
Under review as a conference paper at ICLR 2018

DISCRIMINATIVE K-SHOT LEARNING USING
PROBABILISTIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a probabilistic framework for k-shot image classification.
The goal is to generalise from an initial large-scale classification task to a separate
task comprising new classes and small numbers of examples. The new approach not
only leverages the feature-based representation learned by a neural network from
the initial task (representational transfer), but also information about the classes
(concept transfer). The concept information is encapsulated in a probabilistic model
for the final layer weights of the neural network which acts as a prior for proba-
bilistic k-shot learning. We show that even a simple probabilistic model achieves
state-of-the-art on a standard k-shot learning dataset by a large margin. Moreover,
it is able to accurately model uncertainty, leading to well calibrated classifiers, and
is easily extensible and flexible, unlike many recent approaches to k-shot learning.

1 INTRODUCTION

A child encountering images of helicopters for the first time is able to generalize to instances with
radically different appearance from only a handful of labelled examples. This remarkable feat is
supported in part by a high-level feature-representation of images acquired from past experience.
However, it is likely that information about previously learned concepts, such as aeroplanes and
vehicles, is also leveraged (e.g. that sets of features like tails and rotors or objects like pilots/drivers
are likely to appear in new images). The goal of this paper is to build machine systems for performing
k-shot learning, which leverage both existing feature representations of the inputs and existing class
information that have both been honed by learning from large amounts of labelled data.

K-shot learning has enjoyed a recent resurgence in the academic community (Lake et al., 2015; Koch
et al., 2015; Vinyals et al., 2016; Snell et al., 2017; Srivastava & Salakhutdinov, 2013). Current state-
of-the-art methods use complex deep learning architectures and claim that learning good features for
k-shot learning entails training for k-shot specifically via episodic training that simulates many k-shot
tasks. In contrast, this paper proposes a general framework based upon the combination of a deep
feature extractor, trained on batch classification, and traditional probabilistic modelling. It subsumes
two existing approaches in this vein (Srivastava & Salakhutdinov, 2013; Burgess et al., 2016), and is
motivated by similar ideas from multi-task learning (Bakker & Heskes, 2003). The intuition is that
deep learning will learn powerful feature representations, whereas probabilistic inference will transfer
top-down conceptual information from old classes. Representational learning is driven by the large
number of training examples from the original classes making it amenable to standard deep learning.
In contrast, the transfer of conceptual information to the new classes relies on a relatively small
number of existing classes and k-shot data points, which means probabilistic inference is appropriate.

While generalisation accuracy is often the key objective when training a classifier, calibration is also
a fundamental concern in many applications such as decision making for autonomous driving and
medicine. Here, calibration refers to the agreement between a classifier’s uncertainty and the frequency
of its mistakes, which has recently received increased attention. For example, Guo et al., 2017 show
that the calibration of deep architectures deteriorates as depth and complexity increase. Calibration is
closely related to catastrophic forgetting in continual learning. However, to our knowledge, uncertainty
has so far been over-looked by the k-shot community even though it is high in this setting.

Our basic setup mimics that of the motivating example above: a standard deep convolutional neural
network (CNN) is trained on a large labelled training set. This learns a rich representation of images
at the top hidden layer of the CNN. Accumulated knowledge about classes is embodied in the top

1

Under review as a conference paper at ICLR 2018

layer softmax weights of the network. This information is extracted by training a probabilistic model
on these weights. K-shot learning can then 1) use the representation of images provided by the CNN
as input to a new softmax function, 2) learn the new softmax weights by combining prior information
about their likely form derived from the original dataset with the k-shot likelihood.

The main contributions of our paper are:

1) We propose a probabilistic framework for k-shot learning. It combines deep convolutional features
with a probabilistic model that treats the top-level weights of a neural network as data, which can
be used to regularize the weights at k-shot time in a principled Bayesian fashion. We show that the
framework recovers L2-regularised logistic regression, with an automatically determined setting of
the regularisation parameter, as a special case.

2) We show that our approach achieves state-of-the-art results on the miniImageNet dataset by a wide
margin of roughly 6% for 1- and 5-shot learning. We further show that architectures with better
batch classification accuracy also provide features which generalize better at k-shot time. This
finding is contrary to the current belief that episodic training is necessary for good performance
and puts the success of recent complex deep learning approaches to k-shot learning into context.

3) We show on miniImageNet and CIFAR-100 that our framework achieves a good trade-off between
classification accuracy and calibration, and it strikes a good balance between learning new classes
and forgetting the old ones.

2 PROBABILISTIC K-SHOT LEARNING

K-shot learning task. We consider the following discriminative k-shot learning task: First, we
receive a large dataset D̃ = {ũi, ỹi}Ñi=1 of images ũi and labels ỹi ∈ {1, . . . , C̃} that indicate which
of the C̃ classes each image belongs to. Second, we receive a small dataset D = {ui, yi}Ni=1 of C
new classes, yi ∈ {C̃ + 1, C̃ + C}, with k images from each new class. Our goal is to construct a
model that can leverage the information in D̃ and D to predict well on unseen images u∗ from the
new classes; the performance is evaluated against ground truth labels y∗.

Summary. In contrast to several recent k-shot learning approaches that mimic the k-shot learning
task by episodic training on simulated k-shot tasks, we propose to use the large dataset D̃ to train
a powerful feature extractor on batch classification, which can then be used in conjunction with a
simple probabilistic model to perform k-shot learning. In 2003, Bakker & Heskes introduced a general
probabilistic framework for multi-task learning with multi-head models, in which all parameters of
a generic feature extractor are shared between a set of tasks, and only the weights of the top linear
layer (the “heads”) are task dependent. In the following, we frame k-shot learning in a similar setting
and propose a probabilistic framework for k-shot learning in this vein. Our framework comprises four
phases that we refer to as 1) representational learning, 2) concept learning, 3) k-shot learning, and 4)
k-shot testing, cf. Fig. 1 (right).
We then show that, for certain modelling assumptions, the obtained method is equivalent/related to
regularised logistic regression with a specific choice for the regularisation parameter.

p
h

as
e

1
:

re
pr

es
en

ta
ti

on
al

le

ar
ni

ng

or

or

old classes new classes

sh
ar

ed

la
ye

rs

p
h

as
e

3
:

k-
sh

ot
 l

ea
rn

in
g

p
h

as
e

4
:

k-
sh

ot
 t

es
ti

ng

phase 2: concept learning

Figure 1: left: Shared feature extractor Φϕ and separate top linear layers W and W̃ with corresponding
softmax units on old and new classes. right: Graphical model for probabilistic k-shot learning.

2

Under review as a conference paper at ICLR 2018

2.1 A FRAMEWORK FOR PROBABILISTIC K-SHOT LEARNING

We provide a high-level description of the probabilistic framework and present a more detailed
derivation in Appendix A. While it might appear overly formal, the resulting scheme will be simple
and practical, and the probabilistic phrasing will make it extensible and automatic (no free parameters).

Feature extractor and representational learning. We first introduce a convolutional neural net-
work (CNN) Φϕ as feature extractor whose last hidden layer activations are mapped to two sets
of softmax output units corresponding to the C̃ classes in the large dataset D̃ and the C classes
in the small dataset D, respectively. These separate mappings are parametrized by weight matrices
W̃ for the old classes and W for the new classes. Denoting the output of the final hidden layer
as x = Φϕ(u), the first softmax units compute p(ỹn | x̃n, W̃) = softmax(W̃x̃n) and the second
p(yn |xn,W) = softmax(Wxn), cf. Fig. 1 (left).
For representational learning (phase 1) the large dataset D̃ is used to train the CNN Φϕ using stan-
dard deep learning optimisation approaches. This involves learning the parameters ϕ of the feature
extractor up to the last hidden layer, as well as the softmax weights W̃. The network parameters ϕ
are fixed from this point on and shared across later phases.

Probabilistic modelling. The next goal is to build a probabilistic method for k-shot prediction that
transfers structure from the trained softmax weights W̃ to the new k-shot softmax weights W and
combines it with the k-shot training examples. Thus, given a test image u∗ during k-shot testing
(phase 4), we compute its feature representation x∗ = Φ(u∗), and the prediction for the new label
y∗ is found by averaging the softmax outputs over the posterior distribution of the softmax weights
given the two datasets,

p(y∗ |x∗,D, D̃) =

∫
p(y∗ |x∗,W)p(W | D, D̃)dW. (1)

To this end, we consider a general class of probabilistic models in which the two sets of softmax
weights are generated from shared hyperparameters θ, so that p(W̃,W, θ) = p(θ)p(W̃|θ)p(W|θ) as
indicated in the graphical model in Fig. 1 (right). In this way, the large dataset D̃ contains information
about θ that in turn constrains the new softmax weights W. We further assume that there is very little
uncertainty in W̃ once the large initial training set is observed and so a maximum a posteriori (MAP)
estimate, as returned by standard deep learning, suffices. As a consequence of this approximation
and the structure of the model, the original data D̃ are not required for the k-shot learning phase.
Instead, the weights learned from these data, W̃MAP, can themselves be treated as observed data,
which induce a predictive distribution over the k-shot weights p(W|W̃MAP) via Bayes’ rule. This
argument is fully explained in Appendix A. We refer to this step as concept learning (phase 2) and
note that all probabilistic modelling happens in the definition of p(W̃,W, θ), (see Secs. 2.2 and 2.3).

