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Abstract

We propose SW-Guidance, a training-free approach for image generation con-
ditioned on the color distribution of a reference image. While it is possible to
generate an image with fixed colors by first creating an image from a text prompt
and then applying a color style transfer method, this approach often results in
semantically meaningless colors in the generated image. Our method solves this
problem by modifying the sampling process of a diffusion model to incorporate
the differentiable Sliced 1-Wasserstein distance between the color distribution of
the generated image and the reference palette. Our method outperforms state-of-
the-art techniques for color-conditional generation in terms of color similarity to
the reference, producing images that not only match the reference colors but also
maintain semantic coherence with the original text prompt. Our source code is
available at https://github.com/alobashev/sw-guidance.

Figure 1: Color-conditional generation by Sliced Wasserstein guidance achieves unprecedented match
with a reference color palette without transferring other stylistic features.

1 Introduction

To get a desired picture from text-to-image models we usually need a precise prompt and a bit of luck.
However, natural language is not expressive enough to accurately describe colors, and even specific
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terms such as “turquoise blue” yield varying tones. Moreover, prompt length constraints make full
palette descriptions impractical. Using reference images for color styles addresses these limitations
and establishes the color transfer problem, that is, applying a reference color style to a content image.

Color transfer is closely related to the artistic style transfer. Notably, artistic style is not linked to the
depicted objects but is instead shared between patches of an image. This insight was utilized in the
seminal work by Gatys et al. [1], where artistic style is defined as the distribution of activations in the
VGG-19 network [2]. To match the artistic style between generated and reference images, Gatys et al.
minimized the difference between the Gram matrices of activations from internal layers of VGG-19
(which is equivalent to matching the first two moments of the distributions of activations).

Strictly speaking, the style loss by Gatys et al. is not a proper distance in the space of probability
distributions, as, for instance, Jensen-Shannon [3], Total variation and various Wasserstein distances
[4]. Unfortunately, these metrics are hard to approximate in a differentiable fashion. To address
the complications of Wasserstein metrics, a new family of metrics called Sliced Wasserstein (SW)
distances was developed in 2012 [5, 6]. First, Sliced Wasserstein distances are differentiable. Second,
they can be efficiently estimated from samples. Importantly, for bounded distributions, convergence
of the Sliced Wasserstein distance implies the convergence of all moments. However, in high-
dimensional spaces the sliced approach requires a large number of projections to accurately estimate
the distance. To generalize the SW distance and enhance its performance in higher dimensions other
its variants were proposed [7, 8, 9, 10, 11, 12, 13, 14].

Following Gatys et al., various CNN-based color transfer methods were proposed, such as DPST [15],
WCT [16], PhotoWCT [17], WCT2 [18], PhotoNAS [19], PhotoWCT2 [20], and DAST [21]. These
algorithms can address the problem of color-conditional image generation, transferring reference
colors to the image created by a text-to-image model.

Another way to achieve color conditioning is to control the generation process of a diffusion model
[22, 23, 24]. This problem setting is broadly called the stylized image generation. The approaches
for stylized generation could be categorized into three groups:

Modification of weights The first group includes additive corrections of a model’s weights, which
require fine-tuning for every new style of images: Textual Inversion [25], DreamBooth [26], and
LoRA [27]. The introduction of ControlNet [28] and T2I-Adapter [29] in 2023 enabled adjustments
of weights in a single pass of a hyper-network. ControlNets and adapters are trained on fairly large
paired datasets and cover tasks such as pose, depth, and edge conditioning.

Modification of attention The examples of attention-related algorithms are IP-Adapter [30],
StyleAdapter [31], StyleDrop [32], StyleAligned [33], InstantStyle [34, 35]. Training-free, they
change attention output on each step and are effective for controlling structural and high-level
features, such as painting style and composition, but do not target a color distribution separately.

Modification of sampling The third way to impose a condition is to add a new term to the
denoising process. The first work of this kind was classifier guidance [22], which requires a specific
classifier trained on noisy data samples1. Diffusion Posterior Sampling (DPS) [36] addresses the
main weakness of classifier guidance by replacing a noisy classifier with a composition of a predicted
noiseless image and a classifier trained on clean data (i.e., any pre-trained one). Universal Diffusion
Guidance [37] and FreeDoM [38] generalize the DPS approach by replacing the MSE loss used by
DPS with a general distance function. These ideas were further developed in RB-Modulation [39].

In current approaches to stylized image generation style and color conditioning are often entangled,
making it challenging to control these aspects independently. Our goal is to propose a way to
condition solely on color and independently control the palette and general style of an image.

Our Contributions This work makes the following key contributions:

• For the first time, we incorporate the differentiable Sliced Wasserstein distance and its
generalizations into the conditioning of a diffusion model

• We achieve state-of-the-art results in a problem of color-specific conditional generation,
without transferring unwanted textures or other stylistic features (see Fig. 1).

1This guided denoising procedure resembles the optimization process of Gatys et al., which also generates
an image from Gaussian noise by iterative denoising. In this case, the unconditional score function is equal to
the gradient of a content loss, and the classifier guidance term corresponds to the gradient of a style loss.
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2 Background

2.1 Conditioning Process in Diffusion Models

Diffusion models [40, 41] are a class of generative models that learn to iteratively denoise a data
distribution. To describe the conditioning process in diffusion models, we use Bayes’ rule to express
the posterior distribution in terms of the gradient of the log-likelihood and the unconditional score:

∇xt
log p(xt|y) = ∇xt

log p(y|xt) +∇xt
log p(xt), (1)

where y represents the conditioning, and xt is the noisy sample at noise level t.

Diffusion Posterior Sampling (DPS) [36] introduced an approximation for the conditional likelihood
based on a predicted noiseless sample, x̂0 = E(x0|xt), as

p(y|xt) ≈ p(y|x̂0(xt)). (2)

In the DPS approach, the authors considered the gradient of the log-likelihood as follows:

∇xt log p(y|x̂0(xt)) = −
1

σ2
∇xt ||y −A(x̂0(xt))||2, (3)

where A is an operator, generally non-linear, that extracts the condition y from the predicted noiseless
sample x̂0, and σ is a positive hyperparameter. For example, A could extract the CLIP [42] embedding
from x̂0, and y could be a target prompt embedding.

