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ABSTRACT

The key idea of current deep learning methods for dense prediction is to apply a
model on a regular patch centered on each pixel to make pixel-wise predictions.
These methods are limited in the sense that the patches are determined by network
architecture instead of learned from data. In this work, we propose the dense trans-
former networks, which can learn the shapes and sizes of patches from data. The
dense transformer networks employ an encoder-decoder architecture, and a pair
of dense transformer modules are inserted into each of the encoder and decoder
paths. The novelty of this work is that we provide technical solutions for learn-
ing the shapes and sizes of patches from data and efficiently restoring the spatial
correspondence required for dense prediction. The proposed dense transformer
modules are differentiable, thus the entire network can be trained. We apply the
proposed networks on natural and biological image segmentation tasks and show
superior performance is achieved in comparison to baseline methods.

1 INTRODUCTION

In recent years, deep convolution neural networks (CNNs) have achieved promising performance
on many artificial intelligence tasks, including image recognition (LeCun et al., 1998; Krizhevsky
et al., 2012), object detection (Sermanet et al., 2014; Girshick et al., 2014), and segmentation (Fara-
bet et al., 2013; Pinheiro & Collobert, 2014; Pinheiro et al., 2016; Chen et al., 2015; Visin et al.,
2015). Among these tasks, dense prediction tasks take images as inputs and generate output maps
with similar or the same size as the inputs. For example, in image semantic segmentation, we need to
predict a label for each pixel on the input images (Long et al., 2015; Noh et al., 2015). Other exam-
ples include depth estimation (Laina et al., 2016; Eigen et al., 2014), image super-resolution (Dong
et al., 2016), and surface normal prediction (Eigen & Fergus, 2015). These tasks can be generally
considered as image-to-image translation problems in which inputs are images, and outputs are label
maps (Isola et al., 2016).

Given the success of deep learning methods on image-related applications, numerous recent attempts
have been made to solve dense prediction problems using CNNs. A central idea of these methods is
to extract a square patch centered on each pixel and apply CNNs on each of them to compute the label
of the center pixel. The efficiency of these approaches can be improved by using fully convolutional
or encoder-decoder networks. Specifically, fully convolutional networks (Long et al., 2015) replace
fully connected layers with convolutional layers, thereby allowing inputs of arbitrary size during
both training and test. In contrast, deconvolution networks (Noh et al., 2015) employ an encoder-
decoder architecture. The encoder path extracts high-level representations using convolutional and
pooling layers. The decoder path uses deconvolutional and up-pooling layers to recovering the
original spatial resolution. In order to transmit information directly from encoder to decoder, the
U-Net (Ronneberger et al., 2015) adds skip connections (He et al., 2016) between the corresponding
encoder and decoder layers. A common property of all these methods is that the label of any pixel
is determined by a regular (usually square) patch centered on that pixel. Although these methods
have achieved considerable practical success, there are limitations inherent in them. For example,
once the network architecture is determined, the patches used to predict the label of each pixel is
completely determined, and they are commonly of the same size for all pixels. In addition, the
patches are usually of a regular shape, e.g., squares.

In this work, we propose the dense transformer networks to address these limitations. Our method
follows the encoder-decoder architecture in which the encoder converts input images into high-level
representations, and the decoder tries to make pixel-wise predictions by recovering the original
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spatial resolution. Under this framework, the label of each pixel is also determined by a local
patch on the input. Our method allows the size and shape of every patch to be adaptive and data-
dependent. In order to achieve this goal, we propose to insert a spatial transformer layer (Jaderberg
et al., 2015) in the encoder part of our network. We propose to use nonlinear transformations,
such as these based on thin-plate splines (Shi et al., 2016; Bookstein, 1989). The nonlinear spatial
transformer layer transforms the feature maps into a different space. Therefore, performing regular
convolution and pooling operations in this space corresponds to performing these operations on
irregular patches of different sizes in the original space. Since the nonlinear spatial transformations
are learned automatically from data, this corresponds to learning the size and shape of each patch to
be used as inputs for convolution and pooling operations.