During k-shot learning (phase 3) we treat this predictive distribution as our new prior on the weights
and again use Bayes’ rule to combine it with the softmax likelihood of the k-shot training examples
D to obtain a new posterior over the weights that now also incorporates D,

p(W | D, D̃) ≈ p(W | D, W̃MAP) ∝ p(W | W̃MAP)

N∏
n=1

p(yn|xn,W). (2)

Finally, we approximate Eq. (2) by its MAP estimate WMAP, so that the integral in Eq. (1) becomes

p(y∗ |x∗,D, D̃) ≈ p(y∗ |x∗,D, W̃MAP) ≈ p(y∗ |x∗,WMAP). (3)

2.2 CHOOSING A MODEL FOR THE WEIGHTS

The probabilistic model over the weights is key: a good model will transfer useful knowledge that
improves performance. However, the usual trade-off between model complexity and learnability is
particularly egregious in our setting as the weights W̃ are few and high-dimensional and the number
of k-shot samples is small. With an eye on simplicity, we make two simplifying assumptions. First,
treating the weights from the hidden layer to the softmax outputs as a vector, we assume independence.

3

Under review as a conference paper at ICLR 2018

Second, we assume the distribution between the weights of old and new classes to be identical,

p(W̃,W, θ) = p(θ)

C̃∏
c′=1

p(w̃c′ |θ)
C∏
c=1

p(wc|θ) where p(w̃c′ |θ) dist
= p(wc|θ). (4)

After extensive testing, we found that a Gaussian model for the weights strikes the best compromise
in the trade-off between complexity and learnability, cf. Sec. 4.2 for a detailed model comparison.

2.3 GAUSSIAN MODEL AND ITS RELATION TO LOGISTIC REGRESSION

Our method. We use a simple Gaussian model p(w|θ) = N (w|µ,Σ) with its conjugate Normal-
inverse-Wishart prior p(θ) = p(µ,Σ) = NIW(µ,Σ |µ0, κ0,Λ0, ν0), and estimate MAP solutions
for the parameters θMAP = {µMAP,ΣMAP}. The approximations discussed in Sec. 2.1 lead to
p(W | D̃) ≈ p(W | W̃MAP) = N (W |µMAP,ΣMAP), and the posterior at k-shot time becomes

p(W | D, D̃) ∝ N (W |µMAP,ΣMAP)

N∏
n=1

p(yn |xn,W). (5)

For details see Appendix C.1. For k-shot testing we use the MAP estimates for the weights of the new
classes. We found that restricting the covariance matrix to be isotropic, Σ = σ2I, performed best at
k-shot learning, probably due to the small number of data points to learn from as mentioned above.

Relation to logistic regression. Standard logistic regression corresponds to the maximum like-
lihood (MLE) solution of the softmax likelihood p(yn |xn,W) = softmax(Wxn). Often, L2-
regularisation on the weights W with inverse regularisation strength 1/Creg is used; the solution to
this regularised optimisation problem corresponds to the MAP solution of a model with isotropic
Gaussian prior on the weights with zero mean: p(W | D) ∝ N (W|0, 1

2CregI)
∏N
n=1 p(yn |xn,W).

This method is analogous to Eq. (5). However, the probabilistic framework has several advantages:
i) modelling assumptions and approximations are made explicit, ii) it is strictly more general and can
incorporate non-zero means µMAP, whereas standard regularised logistic regression assumes zero
mean, and iii) the probabilistic interpretation provides a principled way of choosing the regularisation
constant using the trained weights W̃: Creg = 2σ2

W̃
, where σ2

W̃
is the empirical variance of the

weights W̃MAP. In k-shot learning, alternative (frequentist) methods such as cross-validation suffer
in the face of the small number of k-shot examples, and are not applicable in 1-shot learning at all.

3 RELATED WORK

Embedding methods map the k-shot training and test points into a non-linear space and perform
classification by assessing which training points are closest, according to a metric, to the test points.
Siamese Networks (Koch et al., 2015) train the embedding using a same/different prediction task
derived from the original dataset and use a weighted L1 metric for classification. Matching Net-
works (Vinyals et al., 2016) construct a set of k-shot learning tasks from the original dataset to train an
embedding defined through an attention mechanism that linearly combines training labels weighted
by their proximity to test points. More recently, Prototypical Networks (Snell et al., 2017) are a
streamlined version of Matching Networks in which embedded classes are summarised by their mean
in the embedding space. These embedding methods learn representations for k-shot learning, but do
not directly leverage concept transfer.

Amortised optimisation methods (Ravi & Larochelle, 2017) also simulate related k-shot learning tasks
from the initial dataset, but instead train a second network to initialise and optimise a CNN to perform
accurate classification on these small datasets. This method can then be applied for new k-shot tasks.

Importantly, both embedding and amortised inference methods improve when the system is trained
for a specific k-shot task: to perform well in 5-shot learning, training is carried out with episodes
containing 5 examples in each class. The general statement appears to be that training specifically
for k-shot learning is essential for building features which generalise well at k-shot testing time. The
approach proposed in this paper is more flexible; it is not tailored for a specific k and, thus, does not
require retraining when switching, e.g., from 5-shot to 10-shot learning. Moreover, Snell et al. (2017)

4

Under review as a conference paper at ICLR 2018

find that using a larger number of k-shot classes for the training episodes (e.g., train with 20 k-shot
classes per episode when testing on only 5 new k-shot classes) can be beneficial, and they choose
this number by cross-validation on a validation-set. This is in alignment with our finding that training
with more data and more classes improves performance at k-shot time.

Deep probabilistic methods include the approach developed in this paper. The methods in this family
are not unique to deep learning, and the idea of treating weights as data from which to transfer
has been widely applied in multi-task learning (Bakker & Heskes, 2003). The work most closely
related to our own is not an approach to k-shot learning per se, but rather a method for training CNNs
with highly imbalanced classes (Srivastava & Salakhutdinov, 2013). It is similar in that it trains a
form of Gaussian mixture model over the final layer weights using MAP inference that regularises
learning. Burgess et al. (2016) propose an elegant approach to k-shot learning that is an instance
of the framework described here: a Gaussian model is fit to the weights with MAP inference. The
evaluation is promising, but preliminary. One of the goals of this paper is to provide a comprehensive
evaluation. While not using a probabilistic approach, Qiao et al., 2017 develop a method for k-shot
learning that trains a recognition model to amortise MAP inference for the softmax weights which
can then be used at k-shot learning time. While this method trains the mapping from activation to
weights jointly with the classifier, and thus does not learn from the weights per se, it does exploit the
structure in the weights for k-shot learning.

4 EXPERIMENTS

The code used to produce the following experiments will be made available after review.

Dataset. miniImageNet has become a standard testbed for k-shot learning and is derived from the
ImageNet ILSVRC12 dataset (Russakovsky et al., 2015) by extracting 100 out of the 1000 classes.
Each class contains 600 images downscaled to 84 × 84 pixels. We use the 100 classes (64 train,
16 validation, 20 test) proposed by Ravi & Larochelle (2017). As our approach does not require a
validation set, we use both the training and validation data for the representational learning.

Representational learning. We employ standard CNNs that are inspired by ResNet-34 (He et al.,
2016) and VGG (Simonyan & Zisserman, 2014) for the representational learning on the C̃ base
classes, cf. Phase 1 in Sec. 2.1. These trained networks provide both W̃MAP and the fixed feature
representation Φϕ for the k-shot learning and testing. We employed standard data augmentation
from ImageNet for the representational learning but highlight that no data augmentation was used
during the k-shot training and testing. For details on the architecture, training, and data augmentation
see Appendix D.4. t-SNE embeddings (Van der Maaten & Hinton, 2008) of the learned last layer
weights show sensible clusters, which highlights the structure exploited by the probabilistic model,
see Appendix E.1.

Baselines and competing methods. We compare against several baselines as well as recent state-
of-the-art methods mentioned in Sec. 3. The baselines are computed on the features x = Φφ(u)
from the last hidden layer of the trained CNN: (i) Nearest Neighbours with cosine distance and (ii)
regularized logistic regression with regularisation constant set either by cross-validation or (iii) using
the variance of the weights, C = 2σ2

W̃
, as motivated by our probabilistic framework, cf. Sec. 2.3. We

also compare against three recent k-shot methods: (i) Matching Networks1 (Vinyals et al., 2016), (ii)
Prototypical Networks, with numbers reported from Snell et al., 2017 and (iii) Meta-learner LSTM,
with numbers reported from Ravi & Larochelle, 2017.

