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Abstract

Indiscriminate data poisoning attacks aim to de-

crease a model’s test accuracy by injecting a

small amount of corrupted training data. Despite

significant interest, existing attacks remain rela-

tively ineffective against modern machine learn-

ing (ML) architectures. In this work, we intro-

duce the notion of model poisoning reachability

as a technical tool to explore the intrinsic lim-

its of data poisoning attacks towards target pa-

rameters (i.e., model-targeted attacks). We de-

rive an easily computable threshold to establish

and quantify a surprising phase transition phe-

nomenon among popular ML models: data poi-

soning attacks can achieve certain target param-

eters only when the poisoning ratio exceeds our

threshold. Building on existing parameter corrup-

tion attacks and refining the Gradient Canceling

attack, we perform extensive experiments to con-

firm our theoretical findings, test the predictabil-

ity of our transition threshold, and significantly

improve existing indiscriminate data poisoning

baselines over a range of datasets and models.

Our work highlights the critical role played by

the poisoning ratio, and sheds new insights on

existing empirical results, attacks and mitigation

strategies in data poisoning. Our code is available

at https://github.com/watml/plim.

1. Introduction

Modern machine learning (ML) models require a large

amount of training data to perform well on various tasks.

Such hunger for data not only increases the training cost

but also introduces potential risks during the data collection

process (Kumar et al. 2020; Nelson et al. 2008; Szegedy et

al. 2014). Data poisoning, where an adversary can actively

inject corrupted data into dataset aggregators or passively

Authors GK and YY are listed in alphabetical order. 1School of
Computer Science, University of Waterloo, Canada 2Vector Insti-
tute. Correspondence to: Yiwei Lu <yiwei.lu@uwaterloo.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

place poisoned samples on the web for scraping (Gao et al.

2020; Lyu et al. 2020; Shejwalkar et al. 2022; Wakefield

2016), has caused serious concerns in the ML community

and inspired a number of interesting works to expose and

address this threat (Goldblum et al. 2023).

By now many data poisoning algorithms have been pro-

posed; see Section 2 for some pointers. However, in the

setting of indiscriminate data poisoning, where an attacker

aims to decrease the overall test accuracy by adding a small

fraction of corrupted data, the effectiveness of existing at-

tacks remains underwhelming. For example, the recent

work of Lu et al. (2022) achieved 1.11% accuracy drop for a

three-layer CNN on MNIST and a 5.54% accuracy drop for

ResNet-18 on CIFAR-10, after adding εd = 3% poisoned

data and retraining. Part of the difficulty lies in the compu-

tational challenge: the attacker has to anticipate what would

happen after retraining the model on the mixed data (clean

in-house data plus poisoned data). Other empirical works

seem to suggest there might also be some intrinsic barrier

to data poisoning; see Section 2 for a detailed discussion.

In this work we focus on model-targeted attacks (e.g., Koh

et al. 2022; Suya et al. 2021) and introduce the notion of

model poisoning reachability, i.e., given (arbitrary) clean

training data, what model, represented by its parameter w,

can be achieved through data poisoning, and what is the min-

imum (relative) percentage εd of poisoned data that one has

to introduce, with what algorithm? While model poisoning

reachability intuitively depends on the clean training data,

the loss and the target model we aim to achieve, we show

that under mild conditions, it can be largely characterized by

a simple threshold τ that is readily computable and involves

no training at all. In particular, when the poisoning percent-

age εd falls under τ , no algorithm could achieve the target

model by retraining on a mixed dataset (however crafted).

On the flip side, if εd > τ , we show that Gradient Canceling

(GC), a refinement of the KKT attack of Koh et al. (2022),

can achieve a given target model surprisingly efficiently. We

further demonstrate that most ML classifiers exhibit a phase

transition: they become poisoning reachable only when εd
crosses the threshold τ . In contrast, regression methods can

be poisoning reachable even when εd approaches 0. Thus,

our results expose the critical role played by the poisoning

percentage εd, and clarify the somewhat disparate empirical

results in the literature (with varying εd).
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Empirically, we apply the GC attack and verify the model

poisoning reachability property across a wide range of ML

models, from logistic regression to residual networks on

various datasets. Moreover, our work can also be applied as

a distillation device: given any target parameter (namely the

teacher, however crafted or impractical) that is effective for

certain purpose, we can use our threshold and GC attack to

pinpoint the (minimum) amount of poisoning data that needs

to be constructed in order to simulate the teacher through

retraining the model (student) over the combination of clean

and poisoned data. Indeed, using the target parameters

generated by parameter corruption (Sun et al. 2020) as a

teacher, GC is able to construct more practical and effective

(student) data poisoning attacks than baseline methods.

We summarize our main contributions as follows:

• We formalize the notion of model poisoning reachability

as a technical tool to study model-targeted data poisoning

and we derive an easily computable threshold to charac-

terize it.

• We quantify the critical role played by the poisoning ra-

tio εd and we establish a surprising phase transition for

ML classifiers, explaining seemingly disparate empirical

results obtained with varying εd.

• We perform the Gradient Canceling attack on a number of

models and datasets to extensively test our results. With

carefully chosen target parameters, we are able to improve

existing indiscriminate data poisoning baselines.

2. Background

Data poisoning, an emerging concern on modern ML sys-

tems, refers to the threat of (often passively) crafting ªpoi-

sonedº training data so that systems retrained on it (along

with possibly clean in-house data) are skewed towards cer-

tain behaviour. For example, indiscriminate data poisoning

(e.g., Biggio et al. 2012; Koh and Liang 2017; Koh et al.

2022; Lu et al. 2022; Muñoz-GonzÂalez et al. 2017) aims

to decrease the overall test accuracy while targeted data

poisoning (e.g., Aghakhani et al. 2021; Guo and Liu 2020;

Shafahi et al. 2018; Zhu et al. 2019) only affects certain

classes. Backdoor attacks (e.g., Chen et al. 2017; Gu et al.

2017; Saha et al. 2020; Tran et al. 2018) that aim to trigger

a particular pattern, and unlearnable examples (e.g., Fowl

et al. 2021a,b; Fu et al. 2021; Huang et al. 2021; Liu and

Chawla 2010; Sandoval-Segura et al. 2022; Yu et al. 2022)

that aim to protect user data.

While many algorithms have been proposed for data poi-

soning, their effectiveness remains largely underwhelming

against neural networks, especially when εd, the relative

proportion of poisoned data, is small. For example, Figure

4 of Lu et al. (2022) and Table 2 of Huang et al. (2021)

revealed that SOTA attacks can only decrease the test ac-

Table 1: The attack accuracy/accuracy drop (%) on MNIST.

Model
Clean TGDA GradPC

Acc. Accuracy/Drop εw = 0.5 εw = 1

LR 92.35 89.56 / 2.79 (εw = 2.45) 69.80 / 22.55 21.48 / 70.87
NN 98.04 96.54 / 1.50 (εw = 0.55) 76.51 / 20.03 31.14 / 66.90

CNN 99.13 98.02 / 1.11 (εw = 0.74) 73.24 / 24.78 12.98 / 86.15

curacy noticeably when εd is sufficiently (and sometimes

exceedingly, e.g., εd > 100%) large. These attacks, re-

lying on sophisticated optimization tricks, are also rather

expensive to run. On the other hand, any data poisoning

attack amounts to an indirect way of rewiring an ML model

(i.e., any change must be induced by retraining the model

over clean and poisoned data). Direct approaches, such as

the gradient-based parameter corruption (GradPC) attack

of Sun et al. (2020) and Zhang et al. (2021), seek to over-

write a target model directly (i.e., without constructing any

poisoned data or retraining), under a perturbation constraint

specified by εw, i.e., the relative change of the model pa-

rameter should be less than εw. While the applicability of

direct approaches may seem limited, they are suitable for

exploring the limits of more realistic data poisoning attacks.

In Table 1 we compare the performance of the direct ap-

proach GradPC (Sun et al. 2020) and the indirect approach

TGDA (Lu et al. 2022). The latter adds εd = 3% poisoned

data while both attacks yield comparable perturbations of

the (clean) model, as measured by εw. The difference is

significant, and begs the obvious question: what caused this

difference? Is it because existing data poisoning attacks

are not sufficiently optimized yet, or is there some intrinsic

barrier to produce certain target parameters through data

poisoning? To what extent would increasing εd help, and

how do we know without trying every εd? These questions

will be formally and experimentally explored in the sequel,

with the ultimate goal (if possible) to reduce the gap be-

tween data poisoning and parameter corruption attacks with

comparable εw, as highlighted in Table 1.

Connection with Learning Theory: There has been signif-

icant work on training-time robustness in the learning theory

literature, primarily focused on poisoning worst-case distri-

butions. Two models of robust PAC learning (FrÂenay and

Verleysen 2014; Natarajan et al. 2013), slightly rephrased

for the sake of comparison, include the malicious noise

model, where the adversary adds points (e.g., Cesa-Bianchi

et al. 1999; Kearns and Li 1988), and the nasty noise model,

where the adversary may both add and remove points (e.g.,

Balcan et al. 2022; Bshouty et al. 2002). Many of these the-

oretical results show strong computational barriers against

robust learning for even the most basic problems. Although

our setting is similar to the malicious noise model (and we

touch a bit on the nasty noise model in Appendix C.10),

there are three major differences with the majority of the

theory literature: (1) our attacks address distributions that

arise in practice, which differ from worst-case distributions;
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(2) while other attacks flip labels, we consider ªclean labelº

attacks which are not visibly mislabeled; (3) we focus on

model-targeted attacks whose goal is to induce certain tar-

get parameters while the above-mentioned references focus

directly on decreasing accuracy on the test sample.