There has been prior work on allowing spatial transformations or deformations in deep net-
works (Jaderberg et al., 2015; Dai et al., 2017), but they do not address the spatial correspondence
problem, which is critical in dense prediction tasks. The difficulty in applying spatial transforma-
tions to dense prediction tasks lies in that the spatial correspondence between input images and
output label maps needs to be preserved. A key innovation of this work is that we provide a new
technical solution that not only allows data-dependent learning of patches but also enables the preser-
vation of spatial correspondence. Specifically, although the patches used to predict pixel labels could
be of different sizes and shapes, we expect the patches to be in the spatial vicinity of pixels whose
labels are to be predicted. By applying the nonlinear spatial transformer layers in the encoder path
as described above, the spatial locations of units on the intermediate feature maps after the spatial
transformation layer may not be preserved. Thus a reverse transformation is required to restore the
spatial correspondence.

In order to restore the spatial correspondence between inputs and outputs, we propose to add a
corresponding decoder layer. A technical challenge in developing the decoder layer is that we need
to map values of units arranged on input regular grid to another set of units arranged on output grid,
while the nonlinear transformation could map input units to arbitrary locations on the output map.
We develop a interpolation method to address this challenge. Altogether, our work results in the
dense transformer networks, which allow the prediction of each pixel to adaptively choose the input
patch in a data-dependent manner. The dense transformer networks can be trained end-to-end, and
gradients can be back-propagated through both the encoder and decoder layers. Experimental results
on natural and biological images demonstrate the effectiveness of the proposed dense transformer
networks.

2 SPATIAL TRANSFORMER NETWORKS BASED ON THIN-PLATE SPLINE

Spatial transformer networks (Jaderberg et al., 2015) are deep models containing spatial transformer
layers. These layers explicitly compute a spatial transformation of the input feature maps. They can
be inserted into convolutional neural networks to perform explicit spatial transformations. The spa-
tial transformer layers consist of three components; namely, the localization network, grid generator
and sampler.

The localization network takes a set of feature maps as input and generates parameters to control
the transformation. If there are multiple feature maps, the same transformation is applied to all of
them. The grid generator constructs transformation mapping between input and output grids based
on parameters computed from the localization network. The sampler computes output feature maps
based on input feature maps and the output of grid generator. The spatial transformer layers are
generic and different types of transformations, e.g., affine transformation, projective transformation,
and thin-plate spline (TPS), can be used. Our proposed work is based on the TPS transformation,
and it is not described in detail in the original paper (Jaderberg et al., 2015). Thus we provide more
details below.

2.1 LOCALIZATION NETWORK

When there are multiple feature maps, the same transformation is applied to all of them. Thus, we
assume there is only one input feature map below. The TPS transformation is determined by 2K
fiducial points among which K points lie on the input feature map and the other K points lie on
the output feature map. On the output feature map, the K fiducial points, whose coordinates are
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denoted as F̃ = [f̃1, f̃2, · · · , f̃K ] ∈ R2×K , are evenly distributed on a fixed regular grid, where
f̃i = [x̃i, ỹi]

T denotes the coordinates of the ith point. The localization network is used to learn
the K fiducial points F = [f1, f2, · · · , fK ] ∈ R2×K on the input feature map. Specifically, the
localization network, denoted as floc(·), takes the input feature maps U ∈ RH×W×C as input, where
H , W and C are the height, width and number of channels of input feature maps, and generates the
normalized coordinates F as the output as F = floc(U).

A cascade of convolutional, pooling and fully-connected layers is used to implement floc(·). The
output of the final fully-connected layer is the coordinates F on the input feature map. Therefore,
the number of output units of the localization network is 2K. In order to ensure that the outputs are
normalized between −1 and 1, the activation function tanh(·) is used in the fully-connected layer.
Since the localization network is differentiable, the K fiducial points can be learned from data using
error back-propagation.

2.2 GRID GENERATOR

For each unit lying on a regular grid on the output feature map, the grid generator computes the
coordinate of the corresponding unit on the input feature map. This correspondence is determined
by the coordinates of the fiducial points F and F̃ . Given the evenly distributed K points F̃ =
[f̃1, f̃2, · · · , f̃K ] on the output feature map and the K fiducial points F = [f1, f2, · · · , fK ] generated
by the localization network, the transformation matrix T in TPS can be expressed as follows:

T =

(
∆−1

F̃
×
[

FT

03×2

])T

∈ R2×(K+3), (1)

where ∆F̃ ∈ R(K+3)×(K+3) is a matrix determined only by F̃ as

∆F̃ =

 1K×1 F̃T R
01×1 01×2 11×K

02×1 02×2 F̃

 ∈ R(K+3)×(K+3), (2)

where R ∈ RK×K , and its elements are defined as ri,j = d2i,j ln d2i,j , and di,j denotes the Euclidean
distance between f̃i and f̃j .

