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Abstract

We propose an optimal smoothing parametrization for gradient estimators of expec-
tations of discontinuous functions. The reparametrization trick with discontinuous
functions gives gradient estimators for discrete random variables [5, 8, 13] and
makes smoothing applicable in the machine learning context (e.g. variational in-
ference and stochastic neural networks [11, 1, 12, 6]). Our approach is based on
an objective that can be solved simultaneously with a primal optimization task.
Optimal smoothing is general purpose in the sense that it only requires an extension
of the algorithmic differentiation tool without the need to rearrange the model.

1 Introduction

We consider the Monte Carlo estimation of the gradient of an expectation via adjoint algorithmic
differentiation (AD [3, 9]) (also called backpropagation). For a continuously differentiable function
f : D ⊆ Rnx × Rnθ → R the gradient of the expectation can be estimated as

∇θEx∼P [f(x, θ)] = ∇θ
∫
Rnx

f(x, θ)P(x)dnxx ≈ ∇θ
1

N

N∑
i=1

f(xi, θ) =
1

N

N∑
i=1

∇θf(xi, θ)

where xi for i = 1, . . . , N is a Monte Carlo sample. If the gradients ∇θf(xi, θ) are computed by
adjoint AD we call the above estimator the pathwise adjoint [2].

For a class of piecewise continuously differentiable but discontinuous functions f the expectation
Ex∼P [f(x, θ)] is differentiable if P is sufficiently smooth. But the pathwise adjoint cannot be used
as an estimator for the gradient because sensitivity with regard to the discontinuities is not captured
by the point-wise gradients. In the following we present an approach to computing pathwise adjoints
by smoothing.

We assume that discontinuity results from the composition of continuously differentiable elementary
functions together with

step(x) =

{
1 if x > 0

0 otherwise
.

Backpropagation gradients of Monte Carlo estimators occur widely in machine learning applications
for example in variational inference and stochastic neural networks [11, 1, 12, 6]. The step function
together with a continuous random variable x ∼ P can be used to model a discrete random variable,
e.g. we get y ∼ Bernoulli(p(θ)) by drawing x ∼ Uniform(0, 1) and setting y = step(p(θ) − x).
Pathwise adjoints are also commonly used in computational finance to compute the parameter
sensitivities (Greeks) for option hedging [2, 10]. The step function is used to model the payoff
structure of digital and barrier options [7]. Nonsmooth continuous functions can also be written as
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e.g. max(x, y) = step(x− y)(x− y) + y and applications of smoothing pathwise adjoints extends
to nonsmooth and nonconvex optimization by smoothing.

To illustrate the challenge of pathwise adjoints for discontinuous functions we consider the example
of f(x, θ) = step(θ − x) with

d

dθ
Ex∼P [step(θ − x)] =

d

dθ

∫
R

step(θ − x)P(x)dx =

∫
R

d

dθ
step(θ − x)P(x)dx

=

∫
R
δ(θ − x)P(x)dx = P(θ)

where δ is the Dirac delta. The pathwise derivative computes a wrong value

d

dθ
Ex∼P [step(θ − x)]

?
≈ 1

N

N∑
i=1

d

dθ
step(θ − xi) = 0 6= P(θ)

with probability 1.

Smoothing the step function allows for biased pathwise adjoints and smoothing parameters should
be chosen such that the contribution to error for multiple discontinuities is balanced.

We formulate an objective for the hyper parameter optimization problem of optimal smoothing such
that the stochastic optimization objective can be estimated with similar variance as the gradient itself
(Section 2). We present how stochastic gradient descent algorithm can be used to solve the optimal
smoothing problem at the same time as the optimization that uses the pathwise adjoints (e.g. learning
a stochastic neural network) (Section 3.1). The stochastic gradient of the hyper parameter problem is
implemented using a second-order adjoint model. We present numerical results from an applications
in computational finance (Section 3.2).

2 Optimal Smoothing

In this section we motivate a smoothing approach and propose a feasible optimal smoothing objective.

