
Workshop track - ICLR 2017

TACTICS OF ADVERSARIAL ATTACK ON DEEP REIN-
FORCEMENT LEARNING AGENTS

Yen-Chen Lin∗, Zhang-Wei Hong∗, Yuan-Hong Liao∗, Meng-Li Shih∗, Ming-Yu Liu†, and Min Sun∗
National Tsing Hua University, Hsinchu, Taiwan∗

Nvidia, Santa Clara, CA, USA†
{yenchenlin1994,sean.mingyu.liu}@gmail.com
{williamd4112@gapp,s102061137@m102,shihsml@gapp,sunmin@ee}.nthu.edu.tw

ABSTRACT

We introduce two novel tactics for adversarial attack on deep reinforcement learn-
ing (RL) agents: strategically-timed and enchanting attack. For strategically-
timed attack, our method selectively forces the deep RL agent to take the least
likely action. For enchanting attack, our method lures the agent to a target state
by staging a sequence of adversarial attacks. We show that DQN and A3C agents
are vulnerable to both tactics. Future work on defending is discussed in App. C.

1 INTRODUCTION

The existence of adversarial examples to deep reinforcement learning (RL) agents is largely unex-
plored. In a contemporary paper, Huang et al. (2017) proposed the uniform attack, which attacks a
deep RL agent with adversarial examples at every time step in an episode for reducing the reward of
the agent. We argue that it does not consider several important aspects of RL. First of all, the spirit
of adversarial attack is to perform a minimal perturbation of the observation to avoid being detected.
In RL, this should be considered both in the spatial and temporal domains. Therefore, we propose
the strategically-timed attack which reduces the reward while limiting the number of times an ad-
versarial attack is launched. Our adversary attacks a deep RL agent to take the worse action when it
believes the attack is effective (e.g., s84 is more effective than s25 in Fig. 1). In our experiments, we
show that this attack significantly reduces reward on state-of-the-art deep RL agents by attacking a
small portion of the episode (on average 25% of the time steps in an episode). Another important
characteristic of RL is that it’s a closed loop problem since agent’s action will affect its later inputs.
Motivated by this aspect, we propose the enchanting attack for maliciously luring a deep RL agent
to a specified state. In the real world, the enchanting attack may be used to mislead a self-driving car
controlled by a deep RL agent to hit a certain obstacle. We implement the enchanting attack using
a planning algorithm and a deep generative model for predicting future states of the environment.
To the best of our knowledge, this is the first planning-based adversarial attack on a deep RL agent.
Our experiment results show that the enchanting attack has a 70% or more success rate in attacking
state-of-the-art deep RL agents. Next, we describe both attack tactics in detail.

1.1 STRATEGICALLY-TIMED ATTACK

In an episode, a deep RL agent observes a sequence of states S = {s1, ..., sL}. Instead of attacking
at every time step in an episode, the strategically-timed attack selects a subset of time steps to attack
the deep RL agent. Let ∆ = {δ1, ..., δL} be a sequence of perturbations. Let R1 be the expected
return at the first time step. We can formulate the above intuition as an optimization problem as
follows:

min
b1,...,bL,δ1,...,δL

R1(s̄1, ..., s̄L)

s̄t = st + btδt for all t = 1, ..., L;

bt ∈ {0, 1}, for all t = 1, ..., L;
∑
t

bt ≤ Γ (1)

The binary variables b1, ..., bL denote when an attack is launched. If bt = 1, the perturbation δt is
applied. Otherwise, we do not alter the state. The total number of attacks is limited by the constant

1

Workshop track - ICLR 2017

s25 s84 𝜹

+ =

action taken: up action taken: down

𝛽

Figure 1: Illustration of the strategically-timed attack on Pong. We use a function c to compute the preference
of the agent in taking the most preferred action over the least preferred action at the current state st. A large
preference value implies an immediate reward. In the bottom panel, we plot c(st). Our proposed strategically-
timed attack launch an attack to a deep RL agent when the preference is greater than a threshold, c(st) > β
(red-dash line). When a small perturbation is added to the observation at s84, the agent changes its action from
up to down and eventually misses the ball. But when the perturbation is added to the observation at s25, there
is no impact to the reward. Note that the perturbation δ is enlarged to 250 times for visualization.

Γ. In words, the adversary minimizes the expected accumulated reward by strategically attacking
less than Γ < L time steps. When the adversary decide to attack the agent, it craft an adversarial
example to mislead the agent. The optimization problem in (1) is a mixed integer programming
problem, which is difficult to solve in general. We bypass this limitation and propose a heuristic
algorithm to compute {b1, ..., bL} (solving the when-to-attack problem) and {δ1, ..., δL} (solving
the how-to-attack problem), respectively.