Through the mapping, each unit (x̃i, ỹi) on the output feature map corresponds to unit (xi, yi) on
the input feature map. To achieve this mapping, we represent the units on the regular output grid
by {p̃i}H̃×W̃

i=1 , where p̃i = [x̃i, ỹi]
T is the (x, y)-coordinates of the ith unit on output grid, and H̃

and W̃ are the height and width of output feature maps. Note that the fiducial points {f̃i}Ki=1 are a
subset of the points {p̃i}H̃×W̃

i=1 , which are the set of all points on the regular output grid.

To apply the transformation, each point p̃i is first extended from R2 space to RK+3 space as q̃i =
[1, x̃i, ỹi, si,1, si,2, · · · , si,K ]T ∈ RK+3, where si,j = e2i,j ln e2i,j , and ei,j is the Euclidean distance
between p̃i and f̃j . Then the transformation can be expressed as

pi = T q̃i, (3)
where T is defined in Eq. (1). By this transformation, each coordinate (x̃i, ỹi) on the output feature
map corresponds to a coordinate (xi, yi) on the input feature map. Note that the transformation T is
defined so that the points F̃ map to points F .

2.3 SAMPLER

The sampler generates output feature maps based on input feature maps and the outputs of grid
generator. Each unit p̃i on the output feature map corresponds to a unit pi on the input feature map
as computed by Eq. (3). However, the coordinates pi = (xi, yi)

T computed by Eq. (3) may not lie
exactly on the input regular grid. In these cases, the output values need to be interpolated from input
values lying on regular grid. For example, a bilinear sampling method can be used to achieve this.
Specifically, given an input feature map U ∈ RH×W , the output feature map V ∈ RH̃×W̃ can be
obtained as

Vi=

H∑
n=1

W∑
m=1

Unm max(0, 1− |xi−m|) max(0, 1− |yi− n|) (4)
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Figure 1: The proposed dense transformer networks. A pair of dense transformer modules are
inserted into each of the encoder and decoder paths. In the spatial transformer module, values at
points A, B, C, and D are given from the previous layer, and we need to estimate value for point P .
In contrast, in the decoder layer, value at point P is given from the previous layer, and we need to
estimate values for points A, B, C, and D.

for i = 1, 2, · · · , H̃×W̃ , where Vi is the value of pixel i, Unm is the value at (n,m) on the input fea-
ture map, pi = (xi, yi)

T , and pi is computed from Eq. (3). By using the transformations, the spatial
transformer networks have been shown to be invariant to some transformations on the inputs. Other
recent studies have also attempted to make CNNs to be invariant to various transformations (Jia
et al., 2016; Henriques & Vedaldi, 2016; Cohen & Welling, 2016; Dieleman et al., 2016).

3 DENSE TRANSFORMER NETWORKS

The central idea of CNN-based method for dense prediction is to extract a regular patch centered on
each pixel and apply CNNs to compute the label of that pixel. A common property of these methods
is that the label of each pixel is determined by a regular (typically square) patch centered on that
pixel. Although these methods have been shown to be effective on dense prediction problems,
they lack the ability to learn the sizes and shapes of patches in a data-dependent manner. For a
given network, the size of patches used to predict the labels of each center pixel is determined
by the network architecture. Although multi-scale networks have been proposed to allow patches
of different sizes to be combined (Farabet et al., 2013), the patch sizes are again determined by
network architectures. In addition, the shapes of patches used in CNNs are invariably regular, such
as squares. Ideally, the shapes of patches may depend on local image statistics around that pixel and
thus should be learned from data. In this work, we propose the dense transformer networks to enable
the learning of patch size and shape for each pixel.

3.1 AN ENCODER-DECODER ARCHITECTURE

In order to address the above limitations, we propose to develop a dense transformer network model.
Our model employs an encoder-decoder architecture in which the encoder path extracts high-level
representations using convolutional and pooling layers and the decoder path uses deconvolution and
un-pooling to recover the original spatial resolution (Noh et al., 2015; Ronneberger et al., 2015;
Badrinarayanan et al., 2015; Newell et al., 2016). To enable the learning of size and shape of each
patch automatically from data, we propose to insert a spatial transformer module in the encoder path
in our network. As has been discussed above, the spatial transformer module transforms the feature
maps into a different space using nonlinear transformations. Applying convolution and pooling
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operations on regular patches in the transformed space is equivalent to operating on irregular patches
of different sizes in the original space. Since the spatial transformer module is differentiable, its
parameters can be learned with error back-propagation algorithms. This is equivalent to learning the
size and shape of each patch from data.