3. Theoretical Results

In this section we formalize the notion of model poisoning

reachability as a technical tool for studying model-targeted

data poisoning. We further derive an easily computable

threshold τ and reveal that model-targeted data poisoning

attacks are effective only when εd, the (relative) percentage

of poisoning data, crosses τ .

Notation and Preliminaries. Let ℓ(z,w) be our loss that

measures the fitness of our model w on data z ∈ Z, e.g., z =
(x, y) for supervised learning and z = x for unsupervised

learning. Let P = P(Z) denote the set of all distributions

on Z, and we abstract the training data as an (empirical)

distribution1 µ ∈ P . For any given model w and training

distribution µ, is it possible to construct a poisoning set,

denoted by another (empirical) distribution ν, such that w

minimizes ℓ over the mixed distribution χ = (1−λ)µ+λν,

where λ = εd
1+εd

∈ [0, 1] is the proportion of poisoning

data. To account for possible nonconvexity of the loss ℓ, we

relax the optimality of a model w to simply have vanishing

(sub)gradient. More formally, let

g(z) = g(z;w) = ∇wℓ(z;w) (1)

be the gradient vector with respect to a fixed model w eval-

uated at the data z. For practical reasons (e.g., to evade

possible defenses or to account for the technical capabilities

of an attacker) we also restrict the poisoning distribution ν
into a convex subset Γ ⊆ P of admissible distributions. For

instance, we may consider

Γ = Γµ,δ := {γ : ∥γ − µ∥ ≤ δ}, (2)

where ∥ · ∥ denotes (say) the Wasserstein distance. By

definition we always have µ ∈ Γ. For each ν ∈ Γ, define

g(ν) = g(ν;w) := Ez∼νg(z;w), (3)

i.e., the average gradient w.r.t. the distribution ν. Clearly,

G = G(Γ) := {g(ν) : ν ∈ Γ} (4)

is a subset of the closed convex hull of all gradient vectors.

In fact, equality holds when Γ = P (e.g., δ =∞).

3.1. Model Poisoning Reachability

We can now state our fundamental problem of interest:

1For convenience in this work we do not distinguish the (clean)
training set from the training distribution, i.e., µ can be empirical.

Definition 1 (Model Poisoning Reachability). We say a

target parameter w is (ℓ, µ,Γ, λ)-poisoning reachable if

there exists some poisoning distribution ν ∈ Γ such that

g(χ;w) = (1− λ)g(µ;w) + λg(ν;w) = 0, (5)

i.e., the parameter w has vanishing gradient (w.r.t. loss ℓ)
over the mixed distribution χ = (1− λ)µ+ λν.

When the loss ℓ, training distribution µ, and admissible

poisoning distributions Γ are evident, we will simply say

the parameter w is λ-poisoning reachable, or poisoning

reachable if it is λ-poisoning reachable for some λ ∈ [0, 1].

We make three further remarks regarding Definition 1: (a)

If we are interested in more quantitative results about data

poisoning, for example, is it possible to craft a poisoning

set such that retraining on the mixed distribution would

decrease test accuracy by a large margin, we need only

specify a set of target models w ∈ W that all decrease the

test accuracy as required2, and we say data poisoning is

successful if any w ∈ W is (λ-) poisoning reachable. (b)

Definition 1 leaves out the computational aspects of data

poisoning, i.e., how efficiently we can find such a poisoning

distribution ν (whenever it exists). This will be studied in

Section 4, using a gradient-based algorithm inspired directly

by our definition. (c) We could also add other requirements,

such as curvature or stability, to Definition 1.

Given the above formalization, the following characteriza-

tion is immediate:

Theorem 1. A target parameter w is λ-poisoning reachable

iff 0 ∈ Gλ = Gλ(g(µ)) := {(1− λ)g(µ) + λg : g ∈ G}.

Since G (see equations (1)-(4)) is clearly convex, the subsets

Gλ are all convex and increasing with respect to λ, i.e.,

g(µ) = G
0 ⊆ G

λ ↑⊆ G
1 = G.

Recall that λ = εd
1+εd

is the (absolute) proportion of the

poisoned set. Thus, we conclude intuitively that the larger

εd (equivalently λ) is, the easier it is to induce any target

model w on any training distribution µ. In particular, the

special case λ = 1 corresponds to the so-called ªunlearnable

examplesº (Fowl et al. 2021a,b; Fu et al. 2021; Huang et al.

2021; Liu and Chawla 2010; Sandoval-Segura et al. 2022;

Yu et al. 2022), where an attacker is allowed to change the

entire training set (i.e., empirical distribution µ).

Conversely, we can also conclude from Theorem 1 that if

0 ̸∈ G(Γ), then data poisoning, with any budget εd, will

not be successful in producing the target parameter w. If

0 ̸∈ G(P), then no training distribution can yield w. In

particular, data poisoning will not be successful in producing

w even if εw =∞.

2As pointed out by a reviewer, this may not be computationally
feasible if one is too ambitious about the set W .
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Let us give some examples to illustrate our results so far.

Example 1 (Least-square regression). Consider

ℓ(z;w) = 1
2 (y −w⊤x)2, where z = (x, y).

Clearly, we have

g(x, y) = (w⊤x− y)x = (xx⊤)w − yx,

and hence g(µ) = Σw −m, where Σ = Ex∼µxx
⊤ and

m = E(x,y)∼µyx. For simplicity let us assume Z = Rd×R

and Γ = P so that G = Rd (by considering product distri-

butions where x concentrates on a single point). Therefore,

we conclude from Theorem 1 that data poisoning with any

εd > 0 is possible for least-square regression. The same

conclusion holds even if we add regularization to w (which,

we recall, is fixed).

3.2. Scalar Output Linear Models

For linear models we can further simplify the iff condition

in Theorem 1. We begin with the following result:

Theorem 2. Suppose Γ = P contains all distributions,

ℓ((x, y);w) = l(w⊤x, y) for some univariate loss l, and

⟨w,g(µ)⟩ ≠ 0. Then, w is λ-poisoning reachable iff

λ > max
{

⟨w,g(µ)⟩
⟨w,g(µ)⟩−a ,

−⟨w,g(µ)⟩
b−⟨w,g(µ)⟩

}

, where (6)

a = inf
(x,y)∈Z

(w⊤x) · l′(w⊤x, y),

b = sup
(x,y)∈Z

(w⊤x) · l′(w⊤x, y),

with equality attained if the maximum is attained.

Theorem 2 follows from the more general Theorem 5 in Ap-

pendix A, where we further remove the restriction Γ = P .

The condition ⟨w,g(µ)⟩ ≠ 0 can be checked easily a pri-

ori; see Remark 1 (Appendix A) for discussions on when

it fails. Remark 2 (Appendix A) draws further connection

between our result and the breakdown point in robust statis-

tics. Compared to the more general Theorem 1, Theorem 2

exploits the linear structure to simplify the set G to basically

an interval and hence the condition (6) is much easier to

verify. Indeed, consider Example 1 again. It is clear that

l′(t, y) = t−y, whence a = −∞ and b =∞. Thus, we ver-

ify more easily that data poisoning succeeds on least-square

regression for any εd > 0.

The next example reveals a surprising phase transition in

terms of the poisoning proportion λ (or equivalently εd):

Example 2 (Logistic regression). Consider now

ℓ(z;w) = log(1 + exp(−w⊤x̃)),

where we have absorbed the binary label y into x̃ (e.g.,

x̃ ← yx). Clearly, we have g(x̃) = − 1
1+exp(w⊤x̃)

x̃. On

the direction w, for any distribution µ we have

−W ( 1e )=inf
t

−t
1+exp(t) ≤ ⟨w,g(µ)⟩ ≤ sup

t

−t
1+exp(t) ,

where the left-hand side is Lambert’s W function and the

right-hand side is clearly∞. Therefore, suppose X = Rd

and Γ = P , we have

G = {g : w⊤g ≥ −W (1/e) ≈ −0.28},

which is not the entire space! Consequently, if

λ < ⟨w,g(µ)⟩
⟨w,g(µ)⟩+W (1/e) ⇐⇒ εd < τ := max{ ⟨w,g(µ)⟩

W (1/e) , 0},

(7)

then any poisoning distribution ν (with any support) cannot

produce w (along with training distribution µ)!

By simply changing x̃ ← yx and then dropping y we im-

mediately obtain from Theorem 2 sufficient and necessary

conditions for the poisoning reachability of binary margin

classifiers. In particular, we record the following result:

Corollary 1 (Binary Margin Classifier). Consider linear

models with loss ℓ(x̃;w) = l(w⊤x̃).