Testing protocol. We evaluate the methods on 600 random k-shot tasks by randomly sampling 5
classes from the 20 test classes and perform 5-way k-shot learning. Following Snell et al. (2017), we
use 15 randomly selected images per class for k-shot testing to compute accuracies and calibration.

4.1 RESULTS ON miniIMAGENET

Overall k-shot performance. We report performance on the miniImageNet dataset in Tab. 1 and
Figs. 2 and 3. The best method uses as feature extractor a modified ResNet-34 with 256 features,

1as reimplemented and optimised by https://github.com/AntreasAntoniou/MatchingNetworks to pro-
duce results that are superior to those originally published.

5

https://github.com/AntreasAntoniou/MatchingNetworks

Under review as a conference paper at ICLR 2018

Method 1-shot 5-shot 10-shot

ResNet-34 + Isotropic Gaussian (ours) 56.3± 0.4% 73.9± 0.3% 78.5± 0.3%

Matching Networks (reimplemented, 1-shot) 46.8 ± 0.5% - -
Matching Networks (reimplemented, 5-shot) - 62.7 ± 0.5% -
Meta-Learner LSTM (Ravi & Larochelle, 2017) 43.4 ± 0.8% 60.6 ± 0.7% -
Prototypical Nets (1-shot) (Snell et al., 2017) 49.4 ± 0.8% 65.4 ± 0.7% -
Prototypical Nets (5-shot) (Snell et al., 2017) 45.1 ± 0.8% 68.2 ± 0.7% -

Table 1: Accuracy on 5-way classification on miniImageNet. Our best method, an isotropic Gaussian
model using ResNet-34 features consistently outperforms all competing methods by a wide margin.

1 5 10
k-shot

0.6

0.7

Accuracy

Gauss (iso) Log Reg (C = 2σ 2
W) Log Reg (cross-validation) Nearest Neighbour

1 5 10
k-shot

−1.4

−1.2

−1.0

−0.8

Log Likelihood

0.73 0.74
Accuracy

0.075

0.100

0.125

0.150

0.175

E
C

E

5-shot

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Pr
op

or
tio

n
of

tim
es

co
rr

ec
t Calibration curve (5-shot)

Figure 2: Results for miniImageNet with ResNet-34 style architecture and 600 training images per
class. From left to right: accuracy and log likelihood (higher is better) for different k, Expected
Calibration Error (ECE, lower is better) vs accuracy for 5-shot learning, and Calibration curve for
5-shot learning. Results on other architectures can be found in Appendix E.2

.

trained with all 600 examples per training class, and a simple isotropic Gaussian model on the
weights for concept learning. Despite its simplicity, our method achieves state-of-the-art and beats
prototypical networks by a wide margin of about 6%. The baseline methods using the same feature
extractor are also state-of-the-art compared to prototypical networks and both logistic regressions
show comparable accuracy to our methods except for on 1-shot learning. In terms of log-likelihoods,
Log Reg (C = 2σ2

W̃
) fares slightly better, whereas Log Reg (cv) is much worse.

Deeper features lead to better k-shot learning. We investigate the influence of different feature
extractors of increasing complexity on performance in Fig. 3: i) a VGG style network (500 train
images per class), ii) a ResNet-34 (500 examples per class), and iii) a ResNet-34 (all 600 examples
per class). We find that the complexity of the feature extractor as well as training set size consistently
correlate with the accuracy at k-shot time. For instance, on 5-shot, Gauss (iso) achieves 65% accuracy
with a VGG network and 74% with a ResNet trained with all available data, a significant increase
of almost 10%. Moreover, Gauss (iso) outperforms Log Reg (C = 2σ2

W̃
) on 1-shot learning across

models, and performs similarly on 5- and 10-shot. We attribute the difference to the former’s ability
to also model the mean of the Gaussian, whereas logistic regression assumes a zero mean.

Importantly, this result implies that training specifically for k-shot learning is not necessary for
achieving high generalisation performance on this k-shot problem. On the contrary, training a powerful
deep feature extractor on batch classification using all of the available training data, then building a
simple probabilistic model using the learned features and weights achieves state-of-the-art. Recent
models that use episodic training cannot leverage such deep feature extractors as for them the depth
of the model is limited by the nature of training itself. The reference baseline in the k-shot learning
literature is nearest neighbours, which performs on par with Gauss (iso) on 1-shot learning but is
outperformed by all methods on 5- and 10-shot. This is evidence that building a simple classifier on
top of the learned features works significantly better for k-shot learning than nearest neighbours.

Calibration. A classifier is said to be calibrated when the probability it predicts for belonging to
a given class is on par with the probability of it being the correct prediction. In other words, when

6

Under review as a conference paper at ICLR 2018

0.45 0.50 0.55
Accuracy

ResNet-34 600/class

ResNet-34 500/class

VGG 500/class

1-shot

0.6 0.7
Accuracy

5-shot

0.65 0.70 0.75
Accuracy

10-shot
Gauss (iso)
Log Reg (C = 2σ 2

W)

Log Reg (cross-val)
Nearest Neighbour

Figure 3: Comparison of different network architectures and training set sizes on the k-shot learning
task: VGG style network (trained on 500 images per class) and ResNet-34 style network (trained on
500 and 600 images per class, respectively). Both, deeper networks and larger number of training
images, give rise to features that transfer better to k-shot learning.

10−4 10−2 100

Creg

0.5

0.6

0.7

0.8
Accuracy

1-shot 5-shot 10-shot Creg = 10−5→Creg = 10 C by cross-validation C = 2σ 2
W

10−4 10−2 100

Creg

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

Figure 4: Choice of regularisation constant for logistic regression for k-shot learning. Results for
Creg = 2σ2

W̃
are drawn as black triangles. Dashed lines correspond to logistic regression with cross-

validated (changing) regularisation constant. Colour brightness of the markers ranges from dark
(C = 10−5) to bright (C = 10). ECE plots are provided in Appendix E.3.

examples for which it predicts a probability p of belonging to a given class are correctly classified
for a fraction p of the examples. A calibration curve visualises the proportion of examples correctly
classified as a function of their predicted probability; a perfectly calibrated classifier should result
in a diagonal line. Following Guo et al. (2017), we consider the log likelihood on the k-shot test
examples as well as Expected Calibration Error (ECE) as summary measures of calibration. ECE
can be interpreted as the weighted average of the distance of the calibration curve to the diagonal.
We find that Log Reg (C = 2σ2

W̃
) and Gauss (iso) provide better accuracy and calibration than Log

Reg (cross-validation), cf. Fig. 2. The difference in calibration quality for different regularisations of
logistic regression highlights the importance of choosing the right constant, as we discuss now.

Choice of the regularisation constant for logistic regression. The results so far suggest that
training a simple linear model such as regularised logistic regression might be sufficient to perform
well in k-shot learning. However, while the accuracy at k-shot time does not vary dramatically as
the regularisation constant changes, the calibration does, and jointly maximizing both quantities is
not possible, cf. the first two plots of Fig. 4. The standard (frequentist) method to tune this constant
is cross validation, which is not applicable in the 1-shot setting, and suffers from lack of data in
5- and 10-shot. Contrary, our probabilistic framework provides a principled way of selecting this
regularisation parameter by transfer from the training weights: Log Reg (C = 2σ2

W̃
) strikes a good

balance between accuracy and log-likelihood. The third plot in Fig. 4 reports log-likelihood as a
function of accuracy and provides further visualisation of the achieved trade-off between accuracy
and calibration for Log Reg (C = 2σ2

W̃
), as well as the failure of Log Reg (cross-validation) to

achieve a good compromise in 5- and 10-shot.

Evaluation in an online setting. We also briefly consider the online setting, in which we jointly
test on 80 old and 5 new classes, for which catastrophic forgetting (French, 1999) is a well known
problem. During k-shot learning and testing we employ a softmax which includes both the new
and the old weights resulting in a total of 85 weight vectors. We utilise ResNet-34 trained on 500
images per class to retain 100 test images on the old classes. While the k-shot weights were modelled
probabilistically, we use the MAP estimate W̃MAP for the old weights. Accuracies are reported in

7

Under review as a conference paper at ICLR 2018

1 5 10
k-shot

0.0
0.2
0.4
0.6

Accuracy on all classes

1 5 10
k-shot

0.0
0.2
0.4
0.6

Accuracy on old classes

1 5 10
k-shot

0.0
0.2
0.4
0.6

Accuracy on new classes
Gauss (iso)
Log Reg (C = 2σ2

W)

Log Reg (MLE)
Log Reg (C = 2σ2

W , only new)

Figure 5: Online learning with ResNet-34 features. Gauss (iso) and Log Reg (2σ2
W̃

) strike a good
trade-off between learning on new classes and forgetting of old classes. Unregularised Log Reg (MLE)
and Log Reg (2σ2

W̃
, only new), which has not been trained in the presence of the old weights, either

completely forget the old classes or do not learn anything, respectively.

