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ABSTRACT

Learning deep neural networks could be understood as the combination of represen-
tation learning and learning halfspaces. While most previous work aims to diversify
representation learning by data augmentations and regularizations, we explore the
opposite direction through the lens of empirical Bayes method. Specifically, we
propose a matrix-variate normal prior whose covariance matrix has a Kronecker
product structure to capture the correlations in learning different neurons through
backpropagation. The prior encourages neurons to learn from the experience of
others, hence it provides an effective regularization when training large networks
on small datasets. To optimize the model, we design an efficient block coordinate
descent algorithm with analytic solutions. Empirically, we show that the proposed
method helps the network converge to better local optima that also generalize better,
and we verify the effectiveness of the approach on both multiclass classification
and multitask regression problems with various network structures.

1 INTRODUCTION

Empirical Bayes methods provide us a powerful tool to obtain Bayesian estimators even if we do not
have complete information about prior distribution. The literature on the empirical Bayes methods
and their applications are abundant (Stein, 1956; Robbins, 1956; James & Stein, 1961; Efron &
Morris, 1973; 1977; Efron et al., 2001; Carlin & Louis, 2010; Efron, 2012). Existing studies on
parametric empirical Bayes methods focus on the setting where the likelihood function and the prior
are assumed to have specific forms, e.g., exponential family distribution and its conjugate prior, so
that marginal distribution of data has a closed form from which an estimator of the hyperparameter in
the prior distribution can be obtained. While such assumption helps to simplify the setting in order to
demonstrate the power of the method, it restricts us from using more expressive and rich models.

In this paper we explore extending the empirical Bayes method to expressive nonlinear models
using deep neural networks. Although deep neural networks have been widely applied in various
domains (Krizhevsky & Hinton, 2009; LeCun et al., 2015; He et al., 2016), usually its parameters are
learned via the principle of maximum likelihood, hence its success crucially hinges on the availability
of large scale datasets. On the other hand, Bayesian modeling lends us a powerful and principled tool
to prevent overfitting by incorporating prior knowledge into the design of prior distribution. To this
end, we propose a regularization approach for the weight matrix in neural networks through the lens
of the empirical Bayes method. We aim to address the problem of overfitting when training large
networks on small dataset. Our key insight stems from the famous argument by Efron (2012): It is
beneficial to learn from the experience of others. Specifically, from an algorithmic perspective, we
argue that the connection weights of neurons in the same layer (row/column vectors of the weight
matrix) will be correlated with each other through the backpropagation learning. Hence by learning
from other neurons in the same layer, a neuron can “borrow statistical strength” from other neurons.

As an illustrating example, consider a simple setting where the input x ∈ Rd is fully connected to
a hidden layer h ∈ Rp, which is further fully connected to the single output ŷ ∈ R. Let σ(·) be
the nonlinear activation function, e.g., ReLU (Nair & Hinton, 2010), W ∈ Rp×d be the connection
matrix between the input layer and the hidden layer, and a ∈ Rp be the vector connecting the
output and the hidden layer. Without loss of generality, ignoring the bias term in each layer, we
have: ŷ = aTh,h = σ(Wx). Consider using the usual `2 loss function `(ŷ, y) = 1

2 |ŷ − y|2
and take the derivative of `(ŷ, y) w.r.t. W . We obtain the update formula in backpropagation as
W ← W − α(ŷ − y)(a ◦ h′) xT , where h′ is the componentwise derivative of h w.r.t. its input
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argument, and α > 0 is the learning rate. Realize that (a ◦ h′) xT is a rank 1 matrix, and the
component of h′ is either 0 or 1. Hence the update for each row vector of W is linearly proportional
to x. Note that the observation holds for any input pair (x, y), so the update formula implies that the
row vectors of W are correlated with each other. The above observation leads us to the following
question: can we define a prior distribution over W that captures the correlations between its row
vectors and column vectors?

Our Contributions. To answer the above question, we develop an approximate empirical Bayes
(AEB) framework to learn deep neural networks. Motivated by the example above, we propose a
matrix-variate normal prior whose covariance matrix has a Kronecker product structure to capture the
correlations between different neurons. The prior encourages neurons to learn from the experience of
others, hence it provides an effective regularization when training networks on small datasets. Using
tools from convex analysis, we design an efficient block coordinate descent algorithm with analytic
solutions to optimize the model. Empirically, we show that the proposed method helps the network
converge to better local optima that also generalize better, and we verify the effectiveness of the
approach on both multiclass classification and multitask regression problems with various network
structures.