Suppose Γ = P consist of all distributions on X̃ and

⟨w,g(µ)⟩ ≠ 0. Define

a := inf
t∈w⊤X̃

t · l′(t), b := sup
t∈w⊤X̃

t · l′(t).

Then, a target parameter w is λ-poisoning reachable iff

(6) holds (with equality attained if the maximum there is

attained).

The standard margin losses are decreasing, such as the lo-

gistic loss in Example 2, the exponential loss in Adaboost,

and the hinge loss in SVM. When X = Rd is unbounded,

typically b =∞ but a > −∞, leading to a common phase

transition phenomenon: data poisoning against these losses

succeeds in producing a target parameter w iff λ crosses

the threshold in (6). In particular, any target parameter w

such that ⟨w,g(µ)⟩ < 0 is always poisoning reachable for

any λ > 0. Interestingly, Koh et al. (2022, Proposition 3)

showed that if a model is poisoning reachable, then it (often)

can be poisoned to by a distribution ν supported on two

distinct points (which however does not imply diminishing

εd due to repetitions). Corollary 1 provides a definitive an-

swer on when a model is poisoning reachable and hence

complements the results of Koh et al. (2022).

We emphasize that with any further restrictions on the poi-

soning distribution (such that Γ ⊊ P), condition (6) remains

to be necessary: data poisoning is apparently even harder in

this case. For nonlinear models with a fixed feature map ϕ
(such as kernel methods), our results extend immediately,

after the obvious change-of-variable x← ϕ(x).
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Figure 1: Logistic regression on the 2d OR dataset that verifies the transitioning threshold τ in Corollary 1. Left: τ w.r.t.

target models w ∈ R2, which all achieve 0 accuracy; Middle: accuracy drop due to the gradient canceling attack in

Section 4. Indeed, poisoning successfully induces the target model w as long as εd ≥ τ ; Right: norm of gradient w.r.t.

model w over the mixed distribution χ, with εd the relative proportion of poisoned data. In general, the closer εd gets above

τ , the smaller the gradient norm, which is an indication of the target model being more achievable through data poisoning.

Figure 1 illustrates the transition threshold τ in (7) on the

simple OR dataset (where each of the four points is repeated

50 times with small Gaussian perturbation, see Appendix C

for details). Logistic regression (LR), trained on the clean

data, achieves perfect accuracy. In Figure 1 (left), each grid

point represents a target parameter w = (w1, w2), all of

which achieve 0 test accuracy (i.e., malicious models). The

heat map indicates the threshold τ for each w, which, as pre-

dicted by our theory, is the percentage of poisoning required

to achieve w through retraining. In Figure 1 (middle) we

run the gradient canceling attack (see Section 4) with vary-

ing percentage εd and verify that indeed we can reduce the

100% clean accuracy to 0% iff εd ≥ τ . In Figure 1 (right)

we plot the magnitude of the gradient of the target parameter

w over the mixed dataset (clean training data plus poisoned

data), as an approximate measure of how close w can be

achieved by retraining on the mixed dataset. Overall, the

larger εd is, the larger the accuracy drop is (not surprisingly)

and the smaller the gradient norm is, with a clear transition

once εd crosses τ (perhaps surprisingly).

3.3. Multiple Output Linear Models

Next, we extend our results to multiple outputs (classes):

Theorem 3 (Multiclass). Consider ℓ(x,y;W ) =
l(W⊤x,y) for some loss l. Then3,

G(x,y) := ∇W ℓ(x,y;W ) = x⊗∇l(W⊤x,y). (8)

Suppose W⊤G(µ) is non-degenerate and Γ = P contains

all distributions. Then, W is λ-poisoning reachable iff

0 ∈ (1− λ)W⊤G(µ) + λ{W⊤G(ν) : ν ∈ Γ}. (9)

Compared to Theorem 5, condition (9) is no longer univari-

ate but a square matrix of dimensions the same as y (the

output). Nevertheless, we may simply take the trace on both

3We use the notation a⊗ b := ab
⊤ for two column vectors.

sides to arrive at an easier albeit only necessary condition.

We illustrate the last point through a familiar example:

Example 3 (Cross-entropy). Let h = W⊤x. The cross-

entropy loss corresponds to

l(h,y) = −⟨h,y⟩+ log
∑

k
exphk,

where y is one-hot. Taking trace on (9) we obtain

0 = (1− λ)g(µ) + λg(ν), where

g(ν) = E(x,y)∼ν ⟨h,p− y⟩ ,

and p := softmax(h) = exp(h)/
∑

k exp(hk). In Ap-

pendix A we prove the tight bound −W ( c−1
e ) ≤ g(ν) ≤ ∞,

leading to the necessary condition for inducing W :

εd ≥ τ = τ(c) := max{⟨W,G(µ)⟩ /W ( c−1
e ), 0}, (10)

where c is the number of classes. When c = 2, we recover

the sufficient and necessary condition in (7).

We remark that all of our results continue to hold as nec-

essary (but may not be sufficient) conditions for neural

networks where the input x goes through a learned feature

transformation φ(x;u), parameterized by u:

Theorem 4 (Neural Networks). Consider ℓ(x,y;W,u) =
l(h,y) for some loss l, where h := W⊤φ(x;u). Then,

∇W ℓ(x,y;W,u) = φ(x;u)⊗∇hl(h,y) (11)

∇uℓ(x,y;W,u) = ∇uφ(x;u)W∇hl(h,y), (12)

and (W,u) is λ-poisoning reachable iff there exists ν ∈ Γ
such that

0 ∈ (1− λ)G(µ) + λG(ν), (13)

where G(ν) := E(x,y)∼ν (∇W ℓ,∇uℓ). In particular,

(W,u) is λ-poisoning reachable only if there exists some

ν ∈ Γ such that

0 ∈ (1− λ)G1(µ) + λG1(ν), (14)

where G1(ν) := E(x,y)∼νφ(x;u)⊗∇hl(h,y).
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4. Gradient Canceling Attack

In this section we discuss how to find a poisoning distribu-

tion ν ∈ Γ so that upon retraining on the mixed distribution

χ = (1− λ)µ+ λν, the target parameter w will be favored.

We recall that µ is the (clean) training distribution and λ is

the (absolute) poisoning proportion.

The algorithm we propose is very intuitive and directly

inspired by our Definition 1: we simply find a poisoning

distribution ν ∈ Γ so that

g(χ) = (1− λ)g(µ) + λg(ν) ≈ 0, (15)

where recall that λ = εd
1+εd

and g(ν) := Ez∼ν∇wℓ(z;w)
is the model gradient computed over a distribution ν. Thus,

we arrive at the following Gradient Canceling problem4:

min
ν∈Γ

1
2∥g(µ) + εdg(ν)∥

2
2, (16)

which is always convex (since g(ν) is linear in ν while Γ is

a convex subset of admissible distributions). In Appendix B

we discuss a measure optimization approach for solving

(16), while below we focus on a Lagrangian approach that

directly constructs a poisoning dataset and eliminates the

need of resampling from ν.

In more details, we constrain the poisoning distribution to

be uniform over nεd data points {zj}:

ν̂ =
1

nεd

nεd
∑

j=1

δzj
, (17)

where n is the size of the (clean) training set and δz de-

notes the point mass concentrated on z. We only optimize

the locations of the points zj but keep their mass uniform

throughout.

Thus, we arrive at the following problem:

min
ν̂∈Γ

1

2

∥

∥

∥
g(µ) + εd ·

1

nεd

nεd
∑

j=1

∇wℓ(zj ;w)
∥

∥

∥

2

2
, (18)

where we remind that g(µ) = Ez∼µ∇wℓ(z;w) as well

as the target parameter w are fixed during optimization.

For supervised tasks where z = (x,y), we may choose to

optimize both the feature x and label y, or simply optimize

the feature x only (as in our experiments).

We apply (projected) gradient descent to solve (18), where

the gradient with respect to the j-th poisoning data zj is:

∂

∂zj
=

1

n
∇z∇wℓ(zj ;w) · [g(µ) + εdg(ν̂)]. (19)

We note that using auto-differentiation, the above matrix

vector product can be computed very efficiently, costing

4Other merit functions than the ℓ2-norm here can also be used.

Algorithm 1: Gradient Canceling(GC) Attack

Input: training distribution µ,

step size η, poisoning fraction εd, and target parameter

w.

1 initialize poisoned dataset ν̂ in (17), e.g., randomly

subsample clean training data

2 calculate g(µ) = Ez∼µ∇wℓ(z;w)
3 for t = 1, 2, ... do

4 calculate g(ν̂)← 1
nεd

∑nεd
j=1∇wℓ(zj ;w)

5 calculate loss L = 1
2∥g(µ) + εdg(ν̂)∥

2
2

6 update poisoned data using (19): zj ← zj − η ∂L
∂zj

7 project to admissible set: ν̂ ← ProjΓ(ν̂)

8 return the final poisoned dataset ν̂

essentially as much as gradient calculation. The constraint

for ν̂ to lie in Γ can be handled by projection. For instance,

the constraint z ∈ Z (e.g. pixels must lie in Z = [0, 1]) can

be enforced by projecting the gradient update onto Z.

