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ABSTRACT

We consider neural network training, in applications in which there are many pos-
sible classes, but at test-time, the task is to identify only whether the given example
belongs to a specific class, which can be different in different applications of the
classifier. For instance, this is the case in an image search engine. We consider the
Single Logit Classification (SLC) task: training the network so that at test-time, it
would be possible to accurately identify if the example belongs to a given class,
based only on the output logit for this class. We propose a natural principle, the
Principle of Logit Separation, as a guideline for choosing and designing losses
suitable for the SLC. We show that the cross-entropy loss function is not aligned
with the Principle of Logit Separation. In contrast, there are known loss functions,
as well as novel batch loss functions that we propose, which are aligned with this
principle. In total, we study seven loss functions. Our experiments show that in-
deed in almost all cases, losses that are aligned with Principle of Logit Separation
obtain a 20%-35% relative performance improvement in the SLC task, compared
to losses that are not aligned with it. We therefore conclude that the Principle of
Logit Separation sheds light on an important property of the most common loss
functions used by neural network classifiers.
Tensorflow code for optimizing the new batch losses will be made publicly
available upon publication; A URL will be provided in the publication version of
this manuscript.

1 INTRODUCTION

With the advent of Big Data, classifiers can learn fine-grained distinctions, and are used for classi-
fication in settings with very large numbers of classes. Datasets with up to hundreds of thousands
of classes are already in use in the industry (Deng et al., 2009; Partalas et al., 2015), and such clas-
sification tasks have been studied in several works (e.g., Weston et al. 2013; Gupta et al. 2014).
Classification with a large number of classes appears naturally in vision, in language modeling and
in machine translation (Bahdanau et al., 2015; Józefowicz et al., 2016; Dean et al., 2013).

When using neural network classifiers, one implication of a large number of classes is a high com-
putational burden at test-time. Indeed, in standard neural networks using a softmax layer and the
cross-entropy loss, the computation needed for finding the logits of the classes (the pre-normalized
outputs of the top network layer) is linear in the number of classes (Grave et al., 2017), and can be
prohibitively slow for high-load systems, such as search engines and real-time machine translation
systems.

In many applications, the task at test-time is not full classification of each example into one of the
many possible classes. Instead, the task, at each application of the classifier, is to identify whether
the example should be classified into one of a small subset of the possible classes, or even a single
class. This class can be different in different applications of the classifier. For instance, for face
recognition, we might train a classifier to classify a large number of faces, but at test-time, in each
execution we need to search for photos of one specific person. Therefore we do not need to identify
the person in each photo — we only need to identify whether this is a photo of the person of interest.
Another example is neural machine translation systems, where vocabulary sizes can reach hundreds
of thousands of words. In this case, by allowing fast evaluation of the posterior probabilities of a
subset of the classes, one could implement a fast decoder for translations. This decoder would first
try a small subset that includes the most frequent words, and only if a suitable translation was not
found, it would try the entire vocabulary.
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In this type of applications, one would ideally like to have a test-time computation that does not
depend on the total number of possible classes. A natural approach is to calculate only the logit of
the class of interest, and use this value alone to infer whether this is the true class of the example.
However, the logit of a single class might be meaningful only in comparison to logits of other
classes, in which case unless the other logits are also calculated, it cannot be used for successfully
determining whether the example belongs to the class of interest. We name the goal of inferring
class correctness from the logit of this class alone Single Logit Classification (SLC).

In this work, we show that when using the standard cross-entropy loss for training, the value of a
single logit is not informative enough for determining whether this is indeed the true class for the ex-
ample. In other words, the cross-entropy loss yields poor performance in the SLC task. Further, we
identify a simple principle that we name the Principle of Logit Separation. This principle captures
an essential property that a loss function must have in order to yield good performance in the SLC
task. The principle states that to succeed in the SLC task, the training objective should optimize for
the following property:

The value of any logit that belongs to the correct class of any training example
should be larger than the value of any logit that belongs to a wrong class of any
(same or other) training example.
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Figure 1: The Principle of Logit Separation. Left: when training with the cross-entropy loss, the
logit values for the class ‘Cat’ can be the same for two examples, one where it is the true class
(blue) and one where it is not (red). Therefore, at test-time, a logit with the same value for the class
‘Cat’ does not indicate whether the example belongs to this class. Right: With a loss function that
is aligned with the Principle of Logit Separation, all true logits are greater than all false logits at
training time. Hence, at test time, a single logit can indicate the correctness of its respective class.