2 PRELIMINARY

We first introduce the notation used throughout the paper and then give a brief discussion on the
empirical Bayes method (Bernardo & Smith, 2001; Gelman et al., 2013; Efron & Hastie, 2016).

2.1 NOTATION AND SETUP

We use lowercase letter to represent scalar and lowercase bold letter to denote vector. Capital letter,
e.g., X , is reserved for matrix. Calligraphic letter, such as D, is used to denote set. We write
Tr(A) as the trace of a matrix A, det(A) as the determinant of A and vec(A) as A’s vectorization
by column. [n] is used to represent the set {1, . . . , n} for any integer n. Other notations will
be introduced whenever needed. Suppose we have access to a training set D of n pairs of data
instances (xi, yi), i ∈ [n]. We consider the supervised learning setting where xi ∈ X ⊆ Rd and
yi ∈ Y . For a regression problem, Y = R; for a binary classification problem, Y = {1,−1}. Let
p(y | x,w) be the conditional distribution of y given x with parameter w. The parametric form
of the conditional distribution is assumed be known. In this paper, we consider a Bayesian setting
where the model parameter w is sampled from a prior distribution p(w | θ) with hyperparameter
θ. On the other hand, given D, the posterior distribution of w is denoted by p(w | D, θ). From
a Bayesian perspective, given an unseen instance x, the goal is to infer the predictive distribution:
p(y | x,D, θ) =

∫
p(y | x,w) · p(w | D, θ) dw, from which we can compute the mean, or the

median, or other statistic (depending on the choice of the loss function) as our estimator of the unseen
target variable y.

2.2 THE EMPIRICAL BAYES METHOD

To compute the predictive distribution, we need access to the value of the hyperparameter θ. However,
complete information about the hyperparameter θ is usually not available in practice. To this end,
empirical Bayes method (Robbins, 1956; Efron & Morris, 1973) proposes to estimate θ from the data
directly using the marginal distribution:

θ̂ = arg max
θ

p(D | θ) = arg max
θ

∫
p(D | w) · p(w | θ) dw. (1)

Under specific choice of the likelihood function p(x, y | w) and the prior distribution p(w | θ), e.g.,
exponential family distribution and its corresponding conjugate prior, we can solve the integral in (1)
in closed form to obtain an analytic solution of θ̂, which can be subsequently plugged into the prior
distribution to obtain a Bayesian estimator for the model parameter w.

At a high level, by learning the hyperparameter θ in the prior distribution directly from data, the
empirical Bayes method provides us a principled and convenient way to obtain a Bayesian estimator
of the model parameter w. In fact, when both the prior and the likelihood functions are normal, it has
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been formally shown that the empirical Bayes estimators, e.g., the James-Stein estimator (James &
Stein, 1961) and the Efron-Morris estimator (Efron & Morris, 1977), dominate the classic maximum
likelihood estimator (MLE) in terms of quadratic loss for every choice of the model parameter w.
At a colloquial level, the success of empirical Bayes estimators can be attributed to the effect of

“learning from the experience of others” (Efron, 2012), which also makes it a powerful tool in multitask
learning (Long et al., 2017; Zhao et al., 2017) and meta-learning (Grant et al., 2018).

3 LEARNING WITH APPROXIMATE EMPIRICAL BAYES

3.1 APPROXIMATE EMPIRICAL BAYES

When the likelihood function p(D | w) is implemented as a neural network, the marginalization in (1)
over model parameter w cannot be computed exactly. Nevertheless, instead of performing expensive
Monte-Carlo simulation, we can use point estimate of w to approximate the integral as follows:∫

p(D | w) · p(w | θ) dw ≈ p(D | ŵ) · p(ŵ | θ), (2)

where ŵ = arg maxw p(D | w) · p(w | θ) is the mode of the joint distribution. The above
approximation is crude and will only be accurate if 1) the likelihood under ŵ dominates the likelihoods
under other model parameters, or 2) for the fixed θ, the prior distribution p(w | θ) is sharply
concentrated around its mode. When the size of the dataset D is large, the first condition is met
according to the central limit theorem under some regularity conditions. We shall come back later to
verify the validity of this approximation through numerical experiments in Sec. 4.