Universal Diffusion Guidance [37] and FreeDoM [38] extend the DPS approximation by proposing a
more general distance function D in the space of conditions Y . Specifically, for y ∈ Y , the gradient
of the logarithm of the posterior distribution is given by:

∇xt log p(y|x̂0(xt)) = −
1

σ2
∇xtD (y,A(x̂0(xt))) . (4)

This formulation is more flexible and lets y and A(x̂0(xt)) to be a more complicated objects than
vectors in Rd as long as we can define a differentiable distance function between them. In the
next section, we will define the Sliced Wasserstein distance as a suitable distance D between two
probability measures.

2.2 Sliced Wasserstein distance

A classical formulation of color transfer problem is to align two probability distributions in the
3-dimensional RGB space. Specifically, the color distributions of a content image and a reference
image can be represented as probability density functions, denoted by π0 and π1 respectively. The
objective in guided diffusion models is to match the generated sample’s probability density π0 with
the reference π1.

Wasserstein distances, rooted in optimal transport theory, appear to be natural for this task as they
measure the cost of transporting one probability distribution to match another [4]. The Wasserstein
distance of order p is

Wp(π0, π1) =

(
inf

π∈Π(π0,π1)

∫
X0×X1

||x− y||p dπ(x, y)
)1/p

, (5)

Calculating Wp(π0, π1) for many samples can be computationally prohibitive, also a Wasserstein
distance is hard to differentiate through, because its value is itself a result of an optimization procedure
inf over all transport plans Π(π0, π1), i.e. over all joint distributions with marginals π0 and π1 .

To alleviate this issue, the Sliced Wasserstein (SW) distance was introduced [5], offering a more
computationally tractable alternative by reducing high-dimensional distributions to one-dimensional
projections where the Wasserstein distance can be computed more straightforwardly. The Sliced
p-Wasserstein distance is defined as [5, 6]:

SWp(π0, π1) =

(∫
Sd−1

W p
p (Pθπ0, Pθπ1) dθ

)1/p

, (6)

where Sd−1 is the unit sphere in Rd with
∫
Sd−1 dθ = 1, Pθ is a linear projection onto a one-

dimensional subspace defined by θ and W p
p is an ordinary p-Wasserstein distance by Eq.5.
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Figure 2: General scheme of the Slices Wasserstein Guidance for a latent diffusion model with
decoder D and feature extractor Ψ.

3 Method

Below we give a detailed description of SW-Guidance algorithm. We placed some necessary
theoretical fact, Proposition 1 and Lemma 2, at the end of this section.

The general scheme of the algorithm is illustrated in Fig. 2. We denote xT , . . . , x0 as the latent
states of our diffusion sampling, where xT is a sample from a normal distribution, x0 is a noiseless
sample and x̂0(xt) is a prediction of x0 for given xt. D(x0) is a decoded image from the latent space
of diffusion to the real image domain. Lastly, Ψ is a feature extractor, which in our case is the color
distribution of an image in RGB color space.

Algorithm 1 Color Conditional Generation with Sliced Wasserstein Guidance
1: Initialize latent vector xT ∼ N (0, I), set learning rate λlr, y - samples from the reference color

distribution
2: for t = T to 1 do
3: u← 0 ▷ Initialize control vector
4: for j = 1 to M do
5: x′

t ← xt + u
6: Get prediction of last latent x̂0 ← DDIM(t, x′

t)
7: Get ŷ0 ← VAE(x̂0) ▷ Decode latent to image
8: for k = 1 to K do ▷ Sliced Wasserstein
9: Project samples on a random direction θ

10: Update loss L ← L+
∑
|cdfŷ0

− cdfy|
11: end for
12: Update control vector u← u− λlr∇uL(u)
13: end for
14: Update latent x∗

t ← xt + u
15: Get denoised latent xt−1 ← DDIM(t, x∗

t )
16: end for

The proposed Algorithm 1 initializes a noise tensor xT sampled from a latent normal distribution.
Over T diffusion timesteps, the noise tensor is iteratively refined. Following each denoising step, a
predicted result x̂0 is decoded to obtain an image ŷ0 = D(x̂0). To modulate guided diffusion within
each timestep, we add an auxiliary control tensor u following [39]. That is, u is initialized with zeros
and we set x′

t = xt + u. Then we predict original sample x̂0(x
′
t) = x̂0(u) and compute gradient of

the Sliced Wasserstein distance (SW) between the color distribution of a reference image πref and the
predicted ŷ0(u) = D(x̂0(u)) with a respect to u

L(u) = SW1(πŷ0(u), πref), (7)

The control vector u is optimized over M steps to shift the reverse diffusion process toward the
reference’s color distribution. This optimization accumulates gradients w.r.t uM times and minimizes
the loss function L, Eq.7. Let us note that by Lemma 2 the minimization of the loss L will lead
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to a weak convergence of generated color distribution πŷ0(u) towards the reference πref with the
convergence of all moments.

The loss function can incorporate first two moments (mean µ and covariance σ) of πŷ0(u) and πref

L(ŷ0(u)) = (µŷ0
− µref)

2 + (σŷ0
− σref)

2 + SW(πŷ0
, πref), (8)

The impact of adding the first two moments (see Fig. 5), along with other variants of the SW distance
such as Generalized [8], Distributional [9], and Energy-Based [11] SW distances, is studied in the
Experiments section.

Let u⋆ be a shift, obtained after M steps of Eq. 7 optimization. Then we set x⋆
t = xt + u⋆ and

perform usual DDIM [43] denoising step for x⋆
t with classifier-free guidance to obtain xt−1. Full

algorithm for a latent diffusion model with classifier-free guidance is listed in the Appendix.

Efficient Computation of Sliced Wasserstein Let F0 and F1 be two cumulative distribution
functions of 1-dimensional probability distributions π0 and π1. Then the Wasserstein distance of
order p between π0 and π1 has a form (Rachev and Rüschendorf, 1998, Theorem 3.1.2 [44])

Wp(π0, π1) =

(∫ 1

0

∣∣F−1
0 (y)− F−1

1 (y)
∣∣p dy) 1

p

(9)

Formally, it involves differentiable estimation of inverse cumulative density functions. However, in
the case of p = 1 the Proposition 1 allows us to replace the difference of inverse CDFs by absolution
difference of CDFs, making it much easier to compute

W1(π0, π1) =

∫ ∞

−∞
|F0(x)− F1(x)| dx (10)

Moreover, since all color distributions in RGB space have a compact support (unit cube), one can
employ guarantees of Lemma 2, which in fact states a convergence of general p-Wasserstein distances
given convergence of the 1-Wasserstein distance. These facts justify the selection of 1-Wasserstein
instead of general p-Wasserstein.