We give a formal definition of the Principle of Logit Separation in Section 2. See Figure 1 for
an illustration. We study previously suggested loss functions and their alignment with the Princi-
ple of Logit Separation. We show that the Principle of Logit Separation is satisfied by the self-
normalization (Devlin et al., 2014) and Noise-Contrastive Estimation (Mnih & Teh, 2012) training
objectives, proposed for calculating posterior distributions in the context of natural language pro-
cessing, as well as by the binary cross-entropy loss used in multi-label settings (Wang et al., 2016;
Huang et al., 2013). In contrast, the principle is not satisfied by the standard cross-entropy loss and
by the max-margin loss. We derive new training objectives for the SLC task based on the Principle
of Logit Separation. These objectives are novel batch versions of the cross-entropy loss and the
max-margin loss, and we show that they are aligned with the Principle of Logit Separation. In total,
we study seven different training objectives.

We corroborate in experiments that the Principle of Logit Separation indeed explains the difference
in performance of the different loss functions in the SLC task, concluding that training with a loss
function that is aligned with the Principle of Logit Separation results in logits that are significantly
more informative as a standalone value. Specifically, in almost all cases that we tested, training with
a loss function that is aligned with the Principle of Logit Separation achieved a 20%-35% relative
performance improvement in the SLC task, compared to the loss functions that are not aligned with
this principle, such as the cross-entropy loss. Moreover, the performance in the SLC task of losses
that are aligned with the Principle of Logit Separation was usually better even than the performance
of the normalized cross-entropy logits, despite the fact that the normalized logits are calculated using
the values of the logits of all available classes, a computationally demanding task.

Our main contributions are the following:
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• Introducing the Principle of Logit Separation, a simple principle that sheds light on a prop-
erty of the most common loss functions used by neural network classifiers.
• Analyzing the alignment of seven losses with the Principle of Logit Separation. These

losses include two novel losses that we propose. Tensorflow code for optimizing the
novel loss functions will be made publicly available upon publication.
• Showing that the Principle of Logit Separation indeed explains the success of different loss

functions in the SLC task. Specifically, objectives that satisfy the Principle of Logit Separa-
tion outperform standard objectives on the SLC task with a 20%-35% relative performance
improvement in almost all cases, while keeping multiclass classification accuracy the same
or higher. Furthermore, these objectives outperform even the normalized logits derived
from the cross-entropy loss, in which case the logits of all classes are computed.

We conclude that the Principle of Logit Separation is an important and valuable property for neural
network training objectives, when using single logit values for test-time classification as in the SLC
task.

Related Work We review existing methods that are relevant for faster test-time classification. The
hierarchical softmax layer (Morin & Bengio, 2005; Mnih & Hinton, 2008) replaces the flat softmax
layer with a binary tree with classes as leaves, making the computational complexity of calculating
the posterior probability of each class logarithmic in the number of classes. A drawback of this
method is the additional construction of the binary tree of classes, which requires expert knowledge
or data-driven methods. Inspired by the hierarchical softmax approach, Grave et al. (2017) exploit
unbalanced word distributions to form clusters that explicitly minimize the average time for com-
puting the posterior probabilities over the classes. The authors report an impressive speed-up factor
of between 2 and 10 for posterior probability computation, but their computation time still depends
on the total number of classes. Differentiated softmax was introduced in Chen et al. (2016) as a less
computationally expensive alternative to the standard softmax mechanism, in the context of neural
language models. With differentiated softmax, each class (word) is represented in the last hidden
layer using a different dimensionality, with higher dimensions for more frequent classes. This allows
a faster computation for less frequent classes. However, this method is applicable only for highly
unbalanced class distributions. Several sampling-based approaches were developed in the context of
language modeling, with the goal of approximating the softmax function at training-time. Notable
examples are importance sampling (Bengio & Senecal, 2003; 2008), negative sampling (Mikolov
et al., 2013), and Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010; Mnih & Teh,
2012). These methods do not necessarily improve the test-time computational burden, however we
show below that the NCE loss can be used for the SLC task.

2 THE PRINCIPLE OF LOGIT SEPARATION

In the SLC task, the only information about an example is the output logit of the model for the
single class of interest. Therefore, a natural approach to classifying whether the class matches the
example is to set a threshold: if the logit is above the threshold, classify the example as belonging
to this class, otherwise, classify it as not belonging to the class. We refer to logits that belong to
the true classes of their respective training examples as true logits and to other logits as false logits.
For the threshold approach to work well, the values of all true logits should be larger than the value
of all false logits across the training sample (in fact, it is enough to separate true and false logits
on a class level, but we stick to the stronger assumption in this work). This is illustrated in Figure
1. The Principle of Logit Separation (PoLS), which was stated in words in Section 1, captures this
requirement. We formalize this principle below.