When to attack. For policy gradient-based methods such as A3C, when an well-trained agent’s
action distribution is rather uniform at state s, it implies that performing any action is equally good.
In contrast, when an agent is rather determined to take a specific action, it implies that it’s critical
to perform the action with the highest probability. For value-based methods such as DQN, the same
intuition applies, since we can convert the computed Q-values of actions into probability distribution
over actions using softmax with temperature (similar to Huang et al. (2017)). In detail, we measure
the preference of the agent in taking the most preferred action over the least preferred action with
function c(s) at state s using the probability of the best action minus the probability of the worse
action. When attacking online, we craft an adversarial example (i.e., bt = 1) when c(s) is larger
than a threshold β, which is related to Γ.

How to attack. To craft an adversarial example at time step δt, we search for a perturbation pattern
to be added to the observation that can change the preferred action of the agent from the originally
(before applying the perturbation) most preferred one to the originally least preferred one. We use
the attack method introduced in Carlini & Wagner (2016) where we treat the least-preferred action
as the misclassification target. This approach allows us to leverage the behavior of a trained deep
RL agent to craft an adversarial example.

1.2 ENCHANTING ATTACK

The goal of enchanting attack is to lure the agent from current state st to a specified target state
sg after H steps. First, the task is reduced to planning a sequence of actions for reaching the
target state sg (see Appendix B). Next, we craft an adversarial example st + δt (Carlini & Wagner
(2016)) to lure the agent to take the first planned action. After the agent observes the adversarial
example and takes an action, the environment will return a new state st+1. We progressively craft
st+1 + δt+1, ..., st+H + δt+H , one at a time, using the same procedure described in (Fig. 2).

2 EXPERIMENT

We evaluate our novel tactics on 5 Atari 2600 games using OpenAI Gym(Brockman et al. (2016))
(i.e., Ms.Pacman, Pong, Seaquest, Qbert, and Chopper Command). We choose them as a balanced
collection of games with super-human level (e.g. Pong) and below human level (e.g., Ms.Pacman).

2

Workshop track - ICLR 2017

video prediction model

adversary
unlabeled video

possible sequence of actions adversarial example

agent

Environment

st

st+1

st

at
+

target state

training model planning

(1) (2)
(3)

(4)

input

crafting

𝜹

Figure 2: Illustration of Enchanting Attack on Ms.Pacman. Blue panel on the right shows the flow of the
attack starting at st: (1) action sequence planning, (2) crafting an adversarial example with a target-action, (3)
the agent takes an action, and (4) environment generates the next state st+1. Green panel at the left depicts that
the video prediction model is trained from unlabeled video. White panel in the middle depicts the adversary
starts at st and utilize the prediction model to plan the attack. Note that the perturbation δ is enlarged to 250
times for visualization.

(a) Pong (b) Seaquest (c) MsPacman (d) ChopperC (e) Qbert

Figure 3: Accumulated reward (y-axis) v.s. Attack rate (x-axis) of Strategically-timed Attack in 5 games.
Blue and green curves correspond to results of A3C and DQN, respectively. A larger reward means the deep
RL agent is more robust to the attack. CopperC denotes CopperCommand.

(a) Pong (b) Seaquest (c) MsPacman (d) ChopperC (e) Qbert

Figure 4: Success rate (y-axis) v.s. H steps in the future (x-axis) for Enchanting Attack in 5 games. Blue and
green curves correspond to results of A3C and DQN, respectively. A lower rate means that the deep RL agent
is more robust to the attack. CopperC denotes CopperCommand.

Our experimental setup is described in Appendix A. Our results are presented below and typical
examples are shown in https://goo.gl/WC14vQ.

Strategically-timed attack. For each game and for the agents trained by the DQN and A3C algo-
rithms, we launched the strategically-timed attack using different β values. Each β value rendered
a different attack rate (i.e., portion of attacked time steps in an episode). We computed the collected
rewards by the agents under different attack rates. The results are shown in Fig. 3 where the y-axis is
the accumulated reward and the x-axis is the attack rate. From the figure, we found that on average
the strategically-timed attack can reach the same effect of the uniform attack by attacking 25% of
the time steps in an episode. We also found an agent trained using the DQN algorithm was more
vulnerable than an agent trained with the A3C algorithm in most games except Pong.

Enchanting attack. We considered an attack was successful if the final state had a normalized
Euclidean distance to the target state within a tolerance value of 1. To make sure the evaluation was
not affected by different stages of the game, we set 10 initial time step t equals to [0.0, 0.1, ..., 0.9]×
L, where L was the average length of the game episode played by the RL agents 10 times. For each
initial time step, we evaluated different H = [1, 5, 10, 20, 40, 60, 80, 100, 120]. Then, for each H ,
we computed the success rate. In Fig. 4, we show the success rate (y-axis) as a function of H in
5 games. We found that the agents trained by both the A3C and DQN algorithms were enchanted.
When H < 40, the success rate was more than 70% in 3 out of 5 games.