Differentiable Approximation of CDF We approximate the cumulative distribution function (CDF)
by sorting samples from the distribution. Once the samples {xi}ni=1 are sorted, the CDF can be
directly obtained by assigning a rank to each sorted sample. For a given sample xi, its rank (i.e., its
position in the sorted array) divided by the total number of samples n provides the CDF value at that
point. If {x(i)} represents the sorted samples, the CDF at x(i) is given by:

CDF(x(i)) =
i

n
(11)

This sorting operation is differentiable, so the CDF is also differentiable. To achieve a good approxi-
mation of the true underlying CDF, a large number of samples n is required.

Theoretical Justification We need Proposition 1 for efficient sampling, as it allows one to avoid
computing the inverse CDF.
Proposition 1. Let F and G be two cumulative distribution functions. Then,∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt = ∫

R
|F (x)−G(x)| dx, (12)

where F−1 and G−1 are the quantile functions (inverse CDFs) of F and G, respectively.

Lemma 2 provides the theoretical foundation for our optimization procedure for multidimensional
Borel probability measures µn and µ on Rd.
Lemma 2. Let µn and µ be Borel probability measures on the unit cube in Rd. If the numerical
sequence

lim
n→∞

SW (µn, µ) = 0 (13)

then the sequence µn converges to µ weakly, and all moments of µn converge to the moments of µ.

Proofs for Proposition 1 and Lemma 2 are provided in the Appendix.
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Figure 3: Comparison with stylized generation methods, SDXL. Other methods show weaker palette
matching while transferring high-level features - such as brush strokes and wheat fields in example
with lighthouses or photorealism in the second example.

Table 1: Quantitative evaluation, SDXL [46]. We measure palette similarity with 2-Wasserstein
distance between the color distribution of the generated image and the reference image. CLIP-IQA
and CLIP-T are quality and content scores. The color transfer methods [18, 19, 20, 52, 53, 54, 55, 56]
are applied to the unconditional SDXL generations. Note, that SW-Guidance has the highest CLIP-T
among other stylized generation algorithms [30, 34, 39]. For visual comparisons, see the Appendix.

2-Wasserstein distance [4] ↓
Algorithm mean ± std of mean

SW-Guidance SDXL (ours) 0.0297 ± 0.0005
hm-mkl-hm [52] 0.0543 ± 0.0011
hm [53] 0.0856± 0.0016
PhotoWCT2 [20] 0.1028± 0.0014
ModFlows [54] 0.1125± 0.0016
MKL [55] 0.1191± 0.0017
CT [56] 0.1333± 0.0018
WCT2 [18] 0.1347± 0.0017
PhotoNAS [19] 0.1608± 0.0017
InstantStyle SDXL [34] 0.1758± 0.0028
IP-Adapter SDXL [30] 0.2193± 0.0032
Unconditional SDXL [48] 0.3824± 0.0059

RB-Modulation [39]
Stable Cascade 0.3795± 0.0133

Content scores

CLIP-IQA [51] ↑ CLIP-T [42] ↑
0.285 ± 0.004 0.270± 0.002
0.259± 0.003 0.277± 0.002
0.244± 0.003 0.282± 0.002
0.225± 0.003 0.276± 0.002
0.257± 0.003 0.282± 0.002
0.238± 0.003 0.283± 0.002
0.230± 0.003 0.284± 0.002
0.179± 0.002 0.288 ± 0.002
0.167± 0.002 0.279± 0.002
0.332 ± 0.003 0.238± 0.002
0.247± 0.002 0.214± 0.002
0.239± 0.003 0.294 ± 0.002

0.323± 0.006 0.266± 0.003

4 Experiments

As a successor to Universal Diffusion Guidance [37], the proposed method is not tied to a specific
architecture and can be paired with latent or pixel-space diffusion models. For our experiments
we have selected Stable Diffusion 1.5 [45] and Stable Diffusion XL [46] (Dreamshaper-8 [47] and
RealVisXL-V4 [48]) with the DDIM scheduler [43].

Test set The experiments are conducted on images generated from the first 1000 prompts taken from
the ContraStyles dataset [49]. Our color references are 1000 photos from Unsplash Lite [50]. We
refer to these prompts and photos as the test set. A training set is not needed for our algorithm.

Metrics To measure stylization strength, we calculate the Wasserstein-2 distance between color
distributions in RGB space. Two content-related metrics are based on CLIP embeddings [42]. CLIP-
IQA [51] is a cosine similarity between a generated image and pre-selected anchor vectors that define
“good-looking” pictures. CLIP-T [42] is a cosine similarity between CLIP representations of a text
prompt and an image generated from this prompt. In other words, the CLIP-T score indicates whether
a modified sampling process still follows the initial text prompt, while CLIP-IQA measures the
overall quality of the pictures.

Baselines As discussed earlier, the problem of color-conditional generation can be solved by first
creating an image from a text prompt and then performing a color transfer with a specialized color
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transfer algorithm. Therefore, the largest family of baselines consists of algorithms of this kind
applied to the output of SD1.5 and SDXL: Histogram matching (hm) [53], CT [56], MKL [55, 57],
WCT2 [18], PhotoNAS [19], PhotoWCT2 [20], ModFlows [54]. The baseline “hm-mkl-hm” is a
combination of histogram matching and MKL taken from the library [52]. In addition, we take
three of the currently available baselines for stylized generation: IP-Adapter [30], InstantStyle [34],
and RB-Modulation [39], though stylized generation is not exactly the problem we aim to solve.
While recent work [58] also proposes an algorithm for color conditional generation with diffusion
models, we exclude direct comparisons due to absence of open-source implementation. The term
Unconditional indicates that no post-processing steps or controls were applied. We provide CLIP-IQA
and CLIP-T metrics for Unconditional SDXL and Unconditional SD1.5 as a reference.