We summarize the Gradient Canceling(GC) attack in Al-

gorithm 1, and we emphasize that it can take any target

parameter w as ªteacherº and construct a poisoning dataset

such that retraining will arrive (approximately) at w. We

note that Gradient Canceling is a refinement of the KKT

attack of Koh et al. (2022): our refinement lies in the gen-

eralization to any loss ℓ, different optimization strategy,

exploring target parameters generated by the much stronger

GradPC attack (Sun et al. 2020), experimenting on a variety

of different models, and studying the effect of the poisoning

proportion. Other authors such as Suya et al. (2021) also

explored (rather costly) attacks based on a target parameter

in the online setting (that require retraining in each round),

whereas their lower bound on the amount of poisoned points

may not be easily computed even for logistic regression.

Comparison with Gradient Matching. Geiping et al.

(2021) proposed a gradient matching algorithm for crafting

targeted poisoning attacks, which can be easily adapted to

our setting. Suppose that a defender aims at minimizing a

loss ℓ to achieve model w on (clean) training distribution

µ. Let

ℓ

be a reversed version of ℓ. For example, if l is the

cross-entropy loss in Example 3, then

l

(h,y)=−log[1−exp(−l(h,y))], where h=W⊤x, (20)

is the reversed cross-entropy loss (Fowl et al. 2021a). As

ℓ

discourages the model from classifying clean data x as

y, Geiping et al. (2021) proposed to match its gradient

∇w

ℓ

(µ,w) over a poisoned distribution ν̂ (within some

proximity of µ), based on some dissimilarity function S
(e.g., cosine dissimilarity):

min
ν̂∈Γ
S (∇w

ℓ

(µ;w), ∇wℓ(ν̂;w)) . (21)

6



Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning Attacks

We point out some key differences between gradient match-

ing (Fowl et al. 2021a) and our work: (1) Gradient matching

focuses on λ = 1, i.e., an attacker is able to modify the en-

tire training set. While this is useful in certain settings (e.g.,

crafting ªunlearnable examplesº), it masks the effect of the

poisoning proportion, which, as we showed in Section 3,

can determine if a target parameter is poisoning reachable

at all. (2) Gradient matching requires the construction of a

reversed loss, whose gradient may not be at the same scale

as that of the loss we are interested in. Thus, one typically

can only hope to align the direction of gradients, which does

not necessarily imply the desired matching in performance.

In contrast, Algorithm 1 only requires the original loss and

our theory gives guidance on when it succeeds. (3) There

is no guarantee that after retraining over ν̂, gradient match-

ing will arrive at the target parameter while Algorithm 1

explicitly aims to achieve this goal. Further experimental

comparisons against gradient matching will be presented in

Section 5 and Appendix C.

5. Experiments

We perform extensive experiments to verify our main re-

sults: (a) how competitive the gradient canceling attack

(Algorithm 1) is compared to SOTA baselines in indiscrim-

inate data poisoning? (b) to what extent our threshold τ
(see (10)) can predict model poisoning reachability?(c) how

effective gradient canceling remains against certain existing

defense mechanisms?

5.1. Experimental Settings

Dataset: We consider image classification on

MNIST (Deng 2012) (60k training and 10k test im-

ages), CIFAR-10 (Krizhevsky 2009) (50k training and 10k

test images), and TinyImageNet (Chrabaszcz et al. 2017)

(100k training, 10k validation and 10k test images). For the

first two datasets, we further split the training data into 70%

training set and 30% validation set, respectively.

Target Models: We examine the following ML models. On

MNIST: Logistic Regression (LR), a fully connected neural

network (NN) with three layers and a convolutional neural

network (CNN) with two convolutional layers, max-pooling

and one fully connected layer; On CIFAR-10: ResNet-18

(He et al. 2016); and on TinyImageNet: ResNet-34.

Baselines: We compare to TGDA (Lu et al. 2022) and

Gradient Matching (Geiping et al. 2021) attacks. To our

knowledge, the TGDA attack is one of the most effective

data poisoning attacks against neural networks. Gradient

Matching was originally proposed for targeted attacks and

unlearnable examples, and we also compare against it due

to its similarity with the Gradient Canceling (GC) attack.

Implementation: For GC implementation, we follow Al-

gorithm 1 and we discuss the effect of the projection step

in Section 5.4. Most of our target parameters are generated

using GradPC 5 except LR on MNIST, where we use εw = 1
to allow meaningful accuracy drop and transition threshold

τ 6. We initialized the poisoned points with a random nεd
sample from the clean training set and we only optimized

the feature vectors but not the labels. Accuracy drops are

obtained after retraining.

Evaluation Protocol: To evaluate the effectiveness of differ-

ent attacks, we first apply each attack to acquire its poisoned

set and then retrain the model from scratch (initialized with

the same random seed across all attacks) on both clean and

poisoned data until convergence. The (test) accuracy drop,

compared with clean accuracy (obtained by training on clean

data only), is reported across all experiments.

5.2. How Competitive Is Gradient Canceling (GC)?

Table 2 reports the accuracy drop of LR, NN, CNN and

ResNet due to GC on the aforementioned datasets. We

note the trade-off of εw in GradPC when generating a target

parameter w: the larger εw is, the more effective GradPC

is but also the larger the resulting transition threshold τ is,

meaning that GC (or any other data poisoning attack) can

succeed (in reproducing w) only with a larger proportion εd
of poisoned points. We used τ = τ(2) in Table 2 as we find

it is much more indicative than the more conservative τ(c)
(which is roughly 11 times smaller on TinyImageNet and 4

times smaller otherwise).

We observe that GC is much more effective than TGDA and

Gradient Matching, across all datasets, models, and choices

of εd. This confirms that existing data poisoning attacks are

under-optimized and there is room for future improvements.

Moreover, when εd approaches the transition threshold τ ,

GC, a bona fide data poisoning attack, indeed achieves a

comparable accuracy drop as GradPC (which directly over-

writes the model). While Table 1 still has room to improve,

both in terms of the tightness of τ and the effectiveness

of GC, we believe our results yield significant insights on

indiscriminate data poisoning, in particular the theoretical

and experimental quantification of the detrimental effect of

a large proportion εd of poisoned points.

5.3. Predicting Poisoning Reachability Using τ

Next, we further examine the predictability of the transition

threshold τ ≈ max{3.6 ⟨W,G(µ)⟩ , 0}, whose main term

is simply proportional to the inner product between a target

parameter and its gradient on the clean training data.

Binary Logistic Regression: We have already shown the

5We follow the implementation in https://github.com/
TobiasLee/ParamCorruption.

6We discuss the selection of target parameters in Appendix D.
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Table 2: The attack accuracy/accuracy drop (%) on MNIST, CIFAR-10 and TinyImageNet. We perform GC based on the

target parameters generated by GradPC. Our attack significantly outperforms TGDA and Gradient Matching.

Dataset
Target Model Clean Acc GradPC Gradient Canceling TGDA Gradient Matching

εd 0 0 0.03 0.1 1 εd = τ 0.03 0.1 1 0.03 0.1 1

MNIST
LR 92.35 -70.87 (τ=1.15) -22.97 -63.83 -67.01 -69.66 -2.79 -4.01 -8.97 -3.33 -8.14 -12.13
NN 98.04 -20.03 (τ=2.48) -6.10 -9.77 -12.05 -19.05 -1.50 -1.72 -5.49 -2.82 -3.71 - 4.03

CNN 99.13 -24.78 (τ=0.98) -9.55 -20.10 -23.80 -23.77 -1.11 -1.31 -4.76 -2.01 -3.80 -6.94

CIFAR-10 ResNet-18 94.95 -21.69 (τ=1.29) -13.73 -16.40 -18.33 -19.98 -5.54 -6.28 -17.21 -6.01 -7.62 -9.80

TinyImageNet ResNet-34 66.65 -24.77 (τ=1.08) -13.22 -16.11 -20.15 -22.79 -4.42 -6.52 -14.33 -5.53 -7.72 -10.85

Figure 2: We run experiments on logistic regression to verify the transition threshold τ in Corollary 1. Left: accuracy

difference between GC and GradPC on 10-d Gaussian dataset; Middle: norm of the gradient over the mixed dataset χ on

10-d Gaussian dataset; Right: norm of the gradient over the mixed dataset χ on MNIST-17.

predictability of τ on the OR dataset in Figure 1. In Figure 2

we show additional results on a 10-dimensional Gaussian

dataset (see Appendix C.1) and MNIST-17 (consisting only

of digits 1 and 7). The observations are similar: GC could

achieve similar accuracy drops as GradPC (which directly

overwrites the model), as long as εd crosses the threshold τ .

We note that the threshold τ tends to be more conservative as

the dimension of the problem increases, which we believe

is largely because the optimization cost of GC becomes

accordingly higher, making convergence harder to attain.