3

https://goo.gl/WC14vQ

Workshop track - ICLR 2017

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
https://arxiv.org/abs/1608.04644, 2016.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. https://arxiv.org/abs/1702.02284, 2017.

Volodymyr Mnih, Adria Puigdomenech Badia, and Mehdi Mirza. Asynchronous methods for deep
reinforcement learning. In ICML, 2016.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In NIPS, pp. 2863–2871, 2015.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In Proceedings of the 1st IEEE
European Symposium on Security and Privacy, 2016a.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as
a defense to adversarial perturbations against deep neural networks. In Proceedings of the 37th
IEEE Symposium on Security and Privacy, 2016b.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

A EXPERIMENTAL SETUP

For each game, the deep RL agents were trained using the state-of-the-art deep RL algorithms:
A3C, and DQN. For the A3C agents, we used the same pre-processing steps and neural network
architecture as in Mnih et al. (2016). We also used the same network architecture for the Q-function
trained by DQN. The input to the neural network at time t was a concatenation of the last 4 images,
resized to 84 × 84. Values of each pixel were rescaled to be from 0 to 1. The output of the policy
was a distribution over possible actions for A3C, and an estimate of Q values for DQN.

Although several existing methods can be used to craft an adversarial example (e.g., the fast gradient
sign method (Goodfellow et al. (2015)), and Jacobian-based saliency map attack (Papernot et al.
(2016a))), anti-adversarial attack measures were also discovered to limit their impact Goodfellow
et al. (2015); Papernot et al. (2016b). Therefore, we decided to adopt a recent method proposed
by Carlini & Wagner (2016), which has been shown to break several existing anti-adversarial attack
methods. We early stopped the optimizer whenD(s, s+δ) < ε, where ε is a small value. Throughout
our experiments, we set ε = 0.007.

For testing the enchanting attack, we synthesized target states randomly in order to avoid the bias
of defining target states manually. Firstly, we let the agent to run using its policy by t steps to reach
an initial state st and saved this state into a snapshot. Secondly, we randomly sampled a sequence
of actions of length H and let the agent performed these actions to reach a state st+H . We consider
st+H as a synthesized target state sg . After recording the target state, we restored the snapshot and
run the enchanting attack on the agent and compared the normalized Euclidean distance between the
target state sg and the final reached state st+H .

B PLANNING

We describe how to plan a sequence of actions to reach a specified target state sg from current state
st after a finite horizon H steps.

4

Workshop track - ICLR 2017

Future state prediction and evaluation. Based on the work of Oh et al. (2015), which use a
generative model to predict a video frame in the future, we train a video prediction model M to
predict a future state given a sequence of actions as follows,

sMt+H = M(st, At:t+H) , (2)

where At:t+H = {at, ..., at+H} is the given sequence of H future actions beginning at step t, st is
the current state, and sMt+H is the predicted future state. For more details about the video prediction
model M , please refer to the original paper.

The series of actions At:t+H = {at, ..., at+H} take the agent to reach the state sMt+H . Since the goal
of the enchanting attack is to reach the target state sg , we can evaluate the success of the attack based
on the similarity between sg and sMt+H , which is given by D(sg, s

M
t+H). The similarity D is realized

using the normalized Euclidean distance in our experiments while other metrics can be applied as
well. We also note that the state is given by the observed images by the agent in our experiments.

Sampling-based action planning. We use a sampling-based approach to compute a sequence of
actions to steer the RL agent toward our target state. Our approach is a cross-entropy method
(CEM) (Rubinstein & Kroese (2013)). Specifically, we sample N action sequence of length H:
{An

t:t+H}Nn=1, and rank each of them based on the distance between the final state obtained after
performing the action sequence and the target state sg . After that, we keep the best K action se-
quences and refit our categorical distributions to them. In our experiments, the hyper-parameter
values are N = 2000, K = 400, and J = 5.

At the end of the last iteration, we take the sampled action sequence A∗t:t+H that results in a final
state most close to our target state sq as our plan. Then, we craft an adversarial example with target-
action a∗t using the method introduced in Carlini & Wagner (2016). Instead of directly crafting the
next action a∗t+1, we plan for another enchanting attack starting at state st+1 to be robust to any
failure in the previous attack.

C FUTURE WORK

Attacking deep agent is an important first step toward defending attacks. We plan to explore two
ideas for defending in the future: (1) train RL with adversarial example, (2) detect adversarial ex-
ample first and then try to mitigate the effect. We believe this paper opens the door for researches
on how to make deep agent less vulnerable to different tactics of adversarial attacks.

5

	Introduction
	Strategically-Timed Attack
	Enchanting Attack

	Experiment
	Experimental Setup
	Planning
	Future Work