In a distributions sense the derivative of step is the Dirac delta δ but that is not directly useful in
finite numerical computation. The Dirac delta can be approximated by a kernel function such as
the Gaussian probability density function δ(x) ≈ N (x|0, h) where h is the kernel bandwidth. If we
replace every step in f by

smooth_stephi(x) = Φ(x/hi)

where the i = 1, . . . , nh enumerate the occurrences of step and Φ is the cumulative normal density
function then we obtain a continuously differentiable approximation f̃h(x, θ) ≈ f(x, θ). The
derivative of smooth_step is the Gaussian kernel.

We have now introduced the additional hyper parameter vector h that should be chosen to make the
smoothing optimal in some sense. Optimality can be defined as minimizing the mean squared error
of the smoothed gradient estimator, i.e.

h∗ = arg min
h

Ex1,...,xN∼P [(∇θEy∼P [f(y, θ)]− 1

N

N∑
i=1

∇θf̃h(xi, θ))2] .

Because the step function can generally occur in a nested manner and at different scales in the
function the naive approach of letting h1 = h2 = · · · = hnh cannot be assumed to give optimal bias
variance trade-off. Mean squared error can be decomposed [4] into squared bias

(∇θEy∼P [f(y, θ)]− Ex1,...,xN∼P [
1

N

N∑
i=1

∇θf̃h(xi, θ)])2

plus variance

Ex1,...,xN∼P [(
1

N

N∑
i=1

∇θf̃h(xi, θ)− Ey1,...,yN [
1

N

N∑
i=1

∇θf̃h(yi, θ)])2] ≈

1

N(N − 1)

N∑
j=1

(∇θf̃h(xj , θ)− 1

N

N∑
i=1

∇θf̃h(xi, θ))2 .
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The bias cannot be estimated because it requires the expectation Ey∼P [f(y, θ)] we are trying to
compute in the first place. The variance estimator also suffers from high variance if the variance of
the gradient estimator is high.

Instead of trying to minimize mean squared error directly we propose a choice of smoothing parame-
ters h that balances their contribution to squared bias (f(x, θ)− f̃h(x, θ))2 in the original function.
The proposed objective is to minimize the norm of the variance of the gradient estimator while
bounding the expectation of the squared bias in the original function by a constant C

h∗ = arg min
h

‖Ex∼P [(∇θf̃h(x, θ)− Ey∼P [∇θf̃h(y, θ)])2]‖22

s.t. Ex∼P [(f(x, θ)− f̃h(x, θ))2] < C and h > 0 .

Using Monte Carlo estimators and a penalty method for the first inequality constraint we obtain the
following stochastic objective for h to minimize

g(h, x1, . . . , xN ) = ‖ 1

N − 1

N∑
i=1

(∇θf̃h(xi, θ)− 1

N

N∑
j=1

∇θf̃h(xj , θ))2‖22+

λmax(0,
1

N

N∑
i=1

(f(xi, θ)− f̃h(xi, θ))2 − C)

hence
h∗ = arg min

h
Ex1,...,xN∼P [g(h, x1, . . . , xN )]

where λ is the parameter that controls the strictness of the inequality constraint. For now we assume
that a numerical optimizer can be parameterized such that h stays positive. In some applications
additional regularization is required to prevent the variance estimator from pushing the smoothing
parameters towards 0.

3 Numerical Experiments

In this section we first give a short overview of an algorithm for the optimal smoothing problem.
We then present some numerical results using an application from computational finance. At the
workshop we will present results from optimal smoothing in the optimization of a stochastic neural
network with discrete random variables.

3.1 Implementation of Stochastic Gradient Descent

If the smoothed gradients ∇θfh(x, θ) are computed by adjoint AD then we can compute
∇hg(h, x1, . . . , xN ) using an adjoint-over-adjoint model. The second-order adjoint model is an
adjoint code pattern that can potentially be implemented more efficiently by using an tangent-
over-adjoint model. This aspect of algorithmic second-order adjoint model implementation will be
highlighted in more detail at the workshop.