Although the patches used to predict pixel labels could be of different sizes and shapes, we expect the
patches to include the pixel in question at least. That is, the patches should be in the spatial vicinity
of pixels whose labels are to be predicted. By using the nonlinear spatial transformer layer in encoder
path, the spatial locations of units on the intermediate feature maps could have been changed. That
is, due to this nonlinear spatial transformation, the spatial correspondence between input images and
output label maps is not retained in the feature maps after the spatial transformer layer. In order to
restore this spatial correspondence, we propose to add a corresponding decoder layer, known as the
dense transformer decoder layer. This decoder layer transforms the intermediate feature maps back
to the original input space, thereby re-establishing the input-output spatial correspondence.

The spatial transformer module can be inserted after any layer in the encoder path while the dense
transform decoder module should be inserted into the corresponding location in decoder path. In
our framework, the spatial transformer module is required to not only output the transformed fea-
ture maps, but also the transformation itself that captures the spatial correspondence between input
and output feature maps. This information will be used to restore the spatial correspondence in the
decoder module. Note that in the spatial transformer encoder module, the transformation is com-
puted in the backward direction, i.e., from output to input feature maps (Figure 1). In contrast, the
dense transformer decoder module uses a forward direction instead; that is, a mapping from input
to output feature maps. This encoder-decoder pair can be implemented efficiently by sharing the
transformation parameters in these two modules.

A technical challenge in developing the dense transformer decoder layer is that we need to map
values of units arranged on input regular grid to another set of units arranged on regular output
grid, while the decoder could map to units at arbitrary locations on the output map. That is, while
we need to compute the values of units lying on regular output grid from values of units lying on
regular input grid, the mapping itself could map an input unit to an arbitrary location on the output
feature map, i.e., not necessarily to a unit lying exactly on the output grid. To address this challenge,
we develop a sampler method for performing interpolation. We show that the proposed samplers
are differentiable, thus gradients can be propagated through these modules. This makes the entire
dense transformer networks fully trainable. Formally, assume that the encoder and decoder layers
are inserted after the i-th and j-th layers, respectively, then we have the following relationships:

U i+1(p) = Sampling{U i(Tp)}, U j+1(Tp) = U j(p), U j+1(p) = Sampling{U j+1(Tp)}, (5)

where U i is the feature map of the i-th layer, p is the coordinate of a point, T is the transforma-
tion defined in Eq. (1), which maps from the coordinates of the (i + 1)-th layer to the i-th layer,
Sampling(·) denotes the sampler function.

From a geometric perspective, a value associated with an estimated point in bilinear interpolation
in Eq. (4) can be interpreted as a linear combination of values at four neighboring grid points. The
weights for linear combination are areas of rectangles determined by the estimated points and four
neighboring grid points. For example, in Figure 1, when a point is mapped to P on input grid,
the contributions of points A, B, C, and D to the estimated point P is determined by the areas of
the rectangles S1, S2, S3, and S4. However, the interpolation problem needs to be solved in the
dense transformer decoder layer is different with the one in the spatial transformer encoder layer, as
illustrated in Figure 1. Specifically, in the encoder layer, the points A, B, C, and D are associated
with values computed from the previous layer, and the interpolation problem needs to compute a
value for P to be propagated to the next layer. In contrast, in the decoder layer, the point P is
associated with a value computed from the previous layer, and the interpolation problem needs to
compute values for A, B, C, and D. Due to the different natures of the interpolation problems need
to be solved in the encoder and decoder modules, we propose a new sampler that can efficiently
interpolate over decimal points in the following section.