Let [k] := {1, . . . , k} be the possible class labels. Assume that the training sample is S =
((x1, y1), . . . , (xn, yn)), where xi ∈ Rd are the training examples, and yi ∈ [k] are the labels
of these examples. For a neural network model parametrized by θ, we denote by zθy(x) the value of
the logit assigned by the model to example x for class y. The Principle of Logit Separation (PoLS)
can be formally stated as follows:
Definition 2.1 (The Principle of Logit Separation). The Principle of Logit Separation holds for a
labeled set S and a model θ, if for any (x, y), (x′, y′) ∈ S (including the case x = x′, y = y′) and
any y′′ 6= y′, we have zθy(x) > zθy′′(x

′).
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The definition assures that every true logit zθy(x) is larger than every false logit zθy′′(x
′). If this

simple principle holds for all train and test examples, it guarantees perfect accuracy in the SLC task,
since all true logits are larger than all false logits. Thus, a good approach for a training objective for
SLC is to attempt to optimize for this principle on the training set. For a loss `, `(S, θ) is the value
of the loss on the training sample using model θ. A loss ` is aligned with the Principle of Logit
Separation if for any training sample S, a small enough value of `(S, θ) ensures that the requirement
in Definition 2.1 is satisfied for the model θ. In the following sections we study the alignment with
the PoLS of known losses and new losses.

3 STANDARD OBJECTIVES IN VIEW OF THE POLS

In this section we show that the cross-entropy loss (Hinton, 1989), which is the standard loss function
for neural network classifiers (e.g., Krizhevsky et al. 2012) and the multiclass max-margin loss
(Crammer & Singer, 2001), do not satisfy the PoLS.

The cross-entropy loss The cross-entropy loss on a single example is defined as

`(z, y) = − log(py), where py := ezy/

k∑
j=1

ezj =
( k∑
j=1

ezj−zy
)−1

. (1)

Note that py is the probability assigned by the softmax layer. It is easy to see that the cross-entropy
loss does not satisfy the PoLS. Indeed, as the loss depends only on the difference between logits for
every example separately, minimizing it guarantees a certain difference between the true and false
logits for every example separately, but does not guarantee that all true logits are larger than all false
logits in the training set. Formally, the following counter-example shows that this loss is not aligned
with the PoLS. Let S = ((x1, 1), (x2, 2)) be the training sample, and let θα, for α > 0, be a model
such that zθα(x1) = (2α, α), and zθα(x2) = (−2α,−α). Then `(Sθα) = 2 log(1+e−α). Therefore
for any ε > 0, there is some α > 0 such that `(Sθα) ≤ ε, but zθα2 (x1) > zθα2 (x2), contradicting an
alignment with PoLS.

The max-margin loss Max-margin training objectives, most widely known for their role in train-
ing Support Vector Machines, are used in some cases for training neural networks (Tang, 2013;
Socher et al., 2011; Janocha & Czarnecki, 2017). Here we consider the multiclass max-margin loss
suggested by Crammer & Singer (2001), defined as

`(z, y) = max(0, γ − zy +max
j 6=y

zj), (2)

where γ > 0 is a hyperparameter that controls the separation margin between the true logit and
the false logits of the example. It is easy to see that this loss too does not satisfy the PoLS, since
minimizing it again guarantees only a certain difference between the true and false logits for every
example separately, and not across the entire training sample. Indeed, consider the same training
sample S as defined in the counter-example for the cross-entropy loss above, and the model θα
defined there. Setting α = γ, we have `(Sθγ ) = 0. Thus for any ε > 0, `(Sθγ ) < ε, but zθγ2 (x1) >

z
θγ
2 (x2), contradicting an alignment with PoLS.

4 OBJECTIVES THAT SATISFY THE POLS

In this section we consider objectives that have been previously suggested for addressing problems
that are somewhat related to the SLC task. We show that these objectives indeed satisfy the PoLS.

4.1 SELF-NORMALIZATION

Self-normalization (Devlin et al., 2014) was introduced in the context of neural language models, to
avoid the costly step of computing the posterior probability distribution over the entire vocabulary
when evaluating the trained models. The self-normalization loss is a sum of the cross-entropy loss
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with an additional term. Let α > 0 be a hyperparameter, and py as defined in Eq. (1). The self-
normalization loss is defined by

`(z, y) = − log(py) + α · log2(
k∑
j=1

ezj ).