Fig. 5 for i) all the 85 classes, ii) the old 80 classes only, and iii) the new 5 classes only. For 5- and
10-shot, Gauss (iso) and Log Reg (2σ2

W̃
) only lose a couple of percent on the accuracy of the old

classes, and perform well on the new classes, striking a good trade-off between forgetting and learning
at k-shot time. For unregularised (MLE) logistic regression, the new weights completely dominate the
old ones, highlighting that the right regularisation is important. Yet, cross-validation in this setting is
often very challenging. When training Logistic Regression without including the old weights (“only
new”), the new weights are dominated by the old ones and fail to learn the new classes, making
training in the presence of the old weights an essential component for online learning.

4.2 MODEL COMPARISON ON CIFAR-100

We performed an extensive comparison between different probabilistic models of the weights using
different inference procedures, which we present in Appendix E.4. We report results on the CIFAR-100
dataset on (i) Gaussian, (ii) mixture of Gaussians, and (iii) Laplace, all with either MAP estimation or
Hybrid Monte Carlo sampling. We found that the simple Gaussian model is on par with or outperforms
other methods at k-shot time, which we attribute to it striking a good balance between choosing a
complex model, which may better fit the weights, and statistical efficiency, as the number of weights C̃
(80 in our case) is often smaller than the dimensionality of the feature representation (256 in our case),
cf. Sec. 2. This finding is supported by computing the log-likelihood of held out training weights
under such model, with the Gaussian model performing best. Experiments using Hybrid Monte Carlo
sampling for k-shot learning returned very similar performance to MAP estimation and at a much
higher computational cost, due to the difficulty of performing sampling in such a high dimensional
parameter space. Our recommendation is that practitioners should use simple models and employ
simple inference schemes to estimate all free parameters thereby avoiding expending valuable data
on validation sets.

5 CONCLUSION

We present a probabilistic framework for k-shot learning that exploits the powerful features and class
information learned by a neural network on a large training dataset. Probabilistic models are then
used to transfer information in the network weights to new classes. Experiments on miniImageNet
using a simple Gaussian model within our framework achieve state-of-the-art for 1-shot and 5-shot
learning by a wide margin, and at the same time return well calibrated predictions. This finding is
contrary to the current belief that episodic training is necessary to learn good k-shot features and
puts the success of recent complex deep learning approaches to k-shot learning into context. The
new approach is flexible and extensible, being applicable to general discriminative models and k-
shot learning paradigms. For example, preliminary results on online k-shot learning indicate that the
probabilistic framework mitigates catastrophic forgetting by automatically balancing performance on
the new and old classes.

The Gaussian model is closely related to regularised logistic regression, but provides a principled and
fully automatic way to regularise. This is particularly important in k-shot learning, as it is a low-data
regime, in which cross-validation performs poorly and where it is important to train on all available
data, rather than using validation sets.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Bart Bakker and Tom Heskes (2003). Task Clustering and Gating for Bayesian Multitask Learning.
Journal of Machine Learning Research 4, pp. 83–99.

Jordan Burgess, James Robert Lloyd, and Zoubin Ghahramani (2016). One-Shot Learning in Dis-
criminative Neural Networks. NIPS Bayesian Deep Learning workshop.

Robert M French (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences 3.4, pp. 128–135.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger (2017). On Calibration of Modern Neural
Networks. arXiv e-print: 1706.04599.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). Deep Residual Learning for Image
Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
eprint: 1512.03385.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov (2015). Siamese neural networks for one-
shot image recognition. Deep Learning workshop, International Conference of Machine Learning.

Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenenbaum (2015). Human-level concept learning
through probabilistic program induction. Science 350.6266, pp. 1332–1338.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille (2017). Few-Shot Image Recognition by
Predicting Parameters from Activations. arXiv e-print: 1706.03466.

Sachin Ravi and Hugo Larochelle (2017). Optimization as a model for few-shot learning. In: Interna-
tional Conference on Learning Representations. Vol. 1. 2, p. 6.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115.3, pp. 211–252. DOI: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman (2014). Very deep convolutional networks for large-scale
image recognition. arXiv e-print:1409.1556.

Jake Snell, Kevin Swersky, and Richard Zemel (2017). Prototypical Networks for Few-shot Learning.
arXiv e-print: 1703.05175.

Nitish Srivastava and Ruslan R Salakhutdinov (2013). Discriminative transfer learning with tree-
based priors. In: Advances in Neural Information Processing Systems, pp. 2094–2102.

Laurens Van der Maaten and Geoffrey Hinton (2008). Visualizing Data using t-SNE. Journal of
Machine Learning Research 9, pp. 2579–2605.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. (2016). Matching networks for
one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638.

9

1512.03385
http://dx.doi.org/10.1007/s11263-015-0816-y

Under review as a conference paper at ICLR 2018

Appendix to “Discriminative k-shot learning using probabilistic
models”

A DETAILS ON THE DERIVATION AND APPROXIMATIONS FROM SEC. 2.1

As stated in the main text, the probabilistic k-shot learning approach comprises four phases mirroring
the dataflow:

Phase 1: Representational learning. The large dataset D̃ is used to train the CNN Φϕ using
standard deep learning optimisation approaches. This involves learning both the parameters ϕ of
the feature extractor up to the last hidden layer, as well as the softmax weights W̃. The network
parameters ϕ are fixed from this point on and shared across phases. This is a standard setup for multi-
task learning and in the present case it ensures that the features derived from the representational
learning can be leveraged for k-shot learning.

Phase 2: Concept learning. The softmax weights W̃ are effectively used as data for concept learn-
ing by training a probabilistic model that detects structure in these weights which can be transferred
for k-shot learning. This approach will be justified in the next section. For the moment, we consider
a general class of probabilistic models in which the two sets of weights are generated from shared
hyperparameters θ, so that p(W̃,W, θ) = p(θ)p(W̃|θ)p(W|θ) (see Fig. 1).

Phases 3 and 4: k-shot learning and testing. Probabilistic k-shot learning leverages the learned
representation Φϕ from phase 1 and the probabilistic model p(W̃,W, θ) from phase 2 to build a
(posterior) predictive model for unseen new examples using examples from the small dataset D.

PROBABILISTIC MODEL OF THE WEIGHTS

Given the dataflow and the assumed probabilistic model in Fig. 1 (right), a completely probabilistic
approach would involve the following steps.

In the concept learning phase, the initial dataset would be used to form the posterior distribution over
the concept hyperparameters p(θ | D̃). The k-shot learning phase combines the information about
the new weights provided by D̃ with the information in the k-shot dataset D to form the posterior
distribution

p(W | D, D̃) ∝ p(W | D̃)
∏
n

p(yn |xn,W) where p(W | D̃) =

∫
p(W | θ)p(θ | D̃)dθ. (6)

To see this, notice that

p(W | D, D̃) ∝ p(W,D, D̃) = p(D̃)p(W | D̃)p(D | D̃,W). (7)

The graphical model in Fig. 1 entails that D is conditionally independent from D̃ given W, such that

p(D |W, D̃) = p(D |W) =
∏
n

p(yn |xn,W). (8)

We recover Eq. (6) by adding p(D̃) to the constant of proportionality.

Inference in this model is generally intractable and requires approximations. The main challenge is
computing the posterior distribution over the hyper-parameters given the initial dataset. However,
progress can be made if we assume that the posterior distribution over the weights can be well approx-
imated by the MAP value p(W̃ | D̃) ≈ δ(W̃ − W̃MAP). This is an arguably justifiable assumption as
the initial dataset is large and so the posterior will concentrate on narrow modes (with similar predic-
tive performance). In this case p(θ | D̃) ≈ p(θ | W̃MAP) and, due to the structure of the probabilistic
model, all instances of D̃ in Eq. (6) and Eq. (1) can be replaced by the analogous expressions involving
W̃MAP. This greatly simplifies the learning pipeline as the probabilistic modelling only needs to have
access to the weights returned by representational learning. Remaining intractabilities involve only a
small number of data points D and can be handled using standard approximate inference tools. The
following summarizes the approximations and computational steps for each phase of training.

10

Under review as a conference paper at ICLR 2018

Phase 1: Representational learning. Deep learning is used to train a CNN. The representation
of input images at the last hidden layer, x = Φϕ(u), is used in subsequent phases. The final layer
softmax weights are assumed to be MAP estimates W̃MAP.

Phase 2: Concept learning. A probabilistic model is fit directly to the MAP weights
p(θ | W̃MAP) ∝ p(θ)p(W̃MAP|θ). For conjugate models a full posterior can be retained, otherwise a
MAP estimate p(θ | W̃MAP) ≈ δ(θ − θMAP) is used.