Comparison Results The results in Table 1 prove that SW-Guidance achieves superior performance
in color-conditional generation compared to all baseline methods. In particular, SW-Guidance has
the minimal Wasserstein distance to the reference palette. At the same time, SW-Guidance has the
highest CLIP-T among other algorithms for stylized generation (i.e. IP-Adapter, InstantStyle and
RB-Modulation). This indicates the ability of SW-Guidance to follow the prompt without adding
irrelevant features from the reference image in contrast to other stylization methods. In terms of
overall image quality SW-Guidance holds the second place according to CLIP-IQA. Qualitative
comparison with stylized generation is given in Fig. 3, with additional visual examples available in
the Appendix. The Appendix also contains SD-1.5 performance scores and examples comparable to
those shown in Table 1.

Figure 4: SW-Guidance combined with canny ControlNet, SD1.5.

Figure 5: Ablation studies, SDXL. The best results are obtained with the loss function by Eq.7 (SW
only). Moments-only guidance is insufficient. Please refer to Table 3 for the quantitative comparison.
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Figure 6: SW-Guidance combined with depth control has more flexibility than InstantStyle. SD1.5
model, scale is InstantStyle strength.

Compatibility with ControlNets SW-Guidance can be combined with other control methods to
define the image layout, see Fig. 4 for the canny control and Fig. 6 for the depth map control. Our
method supports any picture, representing a palette, as in the second row, Fig. 4.

Note that stylizing algorithms, such as InstantStyle, transfer not only color but also other features
(see Fig. 3), making it difficult to control color separately. Fig. 6 shows that for InstantStyle the
text prompt guiding the color is ignored because it contradicts the features of the reference image
(i.e denim dress). Our method is more flexible and sets a red shade which aligns with the reference
palette.

Relying only on text prompts for color control is inconvenient. Moreover, color naming is often
connotative, and words like “lavender”, “emerald” and “lime” can introduce unintended content
details, as shown in Fig. 8. Please refer to the Appendix for more examples.

With all this said, we conclude that the proposed SW-Guidance is superior in color stylization while
maintaining both integrity with the textual prompt and the quality of the produced images.

4.1 Ablation study

Table 2: Ablation study. SD-1.5. Analysis of different Sliced Wasserstein distances.

2-Wasserstein distance [4] ↓
Distance mean ± std of mean

Sliced Wasserstein [5] 0.0385 ± 0.0006
Energy-Based SW [11] 0.0390 ± 0.0006
Distributional SW [9] 0.0547 ± 0.0006
Generalized SW [8] 0.0879 ± 0.0014
Mean & Cov 0.1064 ± 0.0013

Content scores

CLIP-IQA [51] ↑ CLIP-T [42] ↑
0.2220 ± 0.0027 0.2520 ± 0.0017
0.2241 ± 0.0030 0.2535 ± 0.0017
0.2225 ± 0.0030 0.2564 ± 0.0016
0.2098 ± 0.0027 0.2594 ± 0.0016
0.2258 ± 0.0030 0.2545 ± 0.0017

Table 3: Ablation study. SDXL. The impact of adding the first two moments to the SW distance
(Eq.8), which is also shown in Fig. 5

2-Wasserstein distance [4] ↓
Distance mean ± std of mean

SW only 0.0297 ± 0.0005
Moments + SW 0.0305 ± 0.0006
Moments only 0.1176 ± 0.0016
Unconditional SDXL [48] 0.3824 ± 0.0056

Content scores

CLIP-IQA [51] ↑ CLIP-T [42] ↑
0.285 ± 0.004 0.270 ± 0.002
0.279 ± 0.003 0.269 ± 0.002
0.276 ± 0.003 0.282 ± 0.002
0.239 ± 0.003 0.294 ± 0.002

Different Sliced Wasserstein distances Table 2 contains scores for the tested variants of Sliced
Wasserstein (SW), each assessed under K = 10 slices, M = 10 iterations per scheduler step, and
lr = 100 learning rate. Let us note that Lemma 2 holds for all of them. Please find their formal
definition in Appendix section. In general, we didn’t observe any substantial difference in their
content scores. We can also note that, despite the time metric is absent in the table, Distributional
Sliced Wasserstein (DSW) takes more time due to inner optimization loop. This suggests that
although DSW and Generalized SW are aimed to converge faster for multidimensional distributions,
this advantage does not translate to our 3D color transfer task. The Energy-Based SW [11] offered
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a computationally light alternative, though it lacks any clear advantage over regular SW for this
application.

Generation time The generation time dependence on M (inner steps) and K (number of slices) for
SD-1.5 is shown in Fig. 7. For our main experiments we set M = 10 and K = 10, which results in
30 seconds for SD-1.5 and around 1 minute for SDXL to generate an image on Nvidia RTX 4090
GPU. This represents an improvement compared to the 2 minutes required by RB-modulation.

Mean and covariance terms The impact of adding the first two moments to the SW distance is
presented in Fig. 5 and Table 3. The best results are obtained with the loss function by Eq.7 (SW
only). Mean and covariance terms (Eq.8, Moments + SW) do not increase color similarity and tend
to produce images of worse quality. Moments-only guidance is insufficient.

Dependence on learning rate This experiment can be found in Appendix section.

5 Limitations and Discussion

The first important limitation of the proposed guidance is its sensitivity to the information about colors
in text prompts, especially when they contradict the selected style reference. A clash between the
textual and SW guidance typically results in visual artifacts, so detailed textual palette descriptions
should be avoided.

Secondly, combining this method with existing stylizing attention-based approaches is not guaranteed
to work, as strong stylizing methods could also lead to a clash of color guidance. Ideally, other
conditioning should be disentangled from the color information. This collision effect is a subject for
further research. As an example, we provide a joint run of InstantStyle and SW-Guidance (Fig. 9).

The last point we would like to discuss is the current implementation’s requirement to differentiate
through a U-net. Theoretically, this requirement could be avoided, but like the previous point, it
requires additional study.

To sum up, this paper presents SW-Guidance, a novel training-free technique for color-conditional
generation that can be applied to a range of denoising diffusion probabilistic models. Our study
covers the SD-1.5 and SDXL architectures, and for both implementations, we achieved superior
results in color similarity compared to color transfer algorithms and models for stylized generation.
Numerically, we show the ability of SW-Guidance to maintain integrity with the textual prompt and
preserve the quality of the produced images. Our qualitative examples demonstrate the absence of
unwanted textures and irrelevant features from the reference image.

Figure 7: Ablation study for the dependence
on M (inner steps) and K (number of slices)
for SD-1.5. We use M = 10 and K = 10,
which results in 30 seconds for SD-1.5 and
around 1 minute for SDXL to generate an
image on RTX 4090 GPU.