The motivation for this loss is self-normalization: The second term is minimal when the softmax
normalization term

∑k
j=1 e

zj is equal to 1. When it is equal to 1, the exponentiated logit ezj
can be interpreted as the probability that the true class for the example is j. Devlin et al. (2014)
report a speed-up by a factor of 15 in evaluating models trained when using this loss, since the
self-normalization enables computing the posterior probabilities for only a subset of the vocabulary.

Intuitively, this loss should also be useful for the SLC task: If the softmax normalization term is
always close to 1, there should be no need to compute it, thus only the logit of the class in question
should be required to infer whether this class in the correct one for the example. Indeed, we show that
the self-normalization loss is aligned with the PoLS. When the first term in the loss is minimized for
an example, correct and wrong logits are as different as possible from one another. When the second
term is minimized for an example, the sum of exponent logits is equal to one. Therefore, when both
terms are minimized for an example, the correct logit converges to zero while wrong logits converge
to negative infinity. When this is done for the whole training sample, all correct logits are larger than
all wrong logits in the training sample. A formal proof is provided in Appendix A.1.

4.2 NOISE CONTRASTIVE ESTIMATION

Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010; Mnih & Teh, 2012) was con-
sidered, like self-normalization, in the context of natural language learning. This approach was
developed to speed up neural-language model training over large vocabularies. In NCE, the multi-
class classification problem is treated as a set of binary classification problems, one for each class.
Each binary problem classifies, given a context and a word, whether this word is from the data dis-
tribution or from a noise distribution. Using only t words from the noise distribution (where t is an
integer hyperparameter) instead of the entire vocabulary leads to a significant speedup at training-
time. Similarly to the self-normalization objective, NCE, in the version appearing in Mnih & Teh
(2012), is known to produce a self-normalized logit vector (Andreas & Klein, 2015). This property
makes NCE a good candidate for the SLC task, as single logit values are informative for the class
correctness, and not only when compared other logits in the same example.

The loss function used in NCE for a single training example, as given by Mnih & Teh (2012), is
defined based on a distribution over the possible classes, denoted by q = (q(1), . . . , q(k)), where∑k
i=1 q(i) = 1. The NCE loss, in our notation, is

`(z, y) = − log gy − t · Ej∼q [log(1− gj)] , where gj := (1 + t · q(j) · e−zj )−1, (3)

During training, the second term in the loss is usually approximated by Monte-Carlo approximation,
using t random samples of j ∼ q, to speed up training time (Mnih & Teh, 2012).

We observe that NCE loss is aligned with the PoLS. First, observe that gj is of a similar form to
σ(zj) where σ(z) = (1 + e−z)−1 is the sigmoid function. Therefore, it is easy to see that when
the term above is minimized for one example, the value of true logit zy converges to infinity, and
the values of all false logits converge to negative infinity. When the above term is minimized for the
entire training set, all true logits are larger than all false logits across the training set. A formal proof
is provided in Appendix A.2.

4.3 BINARY CROSS-ENTROPY

The last known loss that we consider is often used in multilabel classification settings. In multilabel
settings, each example can belong to several classes, and the goal is to identify the set of classes an
example belongs to. A common approach (Wang et al., 2016; Huang et al., 2013) is to try to solve k
binary classification problems of the form “Does x belong to class j?” using a single neural network
model, by minimizing the sum of the cross-entropy losses that correspond to these binary problems.
In this setting, the label of each example is a binary vector (r1, . . . , rk), where rj = 1 if x belongs
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to class j and 0 otherwise. The loss for a single training example with logits z and label-vector r is

`(z, (r1, . . . , rk)) = −
n∑
j=1

rj log(σ(zj)) + (1− rj) log(1− σ(zj)),

Where σ(z) = (1 + e−z)−1 is the sigmoid function. This loss can also be used for our setting of
multiclass problems, by defining rj := 1j=y for an example (x, y). This gives the multiclass loss

`(z, y) = − log(σ(zy)) +
∑
j 6=y

log(1− σ(zj)).

The binary cross-entropy is also aligned with the PoLS. Indeed, similarly to case of the NCE loss,
it is easy to see that when the term above is minimized for one example, the value of true logit zy
converges to infinity, and the values of all false logits converge to negative infinity. When the above
term is minimized for the entire training set, all true logits are larger than all false logits across the
training set. A formal proof is provided in Appendix A.3.