Phase 3: k-shot learning. The posterior distribution over the new softmax weights
p(W | D, W̃MAP) ∝ p(W | W̃MAP)

∏N
n=1 p(yn|xn,W) is generally intractable. The posterior can,

however, be approximated using the MAP estimate p(W | D, W̃MAP) ≈ δ(W −WMAP) or through
sampling Wm ∼ p(W | D, W̃MAP). Note that p(W | W̃MAP) =

∫
p(W|θ)p(θ | W̃MAP)dθ is ana-

lytic for conjugate models and, if instead a MAP estimate for θ is provided by the concept modelling
stage, then p(W | W̃MAP) ≈ p(W|θMAP).

Phase 4: k-shot testing. Approximate inference is used to compute p(y∗ |x∗,D, W̃MAP) =∫
p(y∗ |x∗,W)p(W | D, W̃MAP)dW. If the k-shot learning phase provides a MAP esti-

mate of W then p(y∗ |x∗,D, W̃MAP) ≈ p(y∗ |x∗,WMAP). If samples are returned then
p(y∗ |x∗,D, W̃MAP) ≈ 1

M

∑M
m=1 p(y

∗ |x∗,Wm).

B APPROXIMATE INFERENCE METHODS

In this section we briefly discuss different inference methods for the probabilistic models. In the main
text we only considered MAP inference as we found that other more complicated inference schemes
do not yield a practical benefit. However, in Appendix E.4 we provide a detailed model comparison,
in which we also consider other approximate inference methods.

In all cases the gradients of the densities w.r.t. W can be computed, enabling MAP inference in the
k-shot learning phase to be efficiently performed via gradient-based optimisation using L-BFGS (Liu
& Nocedal, 1989). Alternatively, Markov Chain Monte Carlo (MCMC) sampling can be performed
to approximate the associated integral, see Eq. (1). Due to the high dimensionality of the space
and as gradients are available, we employ Hybrid Monte Carlo (HMC) (Neal et al., 2011) sampling
in the form of the recently proposed NUTS sampler that automatically tunes the HMC parameters
(step size and number of leapfrog steps) (Hoffman & Gelman, 2014). For the GMMs we employed
pymc3 (Salvatier et al., 2016) to perform MAP inference.

C MODELS FOR THE PRIOR ON THE WEIGHTS

As discussed in Sec. 2.1, we specify our model through p(W, W̃, θ) thus defining p(W | W̃MAP)
in Eq. (2). This section analyses different priors on the weights: (i) Gaussian models, (ii) Gaussian
mixture models, and (iii) Laplace distribution. In the main paper, we only use a Gaussian model with
MAP inference, as we saw no significant advantage in using other, more complex models. However,
we provide an extensive comparison of the different models in Appendix E.4.

C.1 GAUSSIAN MODEL

Possibly the simplest approach consists of modelling p(W | W̃) as a Gaussian distribution:

p(W | W̃) =

∫
N (W |µ,Σ)p(µ,Σ | W̃)dµdΣ. (9)

Details for this section can be found in Murphy, 2012. The normal-inverse-Wishart distribution for
µ and Σ is a conjugate prior for the Gaussian, which allows for the posterior to be written in closed
form. More precisely,

p(µ,Σ) = NIW(µ,Σ |µ0, κ0,Λ0, ν0)

=
1

Z
|Σ|−(ν0+p)/2+1e−

1
2 tr(Λ0Σ−1)−κ0

2 (µ−µ0)tΣ−1(µ−µ0),
(10)

11

Under review as a conference paper at ICLR 2018

where Z is the normalising constant. The posterior p(µ,Σ | W̃) also follows a normal-inverse-Wishart
distribution:

p(µ,Σ | W̃) = NIW(µ,Σ |µÑ , κÑ ,ΛÑ , νÑ), (11)
where

µÑ =
κ0

κ0 + Ñ
µ0 +

Ñ

κ0 + Ñ
W̃

κÑ = κ0 + Ñ

ΛÑ = Λ0 + S +
κ0Ñ

κ0 + Ñ
(W̃ − µ0)(W̃ − µ0)t

νÑ = ν0 + Ñ ,

and S is the sample covariance of W̃.

For this model, we can integrate (9) in closed form, which results in the following multivariate Student
t-distribution:

p(W | W̃) = tν
Ñ
−p+1

(
µÑ ,

ΛÑ (κÑ + 1)

κÑ (νÑ − p+ 1)

)
.

As with other approaches, one can also compute the MAP solutions for the mean µMAP and covariance
ΣMAP, such that p(W | W̃) = N (W |µMAP,ΣMAP).

For both the analytic posterior and the MAP approximation, p(W | W̃) depends on the hyperparame-
ters of the normal-inverse-Wishart distribution: µ0, ν0, κ0 and Λ0. There are different ways to choose
these hyperparameters. One way would be by optimising the log probability of held out training
weights, see Appendix E.4 for a brief discussion. In practise, it is common to choose uninformative
or data dependent priors as discussed by Murphy (2012, Chapter 4).

C.2 MIXTURE OF GAUSSIANS (GMM)

A Gaussian mixture model can potentially leverage cluster structure in the weights (animal classes
might have similar weights, for example). This is related to the tree-based prior proposed in Srivastava
& Salakhutdinov (2013). MAP inference is performed because exact inference is intractable. Similarly
to the Gaussian case, different structures for the covariance of each cluster were tested. In our
experiments, we fit the parameters of the GMM via maximum likelihood using the EM algorithm.
GMM consists on modelling p(W | W̃) as a mixture of Gaussians with S components:

p(W | W̃) =

∫ (S∑
s=1

πsN (W |µs,Σs)
)
p(µ1, . . . , µS ,Σ1, . . . ,ΣS | W̃)dµ1 . . . dµSdΣ1 . . . dΣS ,

(12)
where

∑S
s=1 πs = 1. In this work, we only compute the MAP mean and covariance for each of the

clusters, as opposed to averaging over the parameters of the mixture. The resulting posterior is

p(W | W̃) =

S∑
s=1

πsN (W |µMAP,s,ΣMAP,s). (13)

The components of the mixture are fit in two ways. For CIFAR-100, the classes are grouped into 20
superclasses, each containing 5 of the 100 classes. One option is therefore to initialize 20 components,
each fit with the data points in the corresponding superclass. For each such individual Gaussian, the
MAP inference method presented in the previous section can be used. In order to increase the number
of weight examples in each superclass, we merge the original superclasses into 9 larger superclasses.
The merging of the superclasses is the following:

• Aquatic mammals + fish

12

Under review as a conference paper at ICLR 2018

• flowers + fruit and vegetables + trees

• insects + non-insect invertebrates + reptiles

• medium-sized mammals + small mammals

• large carnivores + large omnivores and herbivores

• people

• large man-made outdoor things + large natural outdoor things

• food containers + household electrical devices + household furniture

• Vehicles 1 + Vehicles 2.

The parameters of the mixture can also be fit using maximum likelihood with EM. We use the
implementation of EM in scikit-learn. Both 3 and 10 clusters are considered in CIFAR-100. Weight
log-likelihoods under this model and k-shot performance can be found in Appendix E.4.

Note that, similarly to the Gaussian model, we consider isotropic, diagonal or full covariance models
for the covariance matrices.

C.3 LAPLACE DISTRIBUTION

Sparsity is an attractive feature which could be helpful for modelling the weights. Indeed, it is
reasonable to assume that each class uses a set of characteristic features which drive classification
accuracy, while others are irrelevant. Sparse models would then provide sensible regularization. As
such, we consider a product of independent Laplace distribution. Sec. 2.3 highlights the relation
between a Gaussian prior on the weights and L2 regularised logistic regression. One can similarly
show that the Laplace prior is related to L1 regularised logistic regression, which is well known for
encouraging sparse weight vectors.

We consider a prior which factors along the feature dimensions:

p(W̃ | {µj}, {λj}) =

p∏
j

1

2λj
exp

− C̃∑
i

|W̃ij − µj |
λj

 .

where the product over j is along the feature dimensions and the sum over i is across the classes. We
fit the parameters µ and λ via maximum likelihood:

µMLE,j = mediani(W̃ij)

λMLE,j =
1

N

∑
i

|W̃ij − µj |,

such that

p(W | W̃) =

p∏
j

1

2λMLE,j
exp

(
−

C∑
i

|Wij − µMLE,j |
λMLE,j

)
.

An isotropic Laplace model with mean µ and scale λ is also considered:

p(W̃ |µ, λ) =
1

2λ
exp

(
−
∑
ij |W̃ij − µ|

λ

)
,

where

µMLE = median(W̃)

λMLE =
1

Np

∑
ij

|W̃ij − µ|,

13

Under review as a conference paper at ICLR 2018

D TRAINING AND EVALUATION PROCEDURE DETAILS

D.1 miniIMAGENET

To construct miniImageNet we use the same classes as initially proposed by Ravi & Larochelle (2017)
and used in (Snell et al., 2017), which is split into 64 training classes (cf. Tab. 2), 16 validation classes
(cf. Tab. 3), and 20 test classes (cf. Tab. 4). We will make a full list of image files available.