Figure 8: Text description of a color may
introduce unwanted content details.

Figure 9: Limitations. Combination of SW-
Guidance and InstantStyle SDXL.
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A Sliced Wasserstein Distances

Sliced Wasserstein Distance Wasserstein distances appear to be natural for our task of color
transfer as they measure the cost of transporting one probability distribution to match another [4].
The Wasserstein distance of order p is

Wp(π0, π1) =

(
inf

π∈Π(π0,π1)

∫
X0×X1

||x− y||p dπ(x, y)
)1/p

, (14)

where Π(π0, π1) represents the set of all joint distributions with marginals π0 and π1. However,
directly computing Wp(π0, π1) is computationally expensive and difficult to differentiate through,
because its value is itself a result of an optimization procedure inf over all transport plans Π(π0, π1).

To overcome this issue, the sliced Wasserstein (SW) distance was introduced [5], offering a more
computationally tractable alternative by reducing high-dimensional distributions to one-dimensional
projections where the Wasserstein distance can be computed more straightforwardly. The sliced
p-Wasserstein distance is defined as [5, 6]:

SWp(π0, π1) =

(∫
Sd−1

W p
p (Pθπ0, Pθπ1) dθ

)1/p

, (15)

where Sd−1 is the unit sphere in Rd with
∫
Sd−1 dθ = 1, Pθ is a linear projection onto a one-

dimensional subspace defined by θ ( Radon transformation in general) and W p
p is an ordinary

p-Wasserstein distance by Eq.14.

A known issue with the Sliced Wasserstein (SW) distance arises when sampling parameters θ
for projections. As noted in [8], uniformly sampled θ values on the unit sphere Sd−1 in high
dimensions tend to be nearly orthogonal. This resulting in W2(Pθπ0, Pθπ1) ≈ 0 with high probability.
Consequently, these projections fail to provide discriminative information about the differences
between the distributions π0 and π1.

Distributional Sliced Wasserstein Distance The Distributional Sliced Wasserstein (DSW) distance,
proposed in [9] generalizes the SW distance by introducing a probability distribution σ(θ) over the
slicing directions and defined as:

DSWp(π0, π1) =

= sup
σ

(∫
Sd−1

W p
p (Pθπ0, Pθπ1)σ(θ)dθ

)1/p

,
(16)

where the optimization sup is performed w.r.t probability distributions σ over unit sphere Sd−1, with∫
Sd−1 σ(θ)dθ = 1.

Energy-Based Sliced Wasserstein Distance

The Energy-Based Sliced Wasserstein (EBSW) distance, introduced in [11], provides an alternative
to the optimization-based approach of DSW by defining a slicing distribution σπ0,π1

(θ; f, p) based
on the projected Wasserstein distances:

σπ0,π1(θ; f, p) ∝ f(W p
p (Pθπ0, Pθπ1)), (17)

where f is a monotonically increasing energy function (e.g., f(x) = ex) that emphasizes directions
with larger projected Wasserstein distances. Using this slicing distribution, the EBSW distance is
defined as:

EBSWp(π0, π1; f) =

Eθ∼σπ0,π1 (θ;f,p)

[
W p

p (Pθπ0, Pθπ1)
]1/p

.
(18)

To improve computational efficiency, importance sampling is used, with a proposal distribution σ0(θ)
to sample directions and weight them according to the ratio:
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wπ0,π1,σ0,f,p(θ) =
f(W p

p (Pθπ0, Pθπ1))

σ0(θ)
. (19)

Generalized Sliced Wasserstein Distance The Generalized Sliced Wasserstein (GSW) distance [8]
replaces the Radon transform with a generalized Radon transform that depends on a defining function
g(x, θ). Formally, for a function I , the generalized Radon transform is defined as:

GI(t, θ) =

∫
Rd

I(x)δ(t− g(x, θ)) dx, (20)

where δ is the Dirac delta function. Using the generalized Radon transform, the GSW distance
between two distributions π0 and π1 is defined as:

GSWp(π0, π1) =

(∫
Ωθ

W p
p (GIπ0

(·, θ), GIπ1
(·, θ)) dθ

)1/p

, (21)

where Ωθ is a compact set of feasible parameters for the function g(x, θ) (e.g., Ωθ = Sd−1 for
g(x, θ) = ⟨x, θ⟩).
For empirical distributions π0 and π1, represented by samples {xi}Ni=1 and {yj}Nj=1, the GSW
distance can be approximated as:

GSWp(π0, π1) ≈(
1

L

L∑
l=1

N∑
n=1

∣∣g(xi[n], θl)− g(yj[n], θl)
∣∣p)1/p

,
(22)

where xi[n] and yj[n] denote the sorted indices of {g(xi, θl)}Ni=1 and {g(yj , θl)}Nj=1, respectively, for
each sampled θl.

B Theoretical Justification

This section contains proofs of Proposition 1 and Lemma 2 from the main text (here they are numbered
as Proposition 4 and Lemma 5). Though the statement of Proposition 4 can be found in the literature,
its formal treatment is omitted [4, 59]. Here we provide its detailed proof for Borel probability
measures on R. It restricts us to non-decreasing, right-continuous cumulative distribution functions
F , Fig 10.

Figure 10: Example of right continuous non-decreasing function.

We need Proposition 4 for efficient sampling, as it allows one to avoid computing the inverse CDF.
First we prove Lemmas 1, 2 and 3.
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Lemma 1. Let F be a cumulative distribution function (CDF) on R, and let F−1(t) = inf{x ∈ R |
F (x) ≥ t} be its quantile function for t ∈ [0, 1]. Then:

{t ∈ [0, 1] | F−1(t) ≤ a} = {t ∈ [0, 1] | F (a) ≥ t}. (23)

Proof. L.H.S.⇒ R.H.S.:

Suppose t′ ∈ {t ∈ [0, 1] | F−1(t) ≤ a}. Then, there exists x′ = F−1(t′) such that x′ ≤ a.
By the definition of the quantile function F−1(t′), x′ is the infimum of the set {x | t′ ≤ F (x)}.
Under the assumptions that F is right-continuous, the infimum x′ belongs to the set, and therefore
F (x′) ≥ t′. Since F (x) is non-decreasing and a ≥ x′, it follows that F (a) ≥ F (x′) ≥ t′. Hence,
t′ ∈ {t ∈ [0, 1] | F (a) ≥ t}.
R.H.S.⇒ L.H.S.:

Suppose t′ ∈ {t ∈ [0, 1] | F (a) ≥ t}, but t′ /∈ {t ∈ [0, 1] | F−1(t) ≤ a}, i.e. t′ such that
t′ ≤ F (a) and F−1(t′) > a. However, by the definition of x′ = F−1(t̂), x′ is the infimum of the set
{x | F (x) ≥ t′}. Since a < x′, a cannot belong to this set, implying F (a) < t′, which contradicts
the assumption t′ ≤ F (a). Thus, there is no t in the R.H.S. that does not also belong to the L.H.S.