5 NEW TRAINING OBJECTIVES FOR THE SLC TASK

In this section we propose new training objectives for the SLC task, designed to satisfy the PoLS.
These objectives adapt the training objectives of cross-entropy and max-margin, studied in Section
3, that do not satisfy the PoLS, by generalizing them to optimize over batches of training samples.
We show that the revised losses satisfy the PoLS. This approach does not require any new hyper-
parameters, since the batch size is already a hyperparameter in standard Stochastic Gradient Descent.
Further, this allows an easy adaptation of available neural network implementations to the SLC
task. When the cross-entropy loss or the max-maring loss are minimized, they guarantee a certain
difference between the true and the false logits of each example separately. Our generalization
of these losses to batches of examples enforces an ordering also between true and false logits of
different examples.

5.1 BATCH CROSS-ENTROPY

Our first batch loss generalizes the cross-entropy loss, which was defined in Eq. (1). The cross-
entropy loss can be given as the Kullback-Leibler (KL) divergence between two distributions, as
follows. The KL divergence between two discrete probability distributions P and Q over [k] is
defined as KL(P ||Q) :=

∑k
i=j P (j) log(P (j)/Q(j)). For an example (x, y), let P(x,y) be the

distribution over [k] which deterministically outputs y, and let Qx be the distribution defined by the
softmax normalized logits, Qx(j) = ezj/

∑k
i=1 e

zi . Then it is easy to see that for py as defined in
Eq. (1), KL(P(x,y)||Qx) = − log py, exactly the cross-entropy loss in Eq. (1).

We define a batch version of this loss, using the KL-divergence between distributions over batches.
Recall that the i’th example in a batchB is denoted (xi, yi). Let PB be the distribution over [m]×[k]
defined by

PB(i, j) :=

{
1
m j = yi,

0 otherwise.

Let QB be the distribution defined by the softmax normalized logits over the entire batch B. For-

mally, denote Z(B) :=
m∑
i=1

k∑
j=1

ezj(xi). Then QB(i, j) := ezj(xi)/Z(B). We then define the batch

cross-entropy loss as follows.
Definition 5.1 (The batch cross-entropy loss). Let m > 1 be an integer, and let B be a uniformly
random batch of size m from S. The batch cross-entropy loss of a training sample S is

`(S) := EB [Lc(B)], where Lc(B) := KL(PB ||QB).

This batch version of the cross-entropy loss is aligned with the PoLS. Indeed, when this loss is
minimized for one training batch, all true logits converge to some positive value (as a normalized
exponentiated true logit converges to 1/m), while all false logits converge to negative infinity (as
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a normalized exponentiated false logit converges to zero). Therefore, when minimizing this loss
across the whole training set, all true logits are larger than all false logits in the training set. A
formal proof is provided in Appendix A.4.

5.2 BATCH MAX-MARGIN.

Our second objective is a batch version of the max-margin loss, which was defined in Eq. (2). For a
batch B, denote the minimal true logit in B, and the maximal false logit in B, as follows:

zB+ := min
(x,y)∈B

zy(x), and zB− := max
(x,y)∈B,j 6=y

zj(x).

Definition 5.2 (The batch max-margin loss). Let m > 1 be an integer, and let B be a uniformly
random batch of size m from S. Let ` be the single-example max-margin loss defined in Eq. (2), let
γ > 0 be the max-margin hyper-parameter. The batch max-margin is defined by

`(S) := EB [Lm(B)], where Lm(B) :=
1

m
max(0, γ − zB+ + zB−) +

1

m

∑
(x,y)∈B

`(z(x), y).

The batch version of the max-margin loss is aligned with the PoLS. Minimizing the first term in the
loss makes sure that all true logits in the batch are larger than all false logits in the batch. Therefore,
minimizing the loss over the entire training set makes sure that the PoLS holds. A formal proof is
provided in Appendix A.4. Note that while the seconds term in the loss is not necessary for ensuring
alignment with the PoLS, it is necessary for practical reasons, as without it the gradient is propagated
through only two logits from the entire minibatch, which leads to harder optimization and poorer
generalization.

6 EXPERIMENTS

We compared the performance of neural networks trained with each of the objectives studied above,
on the SLC task and on multiclass classification. To evaluate a learned model on the SLC task, for
each class j and a threshold T , we measured the precision and recall in identifying examples from
class j using the test zj > T , and calculated the Area Under the Precision-Recall curve (AUPRC)
defined by the entire range of possible thresholds. We also measured the precision at fixed recall
values 0.9 (Precision@0.9) and 0.99 (Precision@0.99). We report the averages of these values over
all the classes in the dataset. We further report the multiclass accuracy (Acc.) of each model.