As we do not require a validation set, we combine the training and validation set to form an extended
training set. We extract 600 images per class from the ImageNet 2012 Challange dataset (Krizhevsky
et al., 2012), scale the shorter side to 84 pixels and then centrally crop to 84× 84 pixels, that is, we
preserve the original aspect ratio of the image content. We use these coloured 84× 84× 3 images as
input for representational and k-shot learning and testing.

In order to train very deep models, such as a ResNet, we need to perform data augmentation as is the
case when training full ImageNet. We use the following standard data augmentation from ImageNet
that we adapt to the size of the input images:

• random horizontal flipping
• randomly paste image into 100× 100 frame and cut out central 84× 84 pixels
• randomly change brightness, contrast, saturation and lighting

We highlight that we do not perform any data augmentation for the k-shot learning and k-shot testing
but use the original 84× 84 colour images as input to the feature extractor.

D.2 CIFAR-100

CIFAR-100 consists of 100 classes each with 500 training and 100 test images of size 32 × 32.
The classes are grouped into 20 superclasses with 5 classes each. For example, the superclass ”fish”
contains the classes aquarium fish, flatfish, ray, shark, and trout. Unless otherwise stated, we used a
random split into 80 base classes and 20 k-shot learning classes.

For k-shot learning and testing, we split the 100 classes into 80 base classes used for network training
and 20 k-shot learning classes.

classes_base = [
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22,
24, 25, 27, 28, 32, 34, 35, 36, 38, 40, 42, 43, 44, 45, 46, 48, 49,
50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99

]
classes_heldout = [

8, 11, 12, 20, 23, 26, 29, 30, 31, 33, 37, 39, 41, 47, 57, 68, 71,
72, 81, 84

]

We provide an exhaustive comparison of different probabilistic models for this k-shot learning task
in Appendix E.4.

D.3 NETWORK ARCHITECTURE AND TRAINING: RESNET INSPIRED

The network architecture is inspired by the ResNet-34 architecture for ImageNet (He et al., 2016) that
uses convolution blocks, with two convolutions each, that are bridged by skip connections. As a base,
we utilise the example code2 provided by tensorpack (https://github.com/ppwwyyxx/tensorpack),
a neural network training library built on top of tensorflow (Martı́n Abadi et al., 2015). We adapt
the number of features as well as the size of the last fully connected layer to account for the smaller
number of training samples and training classes. The final architecture is detailed in Tab. 5.

2https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet

14

https://github.com/ppwwyyxx/tensorpack
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet

Under review as a conference paper at ICLR 2018

n03400231 frying pan, frypan, skillet
n02108551 Tibetan mastiff
n02687172 aircraft carrier, carrier, flattop, attack aircraft carrier
n04296562 stage
n13133613 ear, spike, capitulum
n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
n03337140 file, file cabinet, filing cabinet
n02966193 carousel, carrousel, merry-go-round, roundabout, whirligig
n02074367 dugong, Dugong dugon
n02105505 komondor
n04389033 tank, army tank, armored combat vehicle, armoured combat vehicle
n09246464 cliff, drop, drop-off
n03924679 photocopier
n03527444 holster
n04612504 yawl
n01749939 green mamba
n04251144 snorkel
n03347037 fire screen, fireguard
n04067472 reel
n03998194 prayer rug, prayer mat
n13054560 bolete
n02747177 ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
n04435653 tile roof
n02108089 boxer
n03908618 pencil box, pencil case
n01770081 harvestman, daddy longlegs, Phalangium opilio
n03676483 lipstick, lip rouge
n03220513 dome
n04515003 upright, upright piano
n04258138 solar dish, solar collector, solar furnace
n04509417 unicycle, monocycle
n01704323 triceratops
n04443257 tobacco shop, tobacconist shop, tobacconist
n02089867 Walker hound, Walker foxhound
n01910747 jellyfish
n02111277 Newfoundland, Newfoundland dog
n04243546 slot, one-armed bandit
n01558993 robin, American robin, Turdus migratorius
n03047690 clog, geta, patten, sabot
n03854065 organ, pipe organ
n03476684 hair slide
n02113712 miniature poodle
n07747607 orange
n03838899 oboe, hautboy, hautbois
n07584110 consomme
n02795169 barrel, cask
n03017168 chime, bell, gong
n04275548 spider web, spider’s web
n04604644 worm fence, snake fence, snake-rail fence, Virginia fence
n02606052 rock beauty, Holocanthus tricolor
n01843383 toucan
n02457408 three-toed sloth, ai, Bradypus tridactylus
n03062245 cocktail shaker
n03207743 dishrag, dishcloth
n02108915 French bulldog
n06794110 street sign
n02823428 beer bottle
n03888605 parallel bars, bars
n04596742 wok
n02091831 Saluki, gazelle hound
n02101006 Gordon setter
n02120079 Arctic fox, white fox, Alopex lagopus
n01532829 house finch, linnet, Carpodacus mexicanus
n07697537 hotdog, hot dog, red hot

Table 2: Training classes for miniImageNet as proposed by Ravi & Larochelle (2017)

15

Under review as a conference paper at ICLR 2018

n03075370 combination lock
n02971356 carton
n03980874 poncho
n02114548 white wolf, Arctic wolf, Canis lupus tundrarum
n03535780 horizontal bar, high bar
n03584254 iPod
n02981792 catamaran
n03417042 garbage truck, dustcart
n03770439 miniskirt, mini
n02091244 Ibizan hound, Ibizan Podenco
n02174001 rhinoceros beetle
n09256479 coral reef
n02950826 cannon
n01855672 goose
n02138441 meerkat, mierkat
n03773504 missiles

Table 3: Validation classes for miniImageNet as proposed by Ravi & Larochelle (2017)

n02116738 African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
n02110063 malamute, malemute, Alaskan malamute
n02443484 black-footed ferret, ferret, Mustela nigripes
n03146219 cuirass
n03775546 mixing bowl
n03544143 hourglass
n04149813 scoreboard
n03127925 crate
n04418357 theater curtain, theatre curtain
n02099601 golden retriever
n02219486 ant, emmet, pismire
n03272010 electric guitar
n04146614 school bus
n02129165 lion, king of beasts, Panthera leo
n04522168 vase
n07613480 trifle
n02871525 bookshop, bookstore, bookstall
n01981276 king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
n02110341 dalmatian, coach dog, carriage dog
n01930112 nematode, nematode worm, roundworm

Table 4: Test classes for miniImageNet as proposed by Ravi & Larochelle (2017)

16

Under review as a conference paper at ICLR 2018

ResNet-34 inspired for miniImageNet
Output size Layers
84× 84× 3 Input patch
42× 42× 32 5× 5, 32, stride 2

42× 42× 32

[
3× 3, 32
3× 3, 32

]
× 3

21× 21× 64

[
3× 3, 64
3× 3, 64

]
× 4

11× 11× 128

[
3× 3, 128
3× 3, 128

]
× 6

6× 6× 256

[
3× 3, 256
3× 3, 256

]
× 3

256 global average pooling
C̃ fully connected, softmax

Table 5: Network architecture. All unnamed layers are 2D convolutions with stated kernel size and
padding SAME; the output of the shaded layer corresponds to Φϕ(u), the feature space representa-
tion of the image u, which is used as input for probabilistic k-shot learning.

The network is trained using a decaying learning rate schedule and momentum SGD and is imple-
mented in tensorpack using tensorflow.

D.4 NETWORK ARCHITECTURE AND TRAINING: VGG INSPIRED

VGG-style Network for CIFAR-100
Output size Layers
32× 32× 3 Input patch
16× 16× 64 2× (Conv2D, ELU), Pool
8× 8× 64 2× (Conv2D, ELU), Pool
4× 4× 128 2× (Conv2D, ELU), Pool
2× 2× 128 2× (Conv2D, ELU), Pool
2× 2× 128 Dropout (0.5)

256 FullyConnected, ELU
256 Dropout (0.5)
128 FullyConnected, ELU
C̃ FullyConnected, SoftMax

VGG-style Network for miniImageNet
Output size Layers
84× 84× 3 Input patch
42× 42× 32 2× (Conv2D, ELU), Pool
21× 21× 64 2× (Conv2D, ELU), Pool
11× 11× 128 2× (Conv2D, ELU), Pool
6× 6× 128 2× (Conv2D, ELU), Pool
3× 3× 128 2× (Conv2D, ELU), Pool
3× 3× 128 Dropout (0.5)

512 FullyConnected, ELU
512 Dropout (0.5)
256 FullyConnected, ELU
C̃ FullyConnected, SoftMax

Table 6: Network architectures. All 2D convolutions have kernel size 3 × 3 and padding SAME;
max-pooling is performed with stride 2. The output of the shaded layer corresponds to Φϕ(u), the
feature space representation of the image u, which is used as input for probabilistic k-shot learning

The network architecture was inspired by the VGG networks Simonyan & Zisserman, 2014, but does
not employ batch normalisation Ioffe & Szegedy, 2015. To speed up training, we employ exponential
linear units (ELUs), which have been reported to lead to faster convergence as compared to ordinary
ReLUs Clevert et al., 2015. To regularise the networks, we employ dropout (Srivastava, Hinton, et al.,
2014) and regularisation of the weights in the fully connected layers. The networks are trained with
the ADAM optimiser Kingma & Ba, 2014 with decaying learning rate.