3.2 DECODER SAMPLER

In the decoder sampler, we need to estimate values of regular grid points based on those from
arbitrary decimal points, i.e., those that do not lie on the regular grid. For example, in Figure 1, the
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Figure 2: Sample segmentation results on the PASCAL 2012 segmentation data set. The first and
second rows are the original images and the corresponding ground truth, respectively. The third and
fourth rows are the segmentation results of U-Net and DTN, respectively.

value at point P is given from the previous layer. After the TPS transformation in Eq. (3), it may
be mapped to an arbitrary point. Therefore, the values of grid points A, B, C, and D need to be
computed based on values from a set of arbitrary points. If we compute the values from surrounding
points as in the encoder layer, we might have to deal with a complex interpolation problem over
irregular quadrilaterals. Those complex interpolation methods may yield more accurate results, but
we prefer a simpler and more efficient method in this work. Specifically, we propose a new sampling
method, which distributes the value of P to the points A, B, C, and D in an intuitive manner.
Geometrically, the weights associated with points A, B, C, and D are the area of the rectangles S1,
S2, S3, and S4, respectively (Figure 1). In particular, given an input feature map V ∈ RH̃×W̃ , the
output feature map U ∈ RH×W can be obtained as

Snm =

H̃×W̃∑
i=1

max(0, 1− |xi −m|) max(0, 1− |yi − n|), (6)

Unm =
1

Snm

H̃×W̃∑
i=1

Vi max(0, 1− |xi −m|) max(0, 1− |yi − n|), (7)

where Vi is the value of pixel i, pi = (xi, yi)
T is transformed by the shared transformation T in Eq.

(1), Unm is the value at the (n,m)-th location on the output feature map, Snm is a normalization
term that is used to eliminate the effect that different grid points may receive values from different
numbers of arbitrary points, and n = 1, 2, · · · , N, m = 1, 2, · · · ,M .

In order to allow the backpropagation of errors, we define the gradient with respect to Unm as dUnm.
Then the gradient with respect to Vnm and xi can be derived as follows:

dVi =

H∑
n=1

W∑
m=1

1

Snm
dUnm max(0, 1− |xi −m|) max(0, 1− |yi − n|), (8)

dSnm =
−dUnm

S2
nm

H̃×W̃∑
i=1

Vi max(0, 1− |xi −m|) max(0, 1− |yi − n|), (9)

dxi =

H∑
n=1

W∑
m=1

{
dUnm

Snm
Vi + dSnm

}
max(0, 1− |yi − n|)×

{
0 if |m− xi| ≥ 1
1 if m ≥ xi

−1 if m ≤ xi

. (10)

A similar gradient can be derived for dyi. This provides us with a differentiable sampling mecha-
nism, which enables the gradients flow back to both the input feature map and the sampling layers.
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Table 1: Comparison of segmentation performance between the U-Net and the proposed DTN on
the PASCAL 2012 segmentation data set. Three different performance measures are used here. An
arrow is attached to each measure so that ↑ denotes higher values indicate better performance, and ↓
denotes lower values indicate better performance.

DATA SET MODEL LOSS↓ ACCURACY↑ MEAN-IOU↑

PASCAL U-NET 0.9396 0.8117 0.4145
DTN 0.7909 0.8367 0.5297

4 EXPERIMENTAL EVALUATION

We evaluate the proposed methods on two image segmentation tasks. The U-Net (Ronneberger et al.,
2015) is adopted as our base model in both tasks, as it has achieved state-of-the-art performance on
image segmentation tasks. Specifically, U-Net adds residual connections between the encoder path
and decoder path to incorporate both low-level and high-level features. Other methods like Seg-
Net (Badrinarayanan et al., 2015), deconvolutional networks (Zeiler et al., 2010) and FCN (Long
et al., 2015) mainly differ from U-Net in the up-sampling method and do not use residual con-
nections. Experiments in prior work show that residual connections are important while different
up-sampling methods lead to similar results. The network consists of 5 layers in the encoder path
and another corresponding 5 layers in the decoder path. We use 3×3 kernels and one pixel padding
to retain the size of feature maps at each level.

In order to efficiently implement the transformations, we insert the spatial encoder layer and dense
transformer decoder layer into corresponding positions at the same level. Specifically, the layers
are applied to the 4th layer, and their performance is compared to the basic U-Net model without
spatial transformations. As for the transformation layers, we use 16 fiducial points that are evenly
distributed on the output feature maps. In the dense transformer decoder layer, if there are pixels that
are not selected on the output feature map, we apply an interpolation strategy over its neighboring
pixels on previous feature maps to produce smooth results.