Multi-class with Cross-Entropy: We also perform experi-

ments on multi-class problems with the cross-entropy loss

in Example 3. In Table 2 we have confirmed that when

εd > τ , GC largely achieves the target parameters gener-

ated by GradPC. We now further examine the opposite case

where εd < τ . We fix εd = 1 and vary εw in GradPC,

consequently generating target parameters with varying τ
on MNIST. Figure 3 shows how much the gradient ∥g(χ)∥
of the target parameters decreases w.r.t. each epoch of GC

(when χ, the mixed dataset, gets updated). We observe that

the gradients do not converge to 0, indicating that GC failed

to produce the target parameters. The failure of GC indicates

that a larger poisoning proportion εd may be necessary to

produce the target parameters, as confirmed by our theory.

5.4. Does GC Remain Effective Against Defenses?

Lastly, we choose several defenses from (Angel et al.

2022) and examine the effectiveness of GC against (1) a

distribution-wise certified defense Sever (Diakonikolas et al.

Table 3: Accuracy drop (%) of Gradient Canceling (w/wo

clipping) on MNIST against Sever defense (+ indicates the

accuracy increased by the defense). GC-c: GC with clipped

output; GC-d: GC after defense; GC-cd: GC-c after defense.

Model Clean εd GC GC-c
Sever

GC-d GC-cd

LR 92.35

0.03 -22.79 -11.28 -12.81 / +9.98 -9.66 / +1.62

0.1 -63.83 -26.77 -59.79 / +4.04 -25.53 / +1.24

1 -67.01 -28.99 -65.01 / +2.00 -27.89 / +1.10

NN 98.04

0.03 -6.10 -3.25 -3.22 / +2.88 -2.26 / +0.90

0.1 -9.77 -5.10 -7.66 / +2.11 -4.46 / +0.56

1 -12.05 -6.53 -10.02 / +2.03 -6.11 / +0.42

CNN 99.13

0.03 -9.55 -5.87 -5.55 / +4.00 -4.36 / +1.51

0.1 -20.10 -12.50 -16.55 / +3.55 -11.32 / +1.18

1 -23.80 -13.32 -21.05 / +2.75 -12.51 / +0.81

2019), which removes εd training points with the highest

outlier scores, defined using the top singular value of the

gradient matrix, and (2) one of the SOTA pointwise certi-

fied defenses (Levine and Feizi 2021; Wang et al. 2022a,b)

called Deep Partition Aggregation (DPA) (Levine and Feizi

2021), which provides certified robustness for individual test

samples. More results w.r.t. other defenses (e.g., influence

defense and max-up defense) can be found in Appendix C.8.

Results on Sever: Table 3 reports the accuracy drops on

MNIST. We observe that (1) Sever indeed reduces the effec-

tiveness of GC, consistently across all models. (2) Clipping

poisoned data to the range of the clean training set makes

GC more robust against all defenses, at the cost of less effec-

tiveness in terms of accuracy drop. (3) Even with clipping

and against defenses, GC still largely outperforms TGDA

8
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Figure 3: The learning curve for running GC on MNIST with different target models w and εw. We fix εd = 1, and the

curves indicate the decrease of the gradient ∥g(χ)∥ w.r.t. GC epoch. We confirm that GC fails to achieve w when εd < τ .

Table 4: The Certified Accuracy (CA) (%) of DPA and

Accuracy drop (%) of Gradient Canceling (εd = 0.008) on

MNIST against the DPA defense (+ indicates the accuracy

increased by the defense).

Model Clean k Clean (DPA) GC CA DPA

LR 92.35
1200 91.33 -8.25 47.12 -4.68/+3.57

3000 89.97 -8.25 49.23 -4.21/+4.04

NN 98.04
1200 94.65 -2.25 46.11 -1.29/+0.96

3000 92.37 -2.25 48.52 -1.17/+1.08

CNN 99.13
1200 95.53 -2.77 47.22 -1.66/+1.11

3000 93.15 -2.77 50.01 -1.52/+1.25

and Gradient Matching. (4) Larger εd generally makes GC

both more effective and more robust, which matches our

observation in least-squares regression (see Appendix C.3).

Results on DPA: although DPA is originally proposed

for pointwise robustness, it can be easily applied to the

indiscriminate data poisoning setting. Here we choose

k = 1200/3000 for DPA and fix εd = 0.008 to roughly

preserve median certified robustness on MNIST. Note that

we choose the base classifiers to be the same as the tar-

get models. We report the certified accuracy (CA), which

is the percentage of certified robust examples among the

test set, and (relative) accuracy increase due to deploying

DPA in Table 4. We observe that DPA is generally effective

against GC, where the (relative) accuracy increased by DPA

roughly approaches its certified accuracy. For example, on

LR with k = 3000, GC was able to decrease test accuracy

by 8.25%, whereas with the DPA defense, 4.04% (relative)

accuracy drop of GC are rectified, leading to an effective-

ness that is roughly proportional to its certified accuracy,

i.e., 4.04 ≈ 8.25 ∗ 0.4923.

6. Conclusion and Future Work

In this work, we introduce the notion of model poisoning

reachability as a technical tool to study the intrinsic limits in

model-targeted data poisoning. We give complete character-

izations on the poisoning ratio that any data poisoning attack

has to satisfy (in order to induce a given target parameter),

and we derive an easily computable threshold that is readily

applicable and gives guidance on crafting effective model-

targeted attacks. Using the gradient canceling attack, we

perform extensive experiments on a number of datasets and

models to quantify the critical role played by the poisoning

ratio, confirm the precision of our transition threshold, and

achieve better performance against existing baselines (w/wo

several existing defenses). Our empirical results also reveal

further room to sharpen the transition threshold and develop

more effective data poisoning attacks, and we mention the

exciting possibility of designing (clean) in-house data to

mitigate and regulate the risk of future poisoning attacks.

One limitation of this work is its focus on achieving specific

target parameters, which may not always be available or

necessary. Indeed, data poisoning attacks that are not based

on any target parameter abound. However, we point out

that our work may still be valuable for the latter class of

attacks, for instance, as a distillation device: a data poison-

ing attack can use our threshold to evaluate the potential

ªwastefulnessº of its constructed poisoning set (along with

the model parameter obtained by retraining) and then use

GC to further distill and improve it. Another limitation is

that most existing data poisoning attacks, including GC,

assume a lot of knowledge of the victim model (e.g., fixed

architecture, access to clean training data, etc.) and hence

may not always be realistic. Advanced and adaptive defense

mechanisms may also thwart the effectiveness of many at-

tacks (including GC). Further investigations of these issues

form another important direction for future research.
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A. Proofs

Theorem 5 (Linear Models). Consider ℓ((x, y);w) = l(w⊤x, y) for some univariate loss l. Then,

g(x, y) = x · l′(w⊤x, y),

and w is λ-poisoning reachable iff there exists ν ∈ Γ such that

0 ∈ (1− λ)g(µ) + λg(ν).

Suppose ⟨w,g(µ)⟩ ≠ 0. Consider Π ⊆ P and let

J := {E(x,y)∼ν(w
⊤x) · l′(w⊤x, y) : ν ∈ Π} ⊆ R.

Then, w is λ-poisoning reachable if 7 Γ ⊇ T#Π and

0 ∈ (1− λ) ⟨w,g(µ)⟩+ λJ, (A.1)

where the transformation T (x, y) :=
(

⟨w,x⟩
⟨w,g(µ)⟩g(µ), y

)

. Conversely, (A.1) holds if w is λ-poisoning reachable and Π ⊇ Γ.

Proof. The gradient computation is straightforward while the first claim follows from Theorem 1.

Suppose now ⟨w,g(µ)⟩ ≠ 0.

Suppose first (A.1) holds, so we can choose ν ∈ Π such that

0 = (1− λ) ⟨w,g(µ)⟩+ λE(x,y)∼ν(w
⊤x) · l′(w⊤x, y). (A.2)

Consider the transformation T (x, y) =
(

⟨w,x⟩
⟨w,g(µ)⟩g(µ), y

)

and let ν̃ = T#ν, which is in Γ due to our assumption Γ ⊇ T#Π.

We then have

E(x̃,ỹ)∼ν̃ l
′(w⊤x̃, ỹ)x̃ = E(x,y)∼ν l

′(w⊤x, y) ⟨w,x⟩
⟨w,g(µ)⟩g(µ), (A.3)

and hence

(1− λ)g(µ) + λE(x̃,ỹ)∼ν̃∇ℓ((x̃, ỹ);w) = [(1− λ) ⟨w,g(µ)⟩+ λE(x,y)∼ν l
′(w⊤x, y) ⟨w,x⟩] g(µ)

⟨w,g(µ)⟩ (A.4)

= 0, (A.5)

thanks to our choice of ν. Applying Theorem 1 again we know w is λ-poisoning reachable.

Conversely, if w is λ-poisoning reachable, then from Theorem 1 it follows that

0 ∈ (1− λ)g(µ) + λE(x,y)∼ν l
′(w⊤x, y)x. (A.6)

Taking inner product with the model w on both sides and noting that Γ ⊆ Π we verify (A.1).

Remark 1. The condition ⟨w,g(µ)⟩ ≠ 0 can be easily checked a priori. In case it fails, two possibilities arise:

• g(µ) = 0, in which case poisoning is trivial: simply let ν = µ for any λ.