The network is implemented in tensorpack using tensorflow.

17

Under review as a conference paper at ICLR 2018

Figure 6: t-SNE embedding of the CIFAR-100 weights W̃ trained using a VGG style architecture.
The points are coloured according to their respective superclass. The colouring by superclass makes
the structure in the weights evident, as t-SNE overall recovers the structure in the dataset. For instance,
oak tree, palm tree, willow tree and pine tree form a cluster on the bottom right. This structure
motivates our approach, as the training weights contain information which may be useful at k-shot
time, for instance given a few example from chestnut trees.

18

Under review as a conference paper at ICLR 2018

house_finch

triceratops

green_mamba
harvestman

toucan

jellyfish

Walker_hound

Gordon_setter
komondor

boxer

Tibetan_mastiff
miniature_poodle

Arctic_fox
three-toed_sloth

rock_beauty

aircraft_carrier

ashcan
barrel beer_bottle

carousel
chime

clog

cocktail_shaker

dishrag
dome

file fire_screen

frying_pan

hair_slide
holster

lipstick

oboe

organ

parallel_bars

prayer_rug
reel slot

snorkel

solar_dish

spider_web

unicycle

upright

worm_fence

yawl
street_sign

consommecliff

bolete

ear

goose

cannon

carton

combination_lock
garbage_truck

iPod

miniskirt

missile

poncho

Figure 7: t-SNE embedding of the miniImageNet weights trained using a ResNet-34 architecture.
Structure is still present and we observe meaningful patterns, even though the classes in miniImageNet
are more unique than in CIFAR-100. For instance, goose, house finch, toucan, Arctic fox, green mamba
and other animals are clustered on the top, with birds close to each other. Examples of other small
clusters include poncho and miniskirt, or organ and oboe. For readability, not all class names are
plotted.

19

Under review as a conference paper at ICLR 2018

E EXTENDED EXPERIMENTS

E.1 T-SNE EMBEDDING OF THE WEIGHTS

We provide t-SNE embeddings for the weights of a VGG network trained in CIFAR-100 and a ResNet-
34 trained on miniImageNet. A structure in the weights is apparent and provides motivation for our
framework. The results can be seen in Fig. 6 and Fig. 7.

E.2 EXTENDED RESULTS ON miniIMAGENET

Fig. 8 provides extended results on k-shot learning for the miniImageNet dataset for different network
architectures. We investigate the influence of different feature extractors of increasing complexity and
training data size on performance on: i) a VGG style network trained on 500 images per class, ii) a
ResNet-34 trained on 500 examples per class, and iii) a ResNet-34 trained on all 600 examples per
class.

E.3 CHOICE OF REGULARISATION CONSTANT

Fig. 9 reports accuracy and calibration in terms of Expected Calibration Error (ECE) (lower is better)
and log likelihoods (higher is better) for different regularisations of logistic regression for all three
model architectures considered.

20

Under review as a conference paper at ICLR 2018

ResNet-34 trained on 600 images per class

1 5 10
k-shot

0.6

0.7

Accuracy

Gauss (iso) Log Reg (C = 2σ 2
W) Log Reg (cross-validation) Nearest Neighbour

1 5 10
k-shot

−1.4

−1.2

−1.0

−0.8

Log Likelihood

0.73 0.74
Accuracy

0.075

0.100

0.125

0.150

0.175

E
C

E

5-shot

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Pr
op

or
tio

n
of

tim
es

co
rr

ec
t Calibration curve (5-shot)

ResNet-34 trained on 500 images per class

1 5 10
k-shot

0.5

0.6

0.7

Accuracy

Gauss (iso) Log Reg (C = 2σ 2
W) Log Reg (cross-validation) Nearest Neighbour

1 5 10
k-shot

−1.4

−1.2

−1.0

−0.8

Log Likelihood

0.71 0.72
Accuracy

0.075

0.100

0.125

0.150

0.175
E

C
E

5-shot

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Pr
op

or
tio

n
of

tim
es

co
rr

ec
t Calibration curve (5-shot)

VGG-style trained on 500 images per class

1 5 10
k-shot

0.5

0.6

Accuracy

Gauss (iso) Log Reg (C = 2σ 2
W) Log Reg (cross-validation) Nearest Neighbour

1 5 10
k-shot

−1.2

−1.0

Log Likelihood

0.63 0.64
Accuracy

0.050

0.075

0.100

0.125

E
C

E

5-shot

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Pr
op

or
tio

n
of

tim
es

co
rr

ec
t Calibration curve (5-shot)

Figure 8: Extended results for the miniImageNet dataset utilising different network architectures
and representational training. top: a ResNet-34 trained with all 600 examples per class; middle: a
ResNet-34 trained with 500 images per class; bottom: a VGG style network trained with 500 images
per class. We highlight that for all three architectures the order of the different methods as well as the
main messages are the same. However, the general performance in terms of accuracy and calibration
differ between the architectures. The more complex architecture trained on most images performs
best in terms of accuracy, indicating that it learns better features for k-shot learning. Both ResNets
behave very similarly on calibration whereas the VGG-style network performs better (lower ECE and
higher log likelihood as well as more diagonal calibration curve). This is in line with observations by
Guo et al. (2017) that calibration of deep architectures gets worse as depth and complexity increase.

21

Under review as a conference paper at ICLR 2018

10−3 100

Creg

0.5

0.6

0.7

0.8
Accuracy

1-shot 5-shot 10-shot Creg = 10−5→Creg = 10 C by cross-validation C = 2σ 2
W

10−3 100

Creg

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

0.6 0.8
Accuracy

0.05

0.10

0.15

0.20

ECE

0.6 0.8
Accuracy

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

10−4 10−2 100

Creg

0.5

0.6

0.7

0.8
Accuracy

1-shot 5-shot 10-shot Creg = 10−5→Creg = 10 C by cross-validation C = 2σ 2
W

10−4 10−2 100

Creg

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

0.05

0.10

0.15

0.20

ECE

10−4 10−2 100

Creg

0.5

0.6

0.7

0.8
Accuracy

1-shot 5-shot 10-shot Creg = 10−5→Creg = 10 C by cross-validation C = 2σ 2
W

10−4 10−2 100

Creg

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6
Log likelihood

Figure 9: Choice of regularisation constant for logistic regression on k-shot learning. Note that all
three rows use the same raw data that are only visualised differently. Top: Summary of accuracy and
calibration in terms of log likelihood and Expected Calibration Error (ECE). Middle: detailed plot
of ECE vs. accuracy. Bottom: detailed plot of log likelihood vs. accuracy. Results for Creg = 2σ2

W̃
are drawn as black triangles. Dashed lines correspond to logistic regression with cross-validated
(changing) regularisation constant. Colour brightness of the markers ranges from dark (C = 10−5) to
bright (C = 10). In addition to Fig. 4 we also provide results for calibration in terms of ECE (lower
is better), which are consistent with log likelihoods (higher is better): The Bayesian inspired choice of
the regularisation parameter strikes a good balance between accuracy and calibration and consistently
outperforms cross-validated choice of the parameter.

22

Under review as a conference paper at ICLR 2018

E.4 MODEL ASSESSMENT IN CIFAR-100

This section reports an extensive model comparison on CIFAR-100, both for the model of the weights
p(W | W̃) and for the inference procedure at k-shot time (MAP or Hybrid Monte Carlo (HMC)
sampling using NUTS (Hoffman & Gelman, 2014), see the description of approximate inference
algorithms in Appendix B). We report log-likelihood of the weights under different models, as well as
accuracy, log-likelihood and calibration in a k-shot learning task. Tab. 7 and Tab. 8 show descriptions
of the methods analysed for respectively phase 2 (concept learning) and phase 3 (k-shot learning) of
our k-shot pipeline described in Sec. 2.1.

Method name Phase 2: Concept learning
Prior distribution Inference

Gauss (iso) Gaussian isotropic covariance MAP
Gauss (MAP prior) Gaussian isotropic covariance MAP
Gauss (integr. prior) Gaussian full covariance Integrated
GMM (supercl.) GMM on superclasses iso. cov. MAP
GMM (3, iso) GMM on 3 clusters iso. cov. MLE
GMM (3, diag) GMM on 3 clusters diagonal cov. MLE
GMM (10, iso) GMM on 10 clusters iso. cov. MLE
Laplace (diag) Laplace diagonal covariance MLE

Table 7: Description of the inference for the parameters of the prior in phase 2 (concept learning) for
the models in from Fig. 10. This specifies the inference procedure for θ in p(w | θ) after observing
the training weights W̃.