4.1 NATURAL IMAGE SEMANTIC SEGMENTATION

We use the PASCAL 2012 segmentation data set (Everingham et al., 2010) to evaluate the proposed
methods on natural image semantic segmentation task. In this task, we predict one label out of a
total of 21 classes for each pixel. To avoid the inconvenience of different sizes of images, we resize
all the images to 256×256. Multiple performance metrics, including loss, accuracy, and mean-IOU,
are used to measure the segmentation performance, and the results are reported in Table 1. We can
observe that the proposed DTN model achieves higher performance than the baseline U-Net model.
Especially, it improves the mean-IOU from 0.4145 to 0.5297. Some example results along with the
raw images and ground truth label maps are given in Figure 2. These results demonstrate that the
proposed DTN model can boost the segmentation performance dramatically.

4.2 BRAIN ELECTRON MICROSCOPY IMAGE SEGMENTATION

We evaluate the proposed methods on brain electron microscopy (EM) image segmentation
task (Lee et al., 2015; Ciresan et al., 2012), in which the ultimate goal is to reconstruct neu-
rons at the micro-scale level. A critical step in neuron reconstruction is to segment the EM
images. We use data set from the 3D Segmentation of Neurites in EM Images (SNEMI3D,
http://brainiac2.mit.edu/SNEMI3D/). The SNEMI3D data set consists of 100 1024×1024 EM im-
age slices. Since we perform 2D transformations in this work, each image slice is segmented sepa-
rately in our experiments. The task is to predict each pixel as either a boundary (denoted as 1) or a
non-boundary pixel (denoted as 0).

Our model can process images of arbitrary size. However, training on whole images may incur
excessive memory requirement. In order to accelerate training, we randomly pick 224×224 patches
from the original images and use it to train the networks. The experimental results in terms of ROC
curves are provided in Figure 3. We can observe that the proposed DTN model achieves higher
performance than the baseline U-Net model, improving AUC from 0.8676 to 0.8953. These results
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Figure 3: Comparison of the ROC curves of the U-Net and the proposed DTN model on the
SNEMI3D data set.

Raw image Ground truth U-Net output DTN output

Figure 4: Example results generated by the U-Net and the proposed DTN models for the SNEMI3D
data set.

demonstrate that the proposed DTN model improves upon the baseline U-Net model, and the use of
the dense transformer encoder and decoder modules in the U-Net architecture results in improved
performance. Some example results along with the raw images and ground truth label maps are
given in Figure 4.

4.3 TIMING COMPARISON

Table 2 shows the comparison of training and prediction time between the U-Net model and the
proposed DTN model on the two data sets. We can see that adding DTN layers leads to only slight
increase in training and prediction time. Since the PASCAL data set is more complex than the SNE-
MEI3D data set, we use more channels when building the network of natural image segmentation
task. That causes the increase of training and prediction time on the PASCAL data set as compared
to SNEMEI3D.

5 CONCLUSION

In this work, we propose the dense transformer networks to enable the automatic learning of patch
sizes and shapes in dense prediction tasks. This is achieved by transforming the intermediate feature
maps to a different space using nonlinear transformations. A unique challenge in dense prediction
tasks is that, the spatial correspondence between inputs and outputs should be preserved in order to
make pixel-wise predictions. To this end, we develop the dense transformer decoder layer to restore
the spatial correspondence. The proposed dense transformer modules are differentiable. Thus the
entire network can be trained from end to end. Experimental results show that adding the spatial
transformer and decoder layers to existing models leads to improved performance. To the best of
our knowledge, our work represents the first attempt to enable the learning of patch size and shape
in dense prediction. The current study only adds one encoder layer and one decoder layer in the
baseline models. We will explore the possibility of adding multiple encoder and decoder layers at
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Table 2: Training and prediction time on the two data sets using a Tesla K40 GPU. We compare
the training time of 10,000 iterations and prediction time of 2019 (PASCAL) and 40 (SNEMI3D)
images for the base U-Net model and the DTN.

DATA SET MODEL TRAINING TIME PREDICTION TIME

PASCAL U-NET 378M57S 14M06S
DTN 402M07S 15M50S

SNEMI3D U-NET 14M18S 3M31S
DTN 15M41S 4M02S

different locations of the baseline model. In this work, we develop a simple and efficient decoder
sampler for interpolation. A more complex method based on irregular quadrilaterals might be more
accurate and will be explored in the future.
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