• g(µ) ̸= 0, in which case we may let ν concentrate on the line L := {αg(µ) : α ∈ R}. Thus, data poisoning succeeds

if

0 = (1− λ) + λE(α,y)∼ν l
′(0, y)α, (A.7)

where we identify αg(µ) as α for ν. As long as Γ contains some distribution that puts nonzero mass on L and

sufficiently large l′(0, y), w is again λ-poisoning reachable.

7T#ν denotes the distribution of T (z) when z ∼ ν.
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Once we identify an appropriate subset Π of poisoning distributions, we can even estimate the interval J using Monte Carlo

algorithms. Moreover, we may restrict the search of a poisoning distribution to the potentially much smaller subset T#Π
(where x lies on the line spanned by g(µ)).

Remark 2 (Connection to breakdown point). For simplicity consider Z = Rd ×R. It is well-known that unbounded convex

losses (t, y) 7→ l(t− y), such as the square loss in Example 1, have 0 breakdown point (and hence not robust): even adding

a single poisoning point can perturb the model norm ∥w∥ unboundedly (e.g. Yu et al. 2012, Theorem 5). Theorem 2 gives a

much more detailed characterization: In fact, any target model w can be induced by a diminishing amount of poisoning

(even if ν is supported on a single point)! Indeed, since l is unbounded and convex, there exists some τ ∈ R such that

|l′(τ)| ̸= 0. It follows then a = −∞ and b =∞, and hence the threshold in (6) is trivially 0, for any target model w. Of

course, our characterization in Theorem 2 continues to hold for any domain Z, unbounded or not.

Example 4 (Dichotomy). Consider the smooth loss8

l(t) =











−(4t+ 1) exp(−2), if t ≤ − 1
2

exp( 1t ), if t ∈ [− 1
2 , 0]

0, if t ≥ 0

. (A.8)

Clearly, we have a = 0 and b =∞. Thus, we arrive at a remarkable dichotomy:

• If ⟨w,g(µ)⟩ = 0 (in particular any separating w), then data poisoning succeeds with any λ > 0;

• If ⟨w,g(µ)⟩ ≠ 0 (and hence w cannot separate µ), then data poisoning fails with any λ < 1.

Note that l in (A.8) is not calibrated since l′(0) = 0 (Bartlett et al. 2006), so it may not be a sensible loss to use in practice.

For a calibrated margin loss l, i.e., one that is differentiable at 0 with l′(0) < 0, we necessarily have b > 0 and a < 0, so the

threshold in (6) usually lies strictly in (0, 1), incurring a nontrivial phase transitioning.

Theorem 6 (Multiclass). Consider ℓ(x,y;W ) = l(W⊤x,y) for some loss l. Then9,

G(x,y) := ∇W ℓ(x,y;W ) = x⊗∇l(W⊤x,y), (A.9)

and W is λ-poisoning reachable iff there exists ν ∈ Γ such that

0 ∈ (1− λ)G(µ) + λG(ν). (A.10)

Suppose W⊤G(µ) is non-degenerate and let

J := {E(x,y)∼ν(W
⊤x)⊗∇l(W⊤x,y) : ν ∈ Π}.

Then, W is λ-poisoning reachable if Γ ⊇ T#Π and

0 ∈ (1− λ)W⊤G(µ) + λJ, (A.11)

where the transformation T (x,y) :=
(

G(µ)[W⊤G(µ)]−1W⊤x,y
)

. Conversely, (A.11) holds if W is λ-poisoning reach-

able and Π ⊇ Γ.

Proof. The proof is completely similar to that of Theorem 5.

Proof. [of Example 3] We aim to show that for any h ∈ Rc and one-hot y ∈ Rc, we have

−W ( c−1
e ) ≤ ⟨h,p− y⟩ ≤ ∞, where recall that p := softmax(h) = exp(h)/

∑

k

exp(hk). (A.12)

8This is essentially a smoothed version of the perceptron loss l(t) = max{−t, 0}.
9We use the notation a⊗ b := ab

⊤ for two column vectors.
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The right-hand side is clear: we need only send some hk to∞, as long as yk ̸= 1. For the left-hand side, we simplify as

follows. W.l.o.g. assume yi = 1. Then,

⟨h,p− y⟩ =
∑

k

hk

[

exp(hk)
∑

j exp(hj)
− yk

]

=

∑

k(hk − hi) exp(hk − hi)

1 +
∑

j ̸=i exp(hj − hi)
(A.13)

=
∑

k ̸=i

1
c−1 + exp(hk − hi)

1 +
∑

j ̸=i exp(hj − hi)
·
(hk − hi) exp(hk − hi)

1
c−1 + exp(hk − hi)

(A.14)

≥ inf
t

t exp(t)
1

c−1 + exp(t)
(A.15)

= −W ( c−1
e ), (A.16)

where the inequality is achieved when t ≡ hk − hi minimizes (A.15).

Theorem 4 (Neural Networks). Consider ℓ(x,y;W,u) = l(h,y) for some loss l, where h := W⊤φ(x;u). Then,

∇W ℓ(x,y;W,u) = φ(x;u)⊗∇hl(h,y) (11)

∇uℓ(x,y;W,u) = ∇uφ(x;u)W∇hl(h,y), (12)

and (W,u) is λ-poisoning reachable iff there exists ν ∈ Γ such that

0 ∈ (1− λ)G(µ) + λG(ν), (13)

where G(ν) := E(x,y)∼ν (∇W ℓ,∇uℓ). In particular, (W,u) is λ-poisoning reachable only if there exists some ν ∈ Γ such

that

0 ∈ (1− λ)G1(µ) + λG1(ν), (14)

where G1(ν) := E(x,y)∼νφ(x;u)⊗∇hl(h,y).

Proof. It is straightforward to compute the gradients in (11) and (12). The iff condition in (13) then follows from Theorem 1.

The necessary condition in (14) is obtained by simply ignoring the second part of G(µ) (that corresponds to ∇uℓ).

From (14) we conclude that the poisoning distribution ν must be supported at least on s = rank(G1(µ)) points, as long as

λ ∈ (0, 1). Taking inner product w.r.t. WA on both sides of (14) we obtain

0 = (1− λ)gA(µ) + λgA(ν), (A.17)

where gA(ν) = E(x,y)∼ν ⟨A∇hl(h,y),h⟩ and A is arbitrary. The condition (A.17) is univariate and easy to check, albeit

being necessary but not sufficient. We remark that the free choice of the matrix A may be exploited to tighten this necessary

condition.

B. Data poisoning as measure optimization

In this section we discuss a measure optimization approach for solving the gradient canceling problem:

min
ν∈Γ

1
2∥g(µ) + εdg(ν)∥

2
2, (B.1)

where we recall that

g(ν) = Ez∼ν∇wℓ(z;w) (B.2)

is the model gradient computed over the distribution ν. The objective of (B.1) is a convex quadratic, although living in an

infinite dimensional space (the vector space of all signed measures over Z). A particularly suitable way to solve (B.1) is the

well-known Frank-Wolfe algorithm, where we repeatedly perform ªatomicº updates to the measure ν:

νt+1 ← (1− ηt)νt + ηtζt, (B.3)
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where ηt is the step size, e.g., ηt =
2

t+2 . The direction ζt is found by solving the linear minimization subproblem:

min
ζ∈Γ
⟨g(µ) + εdg(νt),g(ζ)⟩ . (B.4)

When Γ = P consists of all distributions over Z, the above subproblem simplifies to:

min
z∈Z

⟨g(µ) + εdg(νt),∇wℓ(z;w)⟩ , (B.5)

i.e., we find a new poisoning point z to add to the support of the poisoning distribution νt, while the step (B.3) adjusts

the probability mass. One particularly appealing part of this algorithm is that after t iterations, the candidate poisoning

distribution νt is supported at most on t+1 points (assuming we start with some ν0 supported on a single point). We remark

that the subproblem (B.5) is often nonconvex (in particular for neural networks), and could be challenging to solve. The

other difficulty is that an attacker often is not allowed to upload an entire poisoning distribution, so a resampling procedure

(on ν) will be necessary to create a poisoning set, which is why we opted for a more direct approach in the main paper.

Another possibility is to parameterize ν as the push-forward of some fixed distribution (e.g., the training distribution), i.e.,

ν = [T (θ)]#µ, and we optimize the push-forward transformation T (θ).

C. Additional Experiments

C.1. Additional implementation details

Hardware and package: experiments were run on a cluster with T4 and P100 GPUs. The platform we use is Py-

Torch (Paszke et al. 2019).

Model in details: for the MNIST dataset, we examine three target models: Logistic Regression; a neural network (NN) with

three layers, where we choose hidden size as 784 and apply leaky ReLU with negative slope = 0.2 for activation; and a

convolutional neural network (CNN) with two convolutional layers with kernel size 3, maxpooling and two fully connected

layers with hidden size 128.

Synthetic Datasets: in Figure 1 and Figure 2, we perform experiemnts on two synthetic datasets. (1) OR dataset: we simply

use the OR dataset in 2D space in Figure 4 and repeat each point for 50 times (200 samples in total) with small Gaussian

noise. (2) 10-D Gaussian dataset: we use the make classification function in sklearn.datasets with 1000 samples

and 10 features.