Method name Phase 3: k-shot learning
Prior distribution Inference

Gauss (iso) MAP Gaussian MAP
Gauss (MAP prior) MAP Gaussian MAP
Gauss (MAP prior) HMC Gaussian HMC
Gauss (integr. prior) MAP Gaussian MAP
Gauss (integr. prior) HMC Gaussian HMC
GMM (supercl.) MAP GMM on superclasses MAP
GMM (3, iso) MAP GMM on 3 isotropic comp. MAP
Laplace (diag) HMC Laplace (diagonal) HMC
Laplace (diag) MAP Laplace (diagonal) MAP

Table 8: Methods and inference procedure during phase 3 (k-shot learning) for the models used
in Fig. 10. This specifies the inference procedure used when computing p(W | D, W̃) for the specified
prior distribution.

In the main text, we only consider an isotropic Gaussian model with MAP inference since we do
not observe benefits from using alternative methods in terms of k-shot performance and calibration.
Moreover, while we report results on a VGG-like architecture, we could also use a ResNet architecture,
and preliminary results point to the same conclusion as experiments on miniImageNet when switching
from VGG to ResNet: the deeper features consistently lead to higher k-shot performance on all
methods whereas the ordering of the methods stays roughly the same.

Analysis of the models on held-out training weights. First, we analyse how well the different
prior models for the new softmax weights are able to fit the C̃ training weights W̃. We randomly
excluded 10 of those weights and evaluated their held-out negative log likelihood given the remain-
ing C − 10 weights. We emphasise that this approach also constitutes a principled way to set the
hyperparameters of the prior and, critically, relies on an explicit probabilistic model.

The negative log probabilities are averaged over 50 random splits and results of best optimised values
w.r.t. hyperparameters are shown in Tab. 9 for CIFAR-100 (lower is better). We find that all models

23

Under review as a conference paper at ICLR 2018

Model Optimised value of mean negative log probability
Gauss (iso) −175.9± 0.3

Gauss (MAP prior) −196.1± 0.5
Gauss (integr. prior) −200.6± 0.4
GMM 3-means (iso) −179.0± 0.3

GMM 3-means (diag) −181.2± 0.3
GMM 10-means iso −181.6± 0.4

GMM 10-means (diag) −181.6± 0.4
Laplace (iso) −173.8± 0.4

Laplace (diag)

0−100−200

−176.6± 0.5

Table 9: Held-out log probabilities on random 70/10-splits of the training weights for the different
models on CIFAR-100. Values are averaged over 50 splits.

1 5 10
k-shot

0.4

0.5

0.6

0.7

Accuracy

Gauss (iso) MAP
Gauss (iso) HMC
Gauss (MAP prior) MAP

Gauss (MAP prior) HMC
Gauss (integr. prior) MAP
Gauss (integr. prior) HMC

GMM (supercl.) MAP
GMM (3, iso) MAP
GMM (10, iso) MAP

Laplace (iso) MAP
Laplace (diag) MAP

1 5 10
k-shot

−1.6

−1.4

−1.2

−1.0

−0.8
Log Likelihood

0.55 0.60 0.65
Accuracy

0.02

0.04

0.06

0.08

ECE (5-shot)

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Pr
op

or
tio

n
of

tim
es

co
rr

ec
t Calibration curve (5-shot)

Figure 10: Results on CIFAR-100 for VGG style architecture. We report accuracy, log-likelihood and
calibration for the methods and inference procedures presented in Tab. 8. With the exception of GMM
(10, iso) and Laplace, all methods are similar terms of accuracy and log-likelihood. Gauss (integr.
prior) HMC and Gauss (MAP) HMC are slightly better calibrated than our proposed Gauss (MAP)
iso, but require significantly more computation for the sampling procedure.

behave very similar but that multivariate Gaussian models generally outperform other models. We
attribute the good performance of the simpler models to the small number of data points (C−10 = 70
training weights) and the high dimensionality of the space, which entail that fitting even simple models
is difficult. Thus, more complicated models cannot improve over them.

k-shot performance in CIFAR-100. Accuracies are measured on a 5-way classification task on
the k-shot classes for k ∈ {1, 5, 10}. Results were averaged two-fold: (i) 20 random splits of the 5
k-shot classes; (ii) 10 repetitions of each split with different k-shot training examples. Among our
models, no statistically significant difference in accuracy is observed, with the exception of Laplace
MAP and GMM (iso), which consistently underperforms. These findings are consistent in terms of
log-likelihoods, see the first and second plots in Fig. 10.

Finally, our methods are generally well calibrated, with Gaussian models generally better than Laplace
models. Moreover, all methods (with the exception of Laplace and GMM (10, iso) have low ECE
and high accuracy, see the third and fourth plots of Fig. 10. While Gauss (integr. prior) HMC and
Gauss (MAP) HMC are sightly better calibrated than our proposed method in the main paper, Gauss
(MAP) iso, we believe the gain in calibration is not worth the significant increase in computational
resources needed for the sampling procedure. Interestingly, both GMM approaches are not able to
outperform the other, simpler models. This is in line with the previous observation that the simpler
models are better able to explain the weights. Again, we attribute this inability of mixture models to
use their larger expressivity/capacity to the small number of data points and the high-dimensionality

24

Under review as a conference paper at ICLR 2018

of weight-space which means learning even simple models is difficult. These observations suggest
that the use of mixture models in this type of k-shot learning framework is not beneficial and is in
contrast to the approach of Srivastava & Salakhutdinov (2013), who employ a tree-structured mixture
model. The authors show compare a model in which the assignments to the superclasses in the tree
are optimized over against a model with a naive initialisation of the superclass assignments, and show
that the first outperforms the second. However, they do not compare against a simpler baseline, e.g., a
single Gaussian model.

Overall, we observe that there is no significant benefit of more complex methods over the simple
isotropic Gaussian, either in terms of accuracy, log-likelihood or calibration. Thus, our recommenda-
tion is that practitioners should use simple models and employ simple inference schemes to estimate
all free parameters thereby avoiding expending valuable data on validation sets

REFERENCES

Djork-Arné Clevert, Thomas Unterthiner, & Sepp Hochreiter (2015). Fast and accurate deep network
learning by exponential linear units (elus). arXiv e-print:1511.07289.

Chuan Guo, Geoff Pleiss, Yu Sun, & Kilian Q Weinberger (2017). On Calibration of Modern Neural
Networks. arXiv e-print: 1706.04599.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun (2016). Deep Residual Learning for Image
Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
eprint: 1512.03385.

Matthew D Hoffman & Andrew Gelman (2014). The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15.1, pp. 1593–1623.

Sergey Ioffe & Christian Szegedy (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv e-print:1502.03167.

Diederik Kingma & Jimmy Ba (2014). Adam: A method for stochastic optimization. arXiv e-
print:1412.6980.

Alex Krizhevsky, Ilya Sutskever, & Geoffrey Hinton (2012). Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–
1105.

Dong C Liu & Jorge Nocedal (1989). On the limited memory BFGS method for large scale optimiza-
tion. Mathematical programming 45.1, pp. 503–528.

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, & Xiaoqiang Zheng (2015). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org.

Kevin Murphy (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Radford M Neal et al. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo 2.11.

Sachin Ravi & Hugo Larochelle (2017). Optimization as a model for few-shot learning. In: Interna-
tional Conference on Learning Representations. Vol. 1. 2, p. 6.

25

1512.03385

Under review as a conference paper at ICLR 2018

John Salvatier, Thomas. Wiecki, & Christopher Fonnesbeck (2016). Probabilistic programming in
Python using PyMC3. PeerJ Computer Science 2, e55.

Karen Simonyan & Andrew Zisserman (2014). Very deep convolutional networks for large-scale
image recognition. arXiv e-print:1409.1556.

Jake Snell, Kevin Swersky, & Richard Zemel (2017). Prototypical Networks for Few-shot Learning.
arXiv e-print: 1703.05175.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, & Ruslan Salakhutdinov
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of machine
learning research 15.1, pp. 1929–1958.

Nitish Srivastava & Ruslan R Salakhutdinov (2013). Discriminative transfer learning with tree-based
priors. In: Advances in Neural Information Processing Systems, pp. 2094–2102.

26

	Introduction
	Probabilistic k-shot learning
	A framework for probabilistic k-shot learning
	Choosing a model for the weights
	Gaussian model and its relation to logistic regression

	Related work
	Experiments
	Results on miniImageNet
	Model comparison on CIFAR-100

	Conclusion
	Details on the derivation and approximations from sec:framework
	Approximate inference methods
	Models for the prior on the weights
	Gaussian model
	Mixture of Gaussians (GMM)
	Laplace distribution

	Training and evaluation procedure details
	miniImageNet
	CIFAR-100
	Network architecture and training: ResNet inspired
	Network architecture and training: VGG Inspired

	Extended experiments
	t-SNE embedding of the weights
	Extended results on miniImageNet
	Choice of regularisation constant
	Model assessment in CIFAR-100