We evaluated the methods on five computer-vision classification benchmark datasets: MNIST (Le-
Cun et al., 1998), SVHN (Netzer et al., 2011) CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton,
2009). The last dataset is Imagenet (Russakovsky et al., 2015), which has 1000 classes, demon-
strating the scalability of the PoLS approach to many classes. Due to its size, training on Imagenet
is highly computationally intensive, therefore we evaluated its performance using two representa-
tive methods, which do not require tuning additional hyperparameters. For every dataset, a single
standard network architecture was used for all training objectives.

The network architectures we used are standard, and were fixed before running the experiments.
For the MNIST dataset, we used an MLP comprised of two fully-connected layers with 500 units
each, and an output layer, whose values are the logits, with 10 units. For the SVHN, CIFAR-10 and
CIFAR-100 datasets, we used a convolutional neural network (LeCun et al., 1989) with six convolu-
tional layers and one dense layer with 1024 units. The first, third and fifth convolutional layers used
a 5×5 kernel, where other convolutional layers used a 1×1 kernel. The first two convolutional lay-
ers were comprised of 128 feature maps, where convolutional layers three and four had 256 feature
maps, and convolutional layers five and six had 512 feature maps. Max-pooling layers with 3 × 3
kernel size and a 2× 2 stride were applied after the second, fourth and sixth convolutional layers. In
all networks, batch normalization (Ioffe & Szegedy, 2015) was applied to the output of every fully-
connected or convolutional layer, followed by a rectified-linear non-linearity. For every combination
of a training objective and a dataset (with its fixed network architecture), we optimized for the best
learning rate among 1, 0.1, 0.01, 0.001 using the classification accuracy on a validation set. Except
for Imagenet, each model was trained for 105 steps, which always sufficed for convergence. For the
Imagenet experiments, we used an inception-v3 architecture (Szegedy et al., 2016) as appears in the
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Dataset Method 1-AUPRC 1-Precision@0.9 1-Precision@0.99 1-Acc.

MNIST

CE 0.008 0.005 0.203 0.012
max-margin 0.012 0.018 0.262 0.014

self-norm 0.002 0.001 0.021 0.014
NCE 0.002 0.002 0.021 0.013
binary CE 0.002 0.000 0.037 0.014
batch CE 0.001 0.001 0.022 0.013
batch max-margin 0.002 0.001 0.034 0.013

CE with all logits 0.001 0.000 0.020 0.012

SVHN

CE 0.023 0.028 0.545 0.044
max-margin 0.021 0.025 0.532 0.043

self-norm 0.015 0.014 0.298 0.039
NCE 0.021 0.017 0.320 0.042
binary CE 0.015 0.016 0.312 0.041
batch CE 0.015 0.013 0.280 0.039
batch max-margin 0.018 0.020 0.384 0.047

CE with all logits 0.015 0.016 0.313 0.044

CIFAR-10

CE 0.109 0.326 0.703 0.146
max-margin 0.094 0.285 0.705 0.145

self-norm 0.073 0.204 0.599 0.139
NCE 0.081 0.214 0.594 0.143
binary CE 0.070 0.210 0.607 0.137
batch CE 0.072 0.202 0.602 0.140
batch max-margin 0.075 0.226 0.636 0.147

CE with all logits 0.074 0.214 0.648 0.146

CIFAR-100

CE 0.484 0.866 0.974 0.416
max-margin 0.490 0.893 0.977 0.466

self-norm 0.378 0.807 0.970 0.401
NCE 0.383 0.795 0.964 0.415
binary CE 0.426 0.870 0.978 0.445
batch CE 0.371 0.795 0.961 0.400
batch max-margin 0.468 0.903 0.983 0.473

CE with all logits 0.380 0.801 0.973 0.416

Imagenet
(1000 classes)

(6 · 106 iterations)

CE 0.366 0.739 0.932 0.286

batch CE 0.245 0.563 0.865 0.278

CE with all logits 0.223 0.566 0.872 0.286

Table 1: Results on Single Logit classification, using the different loss functions. In almost all cases,
loss functions that are aligned with the Principle of Logit Separation (under the dashed line) yield
a relative improvement of 20%-35% in the different performance measures, while also yielding a
small improvement in classification performance.

tensorflow (Abadi et al., 2015) repository. We used all the default hyperparameters from this
implementation, changing only the loss function used. For every tested loss function, we trained the
inception-v3 model for 6 · 106 iterations.