Figure 4: Here we visualize the OR dataset.

More on GradPC: to choose proper target parameters (specifically, εw), we use validation sets described in Section 5 for

accuracy drop comparison. The GradPC attack never sees the test set during the construction of its perturbed models.

Batch size: for the Gradient Canceling experiments on MNIST, we set batch size as the size of entire training set (60000) for

simplicity. For CIFAR-10 and TinyImageNet experiments, we set batch size as 1000 due to CUDA memory size constraint.

Optimizer, learning rate scheduler and hyperparameters: we use SGD with momentum for optimization and the cosine

learning rate scheduler (Loshchilov and Hutter 2017) for the Gradient Canceling algorithm. We set the initial learning rate

as 0.5 and run 1000 epochs across every experiment.
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C.2. More on Parameter Corruption

Recall in Table 1 we compare TGDA with GradPC briefly. Here we show the complete results with more choices of εw and

an additional baseline method called RandomPC in Sun et al. (2020) in Table 5.

Table 5: The attack accuracy/accuracy drop (%) on the MNIST dataset.

Target Model
Clean TGDA RandomPC GradPC

Accuracy Accuracy/Drop εw = 0.01 εw = 0.1 εw = 1 εw = 0.01 εw = 0.1 εw = 1

LR 92.35 89.56 / 2.79 (εw = 2.45) 91.94 / 0.41 81.24 / 11.11 24.66 / 67.69 91.91 / 0.44 89.72 / 2.63 21.48 / 70.87
NN 98.04 96.54 / 1.50 (εw = 0.55) 97.62 / 0.42 82.67 / 15.37 32.77 / 65.27 97.63 / 0.41 97.05 / 0.99 31.14 / 66.90

CNN 99.13 98.02 / 1.11 (εw = 0.74) 98.84 / 0.29 72.00 / 27.13 19.26 / 79.87 98.74 / 0.39 98.69 / 0.44 12.98 / 86.15

C.3. Least-square Regression

Figure 5: Here we run the Gradient Canceling algorithm on linear regression on a 2D Gaussian dataset. The first row

displays all figures in the same scale for better comparison; and the second row shows the upper figures in their original

scale for better viewing. (1) The left five figures show the poisoned points generated with different εd. When εd is smaller,

the poisoned points are farther from the data distribution. (2) The algorithm always generates the target parameter (the

prediction) regardless of εd.

Recall that from Example 1 we conclude data poisoning with any εd > 0 is possible for least-square regression. We perform

GC attack on a synthetic 2D Gaussian dataset and visualize the results in Figure 5. We observe that (1) the algorithm always

generates the target parameter regardless of εd, which immediately verifies our conclusion; (2) by increasing εd, the poison

distribution ν gradually moves towards the data distribution µ, which makes intuitive sense. Moreover, recall that we may

restrict the search of a poisoning distribution to the potentially much smaller subset T#Π (where x lies on the line spanned

by g(µ)), while in practice GC does not seem to always follow this theoretical construct.

C.4. Comparison with Gradient Matching

As we mentioned in Section 4, one of the difference between Gradient Matching and our work is that there is no guarantee

that after retraining over ν̂, gradient matching will arrive at the target model while our Algorithm 1 explicitly aims to achieve

this goal. We have shown in the Figure 5 that GC empirically achieve the target model regardless of εd. By comparing with

Figure 6, we observe that gradient matching achieves different model parameters for every εd.

C.5. More on Figure 3

Recall that in Figure 3, we fix εd and draw the learning curve for GC optimization for different εw, where the y-axis indicates

the normalized loss, i.e., ∥g(χ)∥. We observe that when τ > εd, ∥g(χ)∥ converges to a larger value, influenced by the

distance between τ and εd.

Conversely, we fix εw (consequently, τ ) for different target models and repeat the MNIST experiments. In Figure 7, we

again observe that when τ > εd, ∥g(χ)∥ converges at a relatively bigger number. Overall, we have confirmed the theoretical

limitations proved in Section 3.
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Figure 6: Here we run the Gradient Matching algorithm on linear regression on a 2D Gaussian dataset. The first row displays

the poisoned points generated with different εd; and the second row shows the different target parameters generated by the

algorithm with different εd.

Figure 7: The learning curve for running GC on MNIST with different target models and εd. Note that we fix εw for each

model and print the respective τ , and the loss indicates ∥g(χ)∥. The figure again confirms that GC cannot achieve w if

εd < τ .
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C.6. Scaling w

We point out a subtlety in Example 2: by scaling w towards the origin, we do not change its accuracy (except the confidence

it induces). However, the threshold τ tends to 0 and hence data poisoning succeeds in producing the target parameter w with

a smaller λ. In other words, less confident models are easier to poison to, which makes intuitive sense. For verification, we

run the GC attack with scaled target parameter w/2 and compare it with the original target parameter w in Table 6. With

the same target model accuracy, scaling w significantly reduces its corresponding τ , making it easier to poison to.

Table 6: The GC attack accuracy drop (%) on MNIST when scaling w by half.

Target Model clean GradPC τ(w) τ(w/2) εd w w/2

LR 92.35 -70.87 1.15 0.54

0.03 -22.97 -44.11

0.1 -63.83 -67.22

1 -67.01 -79.55

NN 98.04 -20.03 2.48 1.41

0.03 -6.10 -9.29

0.1 -9.77 -11.01

1 -12.05 -15.33

CNN 99.13 -24.78 0.98 0.42

0.03 -9.55 -12.03

0.1 -20.10 -21.55

1 -23.80 -24.56

The fact that simply scaling w down could improve its poisoning reachability might seem surprising at first glance. However,

this is due to a mismatch between how we train and how we test. It is best to explain this observation in the binary setting,

where we note the mismatch between the common prediction rule

ŷ = sign(⟨x,w⟩), (C.1)

which is invariant to (positive) scaling (of w), and our training objective in finding a good parameter w, e.g., through logistic

regression:

inf
w

1

n

∑

i

log[1 + exp(−yi ⟨xi,w⟩], (C.2)

which is not invariant to scaling (of w).

Let us give an explicit example to further demonstrate this point. Consider three (cleaning) training points10 on the real line:

x1 =

[

1
1

]

, y1 = +; x2 =

[

−1
1

]

, y2 = +; x3 =

[

0
1

]

, y3 = −; (C.3)

where we have padded 1 at the last entry of each x (so that we can absorb the bias b into w). Setting the derivative of (C.2)

w.r.t. w to zero we obtain:

3 · g(w) = −
1

1 + exp(w1 + w2)

[

1
1

]

−
1

1 + exp(w2 − w1)

[

−1
1

]

−
1

1 + exp(−w2)

[

0
−1

]

= 0. (C.4)

Solving the above equation we have w⋆ =

[

0
ln 2

]

.

Now consider the scenario where we are given a target parameter w = 2w⋆. According to our theory, the poisoning ratio

εd > τ :≈ max

{

1.2

[

−w1 − w2

1 + exp(w1 + w2)
+

w1 − w2

1 + exp(w2 − w1)
+

w2

1 + exp(−w2)

]

, 0

}

(C.5)

= max

{

1.2w2 ·
exp(w2)− 2

1 + exp(w2)
, 0

}

(C.6)

= 0.48 · 2 ln 2 ≈ 0.67. (C.7)

10This is in fact the smallest example: with 2 or fewer training points, logistic regression does not attain the infimum.
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In other words, the poisoning set needs to be as large as 67% of the training set, in order to produce w = 2w⋆. However, if

we scale w down to w⋆, then we do not even need to add any poisoned point, since w⋆ is already stationary (by definition).

If we continue to scale w down to say 0.5w⋆ (so that ⟨w,g(w)⟩ < 0 and hence τ = 0), then for any ε > 0, we may put ε
copies of x = αg(w) ≈ 1

εg(w) as the poisoning set to produce w; see the detailed analysis below.

More generally, consider adding ε copies of a poisoning data point at x = αg(w), y = + (where α ∈ R will be determined

later) so that the gradient on the clean and poisoned data is proportional to:

g(w)− ε
1

1 + exp(⟨w,x⟩)
x = g(w)− ε

1

1 + exp(⟨w, αg(w)⟩)
αg(w) = g(w) ·

[

1− ε
α

1 + exp(α ⟨w,g(w)⟩)

]

.

(C.8)

We can break the analysis into a few cases now:

• g(w) = 0, i.e., we scale w down to w⋆, in which case no poisoning point is needed to produce w = w⋆.

• ⟨w,g(w)⟩ = 0, in which case the gradient reduces to g(w)[1− εα/2]. Therefore, for any ε > 0, we may produce w

by putting ε copies of x = 2
εg(w).

• ⟨w,g(w)⟩ < 0, in which case for any ε > 0, the function

α 7→ 1 + exp(α ⟨w,g(w)⟩ − εα (C.9)

clearly has a zero α∗ (easily seen by letting α→ ±∞ and applying the intermediate value theorem). Thus again, we

may produce w by putting ε copies of x at α∗g(w). (Note that α∗ →∞ if ε→ 0; roughly α∗ ≈
1
ε .)