From these, we conclude that the two sets are equal:

{t ∈ [0, 1] | F−1(t) ≤ a} = {t ∈ [0, 1] | F (a) ≥ t}. (24)

Lemma 2. Let F be a cumulative distribution function (CDF) on R. Then the quantile function
F−1(t) = inf{x ∈ R | F (x) ≥ t}, defined for t ∈ [0, 1], is measurable with respect to the Borel
sigma algebra.

Proof. To show that F−1(t) : ([0, 1],B[0,1]) → (R,BR) is measurable, we must prove that for any
Borel set B ⊂ R, the preimage:

{t ∈ [0, 1] | F−1(t) ∈ B} ∈ B[0,1]. (25)

The Borel sigma algebra BR is generated by intervals of the form (−∞, b]. Hence, it suffices to prove
that for any b ∈ R, the set

{t ∈ [0, 1] | F−1(t) ∈ (−∞, b]} (26)

is measurable.

Consider the preimages of (−∞, b]:

{t ∈ [0, 1] | F−1(t) ∈ (−∞, b]} =
= {t ∈ [0, 1] | F−1(t) ≤ b} = /by Lemma 1/
= {t ∈ [0, 1] | F (b) ≥ t} =[0, F (b)]

(27)

Since F is a CDF, F (b) is a real number in [0, 1], and the set {t ∈ [0, 1] | t ≤ F (b)} = [0, F (b)] is
a Borel set in [0, 1], and thus the preimage of (−∞, b] is a measurable set in [0, 1]. Therefore the
quantile function F−1(t) is measurable.

Lemma 3. Let a and b be two real numbers. Then:

|a− b| =
∫
R
|Ia≥u − Ib≥u| du, (28)

where Ix≥u is the indicator of the set {x ∈ R|x ≥ u}.

Proof. First, suppose a ≥ b. Consider three cases for u:

1. If u > a > b, then Ia≥u = 0 and Ib≥u = 0, so
|Ia≥u − Ib≥u| = 0.
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2. If a > b > u, then Ia≥u = 1 and Ib≥u = 1, so
|Ia≥u − Ib≥u| = 0.

3. If a > u > b, then Ia≥u = 1 and Ib≥u = 0, so
|Ia≥u − Ib≥u| = 1.

Therefore, the integral reduces to:∫
R
|Ia≥u − Ib≥u| du =

∫ a

b

1 du = a− b. (29)

For the case b > a, by a similar argument, integral is not zero only when:

b ≥ u ≥ a |Ia≥u − Ib≥u| = 1.

and therefore, the integral reduces to∫
R
|Ia≥u − Ib≥u| du =

∫ b

a

1 du = b− a. (30)

Thus, in all cases:

|a− b| =
∫
R
|Ia≥u − Ib≥u| du. (31)

Proposition 4. Let F and G be cumulative distribution functions (CDFs) on R. Then:∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt = ∫

R
|F (x)−G(x)| dx, (32)

where F−1 and G−1 are the quantile functions (generalized inverse CDFs) of F and G, respectively.

Proof. Note, that by Lemma 2 both F−1 and G−1 are measurable and therefore the L.H.S exists. By
Lemma 3, its absolute value can be represented as:∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt =

=

∫ 1

0

∫
R

∣∣IF−1(t)≥u − IG−1(t)≥u

∣∣ du dt. (33)

Using the property of indicator functions IF−1(t)≥u = 1− IF−1(t)<u, the integral becomes:∫ 1

0

∫
R

∣∣IF−1(t)≥u − IG−1(t)≥u

∣∣ du dt
=

∫ 1

0

∫
R

∣∣−IF−1(t)<u + IG−1(t)<u

∣∣ du dt
=

∫ 1

0

∫
R

∣∣−IF−1(t)≤u + IG−1(t)≤u

∣∣ du dt.
(34)

where the last equality is correct since function under the Lebesgue integral can be changed on a set
of measure zero. Using Lemma 1 we rewrite indicators:∫ 1

0

∫
R

∣∣−It≤F (u) + It≤G(u)

∣∣ du dt (35)

By Fubini’s theorem (justified as the integrand is non-negative and measurable), we can switch the
order of integration: ∫

R

∫ 1

0

∣∣−It≤F (u) + It≤G(u)

∣∣ dt du. (36)
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Using the Lemma 3 again we get:∫
R

∫ 1

0

∣∣−It≤F (u) + It≤G(u)

∣∣ dt du
=

∫
R
|G(u)− F (u)| du.

(37)

Hence, we conclude: ∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt = ∫

R
|F (x)−G(x)| dx. (38)

Lemma 5 (Lemma 2 in the main text) provides the theoretical foundation for our optimization
procedure for multidimensional Borel probability measures µn and µ on Rd.
Lemma 5. Let µn and µ be Borel probability measures on the unit cube [0, 1]d ⊂ Rd. If

lim
n→∞

SW (µn, µ) = 0, (39)

then µn converges weakly to µ, and all moments of µn converge to the moments of µ.

Proof. Consider the ball B(0, R) of radius R, that contains the unit cube. Then a Borel probability
measure on the cube [0, 1]d can be extended to the Borel probability measure on B(0, R) by assigning
measure zero to any Borel set outside of the cube.