Experiment results are reported in Table 1. Since many of the measures in our experiments are
close to the maximal value of 1, we report the value of one minus each measure, so that a smaller
number indicates a better accuracy. For each dataset, the losses above the dashed line do not satisfy
the PoLS (Section 3), while the losses below the line do (Sections 4 and 5). Finally, the bottom
row in each dataset stands for cross-entropy with all logits: here we used the output logits of the
cross-entropy loss after softmax normalization, a method which requires computing all the logits,
unlike the other methods that we consider. The performance of this method on the SLC is likely
close to the best possible in the SLC task, since this method uses information from all logits, unlike
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the other methods that we tested. In the table, the best result for each dataset and measure, out of all
the losses excluding the cross-entropy with all logits, is indicated in boldface.

Several observations can be gleaned from the results:

1. In almost all cases, all training objectives that are aligned with the PoLS yield a 20%-35%
relative performance improvement in the SLC task, compared to the training objectives that
are not aligned with the PoLS.

2. The objectives that are aligned with the PoLS usually also achieve a better classification
accuracy in standard multiclass classification.

3. Even when all cross-entropy logits are calculated and the logits are normalized, the per-
formance in the SLC task is comparable to the performance of the loss functions that are
aligned with the PoLS, which use only a single logit.

We conclude from these experiments that indeed, alignment with the PoLS is a crucial ingredient
for success in the SLC task. Further, it can be seen that the SLC task can be achieved, while keeping
the accuracy on the multiclass classification task the same or higher.

7 CONCLUSION

In this work we considered the Single Logit Classification task, which is important in various ap-
plications. We formulated the Principle of Logit Separation, a simple principle that sheds light on
an important property of the most common loss functions used by neural network classifiers. We
explained, and corroborated in experiments, that a loss function that is aligned with the Principle
of Logit Separation yields class logits that are significantly more informative regarding the correct-
ness of their respective classes. In almost all cases, using these more informative logits, obtained
by training a classifier with a loss function that is aligned with the Principle of Logit Separation,
yielded a 20%-35% relative performance improvement in the Single Logit Classification task.
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A OMMITTED PROOFS: ALIGNMENT WITH THE PRINCIPLE OF LOGIT
SEPARATION

All the losses that We consider are a function of the output logits and the labels of the examples.
For a neural network model θ, denote the vector of logits it assigns to example x by zθ(x) =
(zθ1(x), . . . , z

θ
k(x)). When θ and x are clear from context, we write zj instead of zθj (x). Denote

the logit output of the sample by Sθ = ((zθ(x1), y1), . . . , (z
θ(xn), yn)). A loss function for neural

network training is a function ` : ∪∞n=1(Rk× [k])n → R+, which assigns a loss to a training sample
based on the output logits of the model and on the labels of the training examples. The goal of
training is to find a model θ which minimizes `(Sθ) ≡ `(S, θ). In almost all the losses we study
below, the loss on the training sample is simply the sum over all examples of a loss defined on a
single example: `(Sθ) ≡

∑n
i=1 `(z

θ(xi), yi), thus it suffices to define `(z, y). We explicitly define
`(Sθ) below only when it deviates from this paradigm.

A.1 SELF-NORMALIZATION

We prove that the self-normalization loss satisfies the PoLS. Assume a training sample S and a
neural network model θ, and consider an example (x, y) ∈ S. We consider the two terms of the loss
in order. First, consider − log(py). From the definition of py (Eq. 1) we have that

− log(py) = log(

k∑
j=1

ezj−zy ) = log(1 +
∑
j 6=y

ezj−zy ).

Set ε0 := log(1 + e−2). Then, if − log(py) < ε0, we have
∑
j 6=y e

zj−zy ≤ e−2, which implies that

(a) ∀j 6= y, zj ≤ zy − 2 and (b) ezy ≥
∑k
j=1 e

zj/(1 + e−2) ≥ 1
2

∑k
j=1 e

zj . Second, consider the

second term. There is an ε1 > 0 such that if log2(
∑k
j=1 e

zj ) < ε1 then (c) 2e−1 <
∑k
j=1 e

zj < e,
which implies ezy < e and hence (d) zy < 1.

Now, consider θ such that `(Sθ) ≤ ε := min(ε0, ε1). Then for every (x, y) ∈ S, `(zθ(x), y) ≤ ε.
From (b) and (c), e−1 < 1

2

∑k
j=1 e

zj < ez
y

, hence zy > −1. Combining with (d), it follows
that −1 < zy < 1. Combined with (a), it follows that for j 6= y, zj < −1. To summarize, we
have shown that for every (x, y), (x′, y′) ∈ S and y′′ 6= y′, we have that zθy(x) > −1 > zθy′′(x

′),
implying alignment with the PoLS.

