}
samples and the complexity of the search stage Q is bounded
by

Qs S Nmax]E[Ts] S BIOgQ M (53)

where B = [ Ny,a is a constant independent of M and c.

4A distribution with density f is light-tailed if f_io e f(z)dx < oo for
some A > 0 [60].
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Step 2: Bound the sample complexity of the target test:

In the analysis of the target test we associate a time step n =
1,2,..., 19 with every sample. Using lemma 1 and the tail sum
for expectation we find

At all times n > TML, We necessarily have HAEO) = 050)_ From
the definition of Spaprr in (15) it is easy to see, that after n =
Tamr + 1, the leaf test is essentially a sequential likelihood ratio

test. The expected time until the threshold log logz M s reached
Tf = To — Ty 1, is bounded by
10 10g2 M
Elry) € — 2+ 0(1) (55)

po(o710")

where we used Wald’s equation [38] and Lorden’s inequal-
ity [58] and assumed that the first two moments of the log-
likelihood ratio are finite. Combining (54) and (55) yields the
sample complexity of the target test
10g logQ, M
Q; = E[n] < <

] < ———C¢ 1+ 0(1).
D, (01”]164”)

(56)

Step 3: Bound the error rate:

Notice, that detection errors can only occur in the search stage.
The expected number of times a benign leaf is tested E[N] is
bounded by the number of steps in the search stage. Thus, using
(52) we get

E[N] < E[r,] < flog, M. (57)

Let Z(n) = exp (SaLLr(n)) be adaptive likelihood ratio at time
n. In the following, we use the properties of the ALLR to bound
the false positive rate of the leaf test

> M (58)

a= Pegf” {Z(n) > for some n > 1} .

Note that on benign leafs Z(n) is a non-negative martingale, i.e.,

B [Z(n+1) [ {y() )] (59)
4(0)

7y +1)16" ()

f(ym+1)100)

= Z(n)Eeg‘” = Z(n) (60)

where we used the independence of éio) (n) and y(n + 1) in the
last step. Using a lemma for nonnegative supermartingales [61]
we find

log, M
PG(()O) |:Z(TL) > 108y M for some n > 1} < ]Ee(()o) [Z(l)]

c
c ~ log, M

5(0)
Since Z(1) = Ego [W] = 1, the false positive rate

is bounded by

C

~ loga M~

(61)
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Finally, combining (57) and (61) yields the bound on the error
rate

Pew(maps) < a- E[N] < Bc = O(c)
Theorem 1 follows from (53), (56) and (62).

(62)

APPENDIX C
PROOF OF THEOREM 2

To find an upper bound on the Bayesian risk of HDS in the
multi-target scenario, we analyze the K random walks sepa-
rately. This can be done because there is at least one undeclared
anomalous leaf in the tree 7 during each random walk.

Step 1: Bound the sample complexity of the search stage:

Similar to the proof in Appendix B1, we divide the tree 7 as
described in Section III-C and Fig. 4. The last passage times are
defined recursively by (31)—(32) and the search time is bounded
by (33). Let Dtm be the distance to the ¢-th anomalous leaf at
time ¢, where the distance is defined as in Appendix B. Now
consider the change in the distance to the closest anomaly W, =
Dy — Dy where D; = min; D,(/Z). We want to show that in
expectation the minimum distance decreases at all times during
the random walk i.e.

E[W,] < 0. (63)

As the leaf test is unaffected by additional anomalies and the
currently tested leaf is also the closest, it only remains to show
that (63) holds for the internal test. Recall, that the number of
samples K of an internal test is chosen such that (63) holds. In
Appendix B, we have proven that such a K exists for the two
events Eg and E; defined in (35)—(36). Notice, that under E, the
closest anomaly lies outside the tested node and the distance to
it is in expectation reduced by moving to the parent by following
the same argument as for a single anomaly. Now, we recognize
the events

E; = the tested node contains j anomalies (64)

for 7 > 1. Notice, that the j anomalies within the node are
the closest anomalies and they are equally close. Moving to
a child that contains at least one anomaly reduces D; by 1. We

distinguish the two events
1)

(
E;

(2)
E;

= one of the children contains anomalies (65)

= both of the children contains anomalies. (66)

Let Sp; be the random GLLRs based on K’ samples from a node
containing j anomalies, where we omit the level ¢ for readability.
Then under E;l), the event that the GLLR of the anomalous child
is strictly positive and the GLLR of the benign child is negative,
implies W; = —1 such that

P[Wt =1 |E§1)} =1 —P{Wt -1 |E§1)}
<1-P[Sg,>0]-P[Sg, <0]<P[Se, <0]+P[Sg, >0].

We already showed that P[Sg, > 0] and P[Sp, < 0] decay
exponentially with K’ (Appendix B1), it remains to show the

same for P[Sp, < 0] with j > 1. Using the definition of the
MLE, the Chernoff bound and the i.i.d. property find

e

> log L0100 0]
— 0

$ 1og £

P[Se, < 0] < Po, F(@)]60)

i=1

<o, F(u(7) | 80)

< (5o [ -ore 220120

f(y()O;DDK/'

(67)

for all 8; € ®; and s > 0. Due to the assumption in (24), for
all 8; € ©; there exists a 6; such that the derivative of the
expectation on the RHS of (67) with respect to s

Dg(03||01) — Dg(07||90) < -A<DO.

~

(68)

is strictly negative. Therefore P[Sp, < 0] and P[W; =1 |E§1)]
decay exponentially with K'.

Next, we consider E@. Moving away from the closest anoma-
lies implies that the GLLR of both children is negative such that

PWi = 1/E] = P[Sy, <0|-P[Sy, <0]. (69

where 6, and 6, are the parameters of the left and right child
containing j; and j,- anomalies respectively. The factors on the
RHS of (69) decay exponentially with K. It follows that there
exists a bounded number of samples K’ such that (63) holds.

Following the same arguments as in step 1 of Appendix B,
we find that the sample complexity of a single random walk is
bounded by (53). Consequently, the complexity of the search
stages of the K random walks is bounded by

Q, < KBlog, M. (70)

Step 2: Bound the sample complexity of the target test:

Since, the leaf target test is unaffected by additional anoma-
lies, its sample complexity is bounded by (56) and summing
over the K random walks yields
Klog log, M

C

Do (61" 168")

Step 3: Bound the error rate:

Q; < KE[rp] < O(1). (71)

Applying the reasoning in step 3 of Appendix B we find that
the error rate is bounded by (62) and applying the union bound
over the K random walks yields

PErr(ﬂ'HDS) = KO&]E[N] S Kﬁc = O(C)
Theorem 2 follows from (70), (71) and (72).

(72)
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