The pathwise adjoint estimator of ∇hEx1,...,xN∼P [g(h, x1, . . . , xN )] can be used in a stochastic
gradient descent algorithm. If the gradient estimator∇θEx∼P [fh(x, θ)] is already used in the context
of a gradient-based optimization for θ then we can optimize h and θ simultaneously for example by
Algorithm 1.

3.2 Barrier Option Delta

We consider the computation of Delta for a barrier option, i.e. the sensitivity of the option price with
respect to initial price of the underlying. The barrier option payoff is defined as 0 if the price of the
underlying goes above B at any point in time and otherwise it is max(0, ST −K) where K is the
strike price and ST is the price of the underlying at the exercise date T .

Option price is estimated using the Euler-Maruyama discretization of a geometric Brownian motion
dS = rSdt+ σSdW where r models a risk-free rate and σ is the volatility of the underlying. The
discrete time evolution with time step ∆t is

Si+1 = Si + rSi∆t+ σSi∆W i
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Algorithm 1 Smoothing Stochastic Gradient Descent
Initialize h0

i = 1 for all i = 1, . . . , nh, k = 0, θ0 as you would.
while θk not optimal do

Sample x1, . . . , xN ∼ P .
Register hk in inner adjoint tape.
Register θk in outer adjoint tape.
Evaluate f̃h(xi, θk) for all i = 1, . . . , N .
Interpret outer adjoint tape to obtain∇θf̃h(xi, θk) for all i = 1, . . . , N .
Evaluate f(xi, θk) for all i = 1, . . . , N .
Evaluate g(hk, x1, . . . , xN ) using the previously computed values.
Interpret the inner adjoint tape to obtain∇hg(hk, x1, . . . , xN ).
Let θk+1 := θk − αk 1

N

∑N
i=1∇θf̃h(xi, θk)

Let hk+1 := hk − βk∇hg(hk, x1, . . . , xN )
Let k := k + 1

end while

where ∆W i ∼ N (0,
√

∆t) for all i = 1, . . . , (nT − 1) and ∆t = T/(nT − 1). The option price is
the expectation of the discounted payoff that is estimated as

E∆W 1,...,∆W (nT−1)∼N (0,
√

∆t)[P (S1, r, σ,B,K,∆W 1, . . . ,∆W (nT−1))] ≈

1

N

N∑
i=1

P (S1, r, σ,B,K, (∆W 1)i, . . . (∆W (nT−1))i)

with
P (S1, r, σ,B,K, (∆W 1)i, . . . (∆W (nT−1))i) =

step(B − S1) · . . . · step(B − SnT ) ·max(0, SnT −K) · exp(−rT ) .

The sensitivity we want to estimate using a pathwise derivative is
d

dS1
E∆W 1,...,∆W (nT−1)∼N (0,

√
∆t)[P (S1, r, σ,B,K,∆W 1, . . . ,∆W (nT−1))] .

From this reduced example the necessity of an adjoint model is not immediately clear but some
finance models have many more parameters and in general it is desirable to compute a large number
of Greeks (sensitivities) at the same time.

If we model max by step as mentioned in the introduction then the payoff contains the step function
nh = nT + 1 times. We initialize their smoothing parameters h1, . . . , hnh = 0.2 resulting in
relatively large bias initially but giving lower variance to the optimal smoothing objective. Figure 1
shows the evolution of h for N = 10000, nT = 10, S1 = 100, B = 110,K = 90, r = 0.05, σ =
0.1, T = 1, C = 0.01, λ = 500 using a stochastic gradient descent algorithm with constant step
size. The figure also shows the evolution of estimated variance of the derivative estimator and the
estimated expected bias in the original payoff function.

4 Conclusion

We have presented a general purpose approach to the choice of smoothing parameters to get good
bias variance trade-off for pathwise adjoint gradient estimators. The stochastic convergence of the
proposed optimal smoothing algorithm was demonstrated in a numerical experiment on an application
from computational finance. At the workshop we will present results with a machine learning specific
application of stochastic neural networks and go into more detail on the theoretical aspects and issues
of implementation using algorithmic differentiation tools.
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Figure 1: Optimal smoothing for barrier option Delta
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