A.2 NOISE-CONTRASTIVE ESTIMATION

Recall the definition of the NCE loss from Eq. (3):

`(z, y) = − log gy − t · Ej∼q [log(1− gj)] , where gj := (1 + t · q(j) · e−zj )−1.

We prove that the NCE loss satisfies the PoLS. The proof relies on the observation that gj is mono-
tonic increasing in zj . Therefore, if the loss is small, gy must be large and gj , for j 6= y, must
be small. Formally, fix t, and assume a training sample S. There exists an ε0 > 0 such that if
− log gj ≤ ε0, then zj > 0. In addition, there exists an ε1 > 0 (which depends on q) such that if
−Ej∼q [log(1− gj)] ≤ ε1 then for all j 6= y, log(1 − gj) must be small enough so that zj < 0.
Now, consider θ such that `(Sθ) ≤ ε := min(ε0, ε1). Then for every (x, y) ∈ S, `(zθ(x), y) ≤ ε.
This implies that for every (x, y), (x′, y′) ∈ S and y′′ 6= y′, we have that zθy(x) > 0 > zθy′′(x

′), thus
this loss is aligned with the PoLS.

A.3 BINARY CROSS-ENTROPY

It can be seen that this loss is very similar in form to the NCE loss, by noting that for gj as defined
in Eq. (3), gj = σ(zj − ln(t · q(j))). Since in the proof for NCE we only used the monotonicity
of gj in zj , which holds also for σ(zj), an analogous argument shows that the binary cross-entropy
loss satisfies the PoLS.
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A.4 BATCH LOSSES

Recall that the batch losses are defined as `(Sθ) := EB [L(Bθ)], where Bθ is a random batch out of
Sθ andL isLc for the cross entropy (Definition 5.1), andLm is the max-margin loss (Definition 5.2).

If true logits are greater than false logits in every batch separately when using, then the PoLS is
satisfied on the whole sample, since every pair of examples appears together in some batch. The
following lemma formalizes this claim:
Lemma A.1. If L is aligned with the PoLS, and ` is defined by `(Sθ) := EB [L(Bθ)], then ` is also
aligned with the PoLS.

Proof. Assume a training sample S and a neural network model θ. Since L is aligned with the PoLS,
there is some ε′ > 0 such if L(Bθ) < ε′, then for each (x, y), (x′, y′) ∈ B and y′′ 6= y′ we have that
zθy(x) > zθy′′(x

′). Let ε = ε′/
(
n
m

)
, and assume `(Sθ) < ε. Since there are

(
n
m

)
batches of size m in

S, this implies that for every batch B of size m, L(Bθ) ≤ ε′. For any (x, y), (x′, y′) ∈ S, there is a
batch B which includes both examples. Therefore, for y′′ 6= y′, zθy(x) > zθy′′(x

′). Since this holds
for any pair of examples in S, ` is also aligned with the PoLS.

Batch cross-entropy To show that the batch cross-entropy satisfies the PoLS, we show that Lc
does, which by Lemma A.1 implies this for `. By the continuity of KL, and since for discrete distri-
butions, KL(P ||Q) = 0 ⇐⇒ P ≡ Q, there is an ε > 0 such that if L(Bθ) ≡ KL(PB ||QθB)] < ε,
then for all i, j, |PB(i, j)−QθB(i, j)| ≤ 1

2m . Therefore, for each example (x, y) ∈ B,

ez
θ
y(x)

Z(B)
>

1

2m
, and ∀j 6= y,

ez
θ
j (x)

Z(B)
<

1

2m
.

It follows that for any two examples (x, y), (x′, y′) ∈ B, if y 6= y′, then zθy(x) >
1

2m > zθy′(x
′).

Therefore L satisfies the PoLS, which completes the proof.

Batch max-margin To show that the batch max-margin loss satisfies the PoLS, we show this for
Lm and invoke Lemma A.1. Set ε = γ/m. If L(Bθ) < ε, then γ − zB+ + zB− < γ, implying
zB+ > zB− . Hence, any (x, y), (x′, y′) ∈ B such that y 6= y′ satisfy zθy(x) ≥ zB+ > zB− ≥ zθy(x

′).
Thus L is aligned with the PoLS, implying the same for `.
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