• ⟨w,g(w)⟩ > 0, in which case the function

α 7→ 1 + exp(α ⟨w,g(w)⟩ − εα (C.10)

has a zero α∗ iff ε ≥ τ . Indeed,

1 = ε
α

1 + exp(α ⟨w,g(w)⟩)
⇐⇒ 1 =

ε

⟨w,g(w)⟩
·

α ⟨w,g(w)⟩

1 + exp(α ⟨w,g(w)⟩)
(C.11)

≤
ε

⟨w,g(w)⟩
· sup

t

t

1 + exp(t)
(C.12)

=
ε

⟨w,g(w)⟩
· W(1/e). (C.13)

Thus again, for any ε ≥ τ , we may produce w by putting ε copies of x at α∗g(w).

In Figure 8 we observe that GC converged to nonzero loss (i.e., unable to produce the target parameter) when εd < τ , for

any learning rate we tried, while after scaling w down so that εd > τ , GC immediately converged to zero loss (without the

need of tuning the learning rate), confirming our theoretical analysis above. We plan to further explore the scaling effect in

future work.

C.7. Simulating Different Target Parameters

Next, we verify if GC can achieve any desired target parameter. We choose poisoned models generated by TGDA attack as

target parameters and perform PC. We discover that such parameters are also achievable by GC in Table 7, which further

confirms that GC may be equipped with any other parameter corruption methods, regardless of how the target parameters

are generated.

C.8. GC against Defenses

Next, we examine the GC attack against three popular distribution-wise defenses. (1) Influence defense (Koh and Liang

2017) removes εd suspicious points according to higher influence functions; (2) Sever (Diakonikolas et al. 2019) removes εd
training points with the highest outlier scores, defined using the top singular value in the matrix of gradients; (3) Maxup

defense (Gong et al. 2021) generates a set of augmented data with random perturbations and then aims at minimizing the

worst case loss over the augmented data.

We present our results on the MNIST dataset in Table 8 and observe that: (1) Among the three defenses, Sever is the most

effective one and can significantly reduce the effectiveness of GC. (2) Clipping the poisoned data to the range of clean
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Figure 8: We plot the training curves of GC on the toy example (see (C.3)). The colored curves represent GC attack on

w =

[

0
2 ln 2

]

with ε = 0.52 < τ ≈ 0.67 under different learning rates; the black curve represents GC attack on the scaled

target parameter w/1.1 ≈

[

0
1.82 ln 2

]

with ε = 0.52 > τ ≈ 0.51 under learning rate 1.

Table 7: Simulating TGDA attack (εd = 1) with Gradient Canceling attack on the MNIST dataset.

Target Model clean TGDA τ εd GC

LR 92.35 -8.97 2.33

0.03 -2.66

0.1 -3.39

1 -5.53

τ -8.35

NN 98.04 -5.49 0.95

0.03 -1.39

0.1 -1.55

1 -4.99

CNN 99.13 -4.76 0.49

0.03 -0.98

0.1 -2.10

1 -4.68

training set makes GC more robust against all defenses, with the tradeoff of attack effectiveness. (3) Larger εd makes the

attack generally more robust, which matches our observation in least-squared regression.

C.9. Visualization of Poisoned Images

Finally, we visualize some poisoned images generated by the GC attack in Figure 9 and Figure 10.
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Table 8: The accuracy drop (%) Gradient Canceling attack (w/wo clipping) introduces on MNIST with Influ-

ence/Sever/MaxUp defense (+ indicates the accuracy increased by defenses). GC: original Gradient Canceling attack; GC-c:

GC with clipped output; GC-d: GC after defense; GC-cd: GC-c after defense.

Model Clean Acc εd GC GC-c
Influence Sever MaxUp

GC-d GC-cd GC-d GC-cd GC-d GC-cd

LR 92.35

0.03 -22.79 -11.28 -21.99 / +0.80 -11.17 / +0.11 -12.81 / +9.98 -9.66 / +1.62 -22.59 / +0.20 -11.26 / +0.02

0.1 -63.83 -26.77 -63.51 / +0.32 -26.67 / +0.10 -59.79 / +4.04 -25.53 / +1.24 -63.65 / +0.18 -26.67 / +0.10

1 -67.01 -28.99 -66.75 / +0.26 -26.71 / +0.06 -65.01 / +2.00 -27.89 / +1.10 -66.02 / +0.09 -28.97 / +0.02

NN 98.04

0.03 -6.10 -3.25 -5.59 / +0.51 -3.16 / +0.09 -3.22 / +2.88 -2.26 / +0.90 -6.08 / +0.02 -3.24 / +0.01

0.1 -9.77 -5.10 -9.32 / +0.45 -5.02 / +0.08 -7.66 / +2.11 -4.46 / +0.56 -9.76 / +0.01 -5.10 / +0.00

1 -12.05 -6.53 -11.65 / +0.40 -6.48 / +0.05 -10.02 / +2.03 -6.11 / +0.42 -12.04 / +0.01 -6.53 / +0.00

CNN 99.13

0.03 -9.55 -5.87 -8.57 / +0.98 -5.56 / +0.31 -5.55 / +4.00 -4.36 / +1.51 -9.39 / +0.16 -5.83 / +0.04

0.1 -20.10 -12.50 -19.19 / +0.91 -12.35 / +0.15 -16.55 / +3.55 -11.32 / +1.18 -20.06 / +0.04 -12.48 / +0.02

1 -23.80 -13.32 -23.10 / +0.70 -13.21 / +0.11 -21.05 / +2.75 -12.51 / +0.81 -23.79 / +0.01 -13.32 / +0.00

Figure 9: We visualize some poisoned images generated by the GC attack on the MNIST dataset. The first row shows the

clean samples, the second row shows the poisoned samples; the third row displays the perturbation.
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Figure 10: We visualize some poisoned images generated by the GC attack on the CIFAR-10 dataset. The first row shows

the clean samples, the second row shows the poisoned samples; the third row displays the perturbation.
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C.10. Comparison with Replacing Attack

In this work we only consider an adversary who is restricted to add corrupted points Dp to the intact (clean) training set Dtr,

while an even stronger attacker might consider replacing part of Dtr with Dp (also closely related to the nasty noise model

Bshouty et al. 2002). We first formulate the general case: recall that we consider the mixed distribution χ = (1− λ)µ+ λν
of the clean distribution µ and poisoned distribution ν, where λ is the proportion of poisoning data. Then, replacing part of

the clean training data is equivalent to:

χ = (1− λ′)µ′ + λ′ν, (C.14)

where µ′ is a subset of µ, and λ′ = |Dp|/|Dtr|. Empirically, with the ability to replace data points we may still apply

Gradient Canceling in a straightforward manner: the only difference is that in Algorithm 1 we change µ to µ′, a random

subset of µ. Following this idea, we perform a simple experiment: we choose εd = 0.03, and choose µ′ to be a random

subset of Dtr, with size 1
1+εd
|Dtr| ≈ 0.97|Dtr|. The results on MNIST are presented below in Table 9:

Table 9: Gradient Canceling attack (εd = 0.03) with adding-only vs replacing-only on the MNIST dataset.

Target Model clean GC (adding-only) GC (replacing)

LR 92.35 -22.97 -23.10

NN 98.04 -6.10 -6.35

CNN 99.13 -9.55 -9.62

We observe that the ability to replace clean training data is indeed (slightly) more powerful than the corresponding adding-

only attack. Notably, we remove training samples randomly, which may not be relatively weak. Ideally, an adversary would

remove the most important points (e.g., in Ilyas et al. 2022) to further reduce the test accuracy. This improved replacing

attack might be worth future exploration, although we note that it is less likely to be applicable when an attacker does not

have direct access to a victim’s infrastructure.

D. Selecting Target Parameters

Here we discuss how to select an appropriate target parameter w for the GC attack. In principle, there are two major factors

regarding the selection of target parameters w: (1) strength of w, measured by the test accuracy drop it incurs; (2) poisoning

reachability, measured by the optimality condition (i.e., the empirical loss in Equation (18)). We want to choose a w that is

both reachable and as strong as possible. Next, we discuss both criteria in details:

• Strength of w: (a) existing works (e.g., Koh et al. 2022; Suya et al. 2021) only explored rudimentary ways to construct

target parameters (e.g., through the label flip attack), and thus are less effective in casting particularly powerful target

parameters; (b) with GradPC, we can now easily quantify the strength of a target parameter w using εw (in Table 1);

(c) thus in practice, we first prepare a sequence of target parameters {wk : k ∈ K} with |K| different εw, and then

send them all to the reachability test (in the next step).

• Reachability test: (a) given the list of {wk : k ∈ K}, we first calculate every corresponding τ(wk), such that we can

already rule out a few choices where εd < τ (that we know GC cannot achieve with the existing budget εd). After this

process, we only keep a subset of target parameters {wk : k ∈ K̄}; (b) next, we run GC for each {wk : k ∈ K̄}, and

examine if GC can achieve them by checking the loss upon convergence. We only keep those wk’s that return a loss

smaller than a margin (this margin is defined by one-tenth of the initial loss) when εd ≈ τ . (c) finally, we empirically

select a target parameter w with the largest accuracy drop on the validation set.
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