Now we can use Lemma 5.1.4 from [60], which states that for the 1-Wasserstein distance W1 there
exists a constant Cd > 0 such that for all Borel probability measures µ, ν on B(0, R)

0 ≤W1(µ, ν) ≤ Cd R
d

d+1 SW1(µ, ν)
1

d+1 . (40)

Since µn and µ are supported on the unit cube in Rd, we take R =
√
d, which is a sufficient radius to

bound the unit cube. From the assumption that limn→∞ SW1(µn, µ) = 0, we have:

lim
n→∞

Cd R
d

d+1 SW1(µn, µ)
1

d+1 = 0. (41)

Using the squeeze Theorem for (40), it follows that:

lim
n→∞

W1(µn, µ) = 0. (42)

By Definition 6.8 (iv) and Theorem 6.9 of [4], the convergence W1(µn, µ) → 0 implies that µn

converges weakly to µ. Specifically, for any x0 ∈ B(0, R) and all continuous functions φ with
|φ| ≤ C (1 + d(x0, x)), C ∈ R one has

lim
n→∞

∫
φ(x) dµn(x) =

∫
φ(x) dµ(x). (43)

For our case d(x0, x) ≤ 2R, so φ is bounded, and integration over the B(0, R) could be replaced
with integration over the unit cube by a construction of our extension of µn and µ.

Given a (finite) multi-index ᾱ = (α1, α2, . . . , αd), one can define the moment:

mᾱ =

∫
xα1
1 xα2

2 · · ·x
αd

d dµ(x). (44)

Polynomial functions ϕ(x) = xᾱ are bounded and continuous on the unit cube because xi ≤ 1 for all
i ∈ {1, . . . , d}, ensuring all terms xᾱ ≤ 1. Thus, weak convergence implies that for all multi-indices
ᾱ,

lim
n→∞

∫
xᾱ dµn(x) =

∫
xᾱ dµ(x), (45)

i.e., all moments of µn converge to the corresponding moments of µ component-wise.
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Algorithm 2 Color Conditional Generation with Sliced Wasserstein Guidance for latent text-to-image
diffusion
Require:

DDIM: Diffusion DDIM scheduler
sθ: UNet model
D: Decoder of the Variational Autoencoder
E: Encoder of the Variational Autoencoder
τ : Text embeddings for conditioning
Iref: Reference image
γ: Guidance scale factor
M : Number of optimization steps
Initialize xt ∼ N (0, I)

1: for t in {0, . . . , T − 1} do
2: u← 0 (tensor with same shape as xt)
3: for j in {1, . . . ,M} do
4: x′

t ← xt + u
5: ϵ← sθ(x

′
t, t, τ)

6: x̂0 ← DDIM(ϵ, t, x′
t)

7: Igen ← D(x̂0)
8: Pgen ← pixels_from_image(Igen)
9: K ← 10 ▷ Number of slices

10: for k in {1, . . . ,K} do
11: R← rand_rotation_matrix()
12: PR

gen ← PT
genR

13: PR
ref ← PT

refR
14: for d in {1, . . . , 3} do
15: xrot ← PR

gen[:, d]

16: yrot ← PR
ref[:, d]

17: cdfx ← get_cdf(xrot)
18: cdfy ← get_cdf(yrot)
19: L ← L+ mean(|cdfx − cdfy|)
20: end for
21: end for
22: gu ← ∇uL(u)
23: gu ← gu

std(gu)
24: u← u− λgu
25: end for
26: x∗

t ← xt + u
27: ϵcond ← sθ(x

∗
t , t, τ)

28: ϵuncond ← sθ(x
∗
t , t, ∅)

29: ϵguided ← ϵuncond + γ(ϵcond − ϵuncond)
30: xt ← DDIM(ϵguided, t, x

∗
t )

31: end for
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Table 4: Text-to-image generation conditioned on a reference color distribution. Quantitative
evaluation, SD1.5 [47]. 2-Wasserstein distance between the color distributions measures color
similarity, CLIP-IQA and CLIP-T are quality and content scores. All color transfer methods [18, 19,
20, 52, 53, 54, 55, 56] are applied to the Unconditional SD1.5 generations.

2-Wasserstein distance [4] ↓
Algorithm mean ± std of mean

SW-Guidance SD-1.5 (ours) 0.0328 ± 0.0003
hm-mkl-hm [52] 0.0572 ± 0.0011
hm [53] 0.0896± 0.0019
PhotoWCT2 [20] 0.1085 ± 0.0016
ModFlows [54] 0.1182 ± 0.0015
Colorcanny
ControlNet SD-1.5 [61] 0.1183 ± 0.0016
MKL [55] 0.1274 ± 0.0018
CT [56] 0.1412 ± 0.0019
WCT2 [18] 0.1425 ± 0.0018
PhotoNAS [19] 0.1724 ± 0.0017
InstantStyle SD-1.5 [34] 0.2802 ± 0.0043
Unconditional SD-1.5 0.4062 ± 0.0063

Content scores

CLIP-IQA [51] ↑ CLIP-T [42] ↑
0.2221 ± 0.0029 0.2624 ± 0.0017
0.2013 ± 0.0030 0.2656 ± 0.0017
0.2054 ± 0.0029 0.2700 ± 0.0016
0.1796 ± 0.0026 0.2621 ± 0.0016
0.2035 ± 0.0030 0.2640 ± 0.0016

0.1953 ± 0.0025 0.2600 ± 0.0018
0.1880 ± 0.0028 0.2700 ± 0.0016
0.1826 ± 0.0027 0.2713 ± 0.0016
0.1819 ± 0.0026 0.2761 ± 0.0016
0.2878 ± 0.0027 0.2590 ± 0.0015
0.1891 ± 0.0020 0.2554 ± 0.0018
0.2010 ± 0.0023 0.2837 ± 0.0016

C Additional results

Dependence on learning rate The effect of learning rates on the performance of sliced Wasserstein-
based guidance is given in Fig. 16. The learning rate has a significant impact on the 2-Wasserstein
distance, with an optimal value of 0.04, beyond which the loss plateaus and then increases. In
contrast, the CLIP-IQA and CLIP-T metrics exhibit linear relationships with respect to the learning
rate, suggesting no minimum or optimal value within the range tested.

Text prompts to control the color Using text prompts for controlling the color has several major
issues. The first row of Fig. 15 shows that the red color specified by the prompt is often ignored.
The second row of Fig. 15 shows how the same prompt applied to another control image produces
completely different color distribution. It also introduces content details due to connotative words
like “denim”, “warm” and “soft”. Removing these words alters the colors, making the prompt design
tedious. Please note, that color naming is often connotative, and words like “bloody red” and “lime”
will introduce content details.

Content Diversity Evaluation To evaluate the content diversity of the generated images, we
computed the FID between unconditional SDXL generations and those obtained using various style
guidance methods. To mitigate potential effects of color distribution alignment on the FID, all
evaluations were conducted after conversion to grayscale histogram normalized images. The results
on our generated dataset are summarized in Table 5.

Table 5: FID scores between unconditional SDXL generations and stylized outputs.

Method Used with SDXL FID Score (vs. Unconditional)
Mean/Covariance Matching Only 53.16
SW-Guidance (Ours) 58.40
InstantStyle 58.95
IP-Adapter 71.06
RB Modulation 72.75

The results show that SW-Guidance maintains content diversity comparable to other state-of-the-art
stylization methods. While there is a slight FID increase compared to simple moment matching
(which provides weaker color control), our method preserves substantially more diversity than
stronger stylization techniques such as IP-Adapter and RB Modulation.
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D Experimental Details

The experiments were conducted on images generated by SD-1.5 (Dreamshaper-8) and SDXL
(RealVisXL-V4) using the first 1000 ContraStyles prompts [49]. No negative prompts or negative
embeddings were used.

We fixed the CFG scale to 5 and the resolution to 768x768 for SDXL. For SD-1.5, the CFG scale
was set to 8 and the resolution to 512x512. Both the SDXL and SD pipelines used the DDIM
scheduler with 30 inference steps. Images for RB-Modulation were produced by Stable Cascade
with a resolution of 1024x1024 and a total of 30 inference steps (20 for stage C and 10 for stage B).
Method-specific settings are provided below.

Baselines For InstantStyle, the SDXL and SD-1.5 scales were set to 1.0. For IP-Adapter, the SDXL
scale was set to 0.5 because higher scales tended to ignore the text prompt, producing variations
of a reference image. The Colorcanny ControlNet for SD-1.5 had a conditioning scale of 1.0. For
SW-Guidance, the SD-1.5 learning rate was lr = 0.04. In the SDXL version of SW-Guidance, we did
not apply gradient normalization (line 23, Algorithm 2) and set the constant lr = 0.01 · 104 = 100.

For evaluation, we used publicly available models and algorithms (i.e., none of them were re-trained
or re-implemented). We ran color transfer baselines with the default settings provided by the authors.

We observed that PhotoNAS demonstrated a dependency on the resolution of input images. Specifi-
cally, the method was optimized for 512×512 inputs and exhibited noticeable variations in perfor-
mance, including high-frequency defects when images of different resolutions were used. Therefore,
the evaluations for SDXL and DreamShaper were different, as SDXL outputs images in higher
resolutions.

Metrics The 2-Wasserstein distance was estimated with 3000 randomly sampled points using the
“emd” function from the POT library [62]. The CLIP-IQA metric implementation was taken from the
‘piq‘ Python library [63]. The CLIP-T metric was calculated using the model “openai/clip-vit-large-
patch14” with an embedding dimension of 768.

Hardware The experiments were conducted on a single workstation equipped with two Nvidia RTX
4090 GPU accelerators and 256 GB of RAM.

Prompts for illustrations Fig. 1, (main text):

1. Astronaut in a jungle, detailed, 8k

2. A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up

3. extremely detailed illustration of a steampunk train at the station, intricate details, perfect
environment

Fig. 5, (main text):

1. Sunflower Paintings | Sunflowers Painting by Chris Mc Morrow - Tuscan Sunflowers Fine
Art ...

2. b8547793944 Formal dress suit men male slim wedding suits for men double breasted mens
suits wine red costume ternos masculino fashion 2XL

3. martino leather chaise sectional sofa 2 piece apartment and sets from china interio tucson
dining room rustic furniture with home the company

4. 1125x2436 Rainy Night Man With Umbrella Scifi Drawings Digital Art

Fig. 17, Fig.12 and Fig. 11 (Appendix) :

1. Woman with a Parasol - Madame Monet and Her Son - Image: Monet woman with a parasol
right

2. """Iceland: Through an Artist’s Eyes part 4 Rainy Day Adventures"" original fine art by
Karen Margulis"

3. Parthenon Poster featuring the digital art Parthenon Of Nashville by Honour Hall

4. How To Make A Caramel Frappuccino At Home
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5. New York Central Building, Park Avenue, 1930,Vintage Poster, by Chesley Bonestell

Fig. 13 (Appendix) :

1. Francis Day - The Piano Lesson Frederick Childe Hassam - The Sonata George Bellows -
Emma at the Piano Theodore Robinson - Girl At Piano Pierre-Auguste Renoir - The Piano
Lesson - Louise Abbema - At the Piano Gustave. . .

2. Illustration pour Girl retro military pilot pop art retro style. The army and air force. A
woman in the army - image libre de droit

3. Victor Tsvetkov The Bicycle Ride 1965 Russian Painting, Russian Art, Figure Painting,
Bicycle Painting, Bicycle Art, Socialist Realism, Soviet Art, Illustration Art, Illustrations

4. """""""There Was A Time"""" Milwaukee, Wisconsin Horizons by Phil Koch USA"""
5. Poster featuring the painting Monet Wedding by Clara Sue Beym
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Figure 11: Text-to-image generation conditioned on a reference color distribution. Comparison with
stylized generation methods. Examples from the test set. All images are generated by RealVisXL
except of RB-Modulation running on Stable Cascade. Other methods have greater mismatch in color
distributions and also often transfer some composition details such as: a forest (first row), a field of
flowers (second row), a bouquet (third row), mountains (fourth row), cloudy sky and mountains (last
row). 10



Figure 12: Text-to-image generation conditioned on a reference color distribution. Qualitative
comparison with color transfer methods for SD-1.5. Examples from the test set. Please refer to the
Table 4 for the quantitative comparison.
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Figure 13: Text-to-image generation conditioned on a reference color distribution. Comparison with
color transfer methods. Examples from the test set. Color transfer methods (ModFlows, hm and
hm-mkl-hm) are applied to the Unconditional RealVisXL generations. Images produced by color
transfer methods have greater mismatch in color distributions with the reference when compared to
SW-Guidance.
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Figure 14: SW-Guidance combined with depth and canny controls.

Figure 15: Text prompt mimicking the color distribution of Fig. 14.
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Figure 16: The performance metrics dependence on the learning rate for SD-1.5.

Content (SDXL) MKL PhotoWCT2 ModFlows hm hm-mkl-hm Ours Style

Figure 17: Text-to-image generation conditioned on a reference color distribution. Qualitative
comparison with color transfer methods for SDXL. Please refer to the Table 1 in the main text for the
quantitative comparison.
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