Given an estimate ŵ, by maximizing the R.H.S. of (2) w.r.t. θ, we can obtain θ̂ as an approximation
of the maximum marginal likelihood estimator. As a result, we can use θ̂ to further refine the estimate
ŵ by maximizing the posterior distribution as follows:

ŵ← max
w

p(w | D) = max
w

p(D | w) · p(w | θ̂). (3)

The maximizer of (3) can in turn be used to better approximate the integral in (2). Formally, we
can define the following optimization problem that characterizes our framework of the approximate
empirical Bayes (AEB) method:

max
w

max
θ

log p(D | w) + log p(w | θ) (4)

It is worth to connect the optimization problem (4) to the classic maximum a posteriori (MAP)
inference and also discuss their difference. If we drop the inner optimization over the hyperparameter
θ in the prior distribution. Then for any fixed value θ̂, (4) reduces to MAP with the prior defined by
the specific choice of θ̂, and the maximizer ŵ corresponds to the mode of the posterior distribution
given by θ̂. From this perspective, the optimization problem in (4) actually defines a series of MAP
inference problems, and the sequence {ŵj(θ̂j)}j defines a solution path towards the final approximate
empirical Bayes estimator. On the algorithmic side, the optimization problem (4) also suggests a
natural block coordinate descent algorithm where we alternatively optimize over w and θ until the
convergence of the objective function. An illustration of the framework is shown in Fig. 1. In next
section, we give a specific prior distribution over the parameters of neural networks to capture the
fact that neurons in the same layer are correlated with each other.

3.2 NEURAL NETWORK WITH MATRIX-NORMAL PRIOR

Inspired by the observation from Sec. 1, we propose to define a matrix-variate normal distribu-
tion (Gupta & Nagar, 2018) over the connection weight matrix W : W ∼MN (0p×d,Σr,Σc), where
Σr ∈ Sp++ and Σc ∈ Sd++ are the row and column covariance matrices, respectively.1 Equivalently,
one can understand the matrix-variate normal distribution over W as a multivariate normal distribu-
tion with a Kronecker product covariance structure over vec(W ): vec(W ) ∼ N (0p×d,Σc ⊗ Σr). It

1The probability density function is given by p(W | Σr,Σc) =
exp(−Tr(Σ−1

r WΣ−1
c WT )/2)

(2π)pd/2 det(Σr)d/2 det(Σc)p/2
.
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Figure 1: Illustration for Bayes/ Empirical Bayes, and Approximate Empirical Bayes.

is then easy to check that the marginal prior distributions over the row and column vectors of the
weight matrix W are given by:

Wi: ∼ N (0d, [Σr]ii · Σc), W:j ∼ N (0p, [Σc]jj · Σr).

We point out that the Kronecker product structure of the covariance matrix exactly captures our prior
about the connection matrix W : the fan-in/fan-out of neurons in the same layer (row/column vectors
of W ) are correlated with the same correlation matrix in the prior, and they only differ at the scales
(variances).

For illustration purpose, let us consider the simple feed-forward network discussed in Sec. 1. Consider
a reparametrization of the model by defining Ωr := Σ−1

r and Ωc := Σ−1
c to be the corresponding

precision matrices and plug in the prior distribution into the general approximate empirical Bayes
framework (4). After routine algebraic simplifications, we reach the following concrete optimization
problem:

min
W,a

min
Ωr,Ωc

1

2n

∑
i∈[n]

(ŷ(xi;W,a)− yi)2 + λ||Ω1/2
r WΩ1/2

c ||2F − λ (d log det(Ωr) + p log det(Ωc))

subject to uIp � Ωr � vIp, uId � Ωc � vId (5)

where λ is a constant that only depends on p and d, 0 < u ≤ v and uv = 1. Note that the constraint
is necessary to guarantee the feasible set to be compact so that the optimization problem is well for-
mulated and a minimum is attainable. 2 It is not hard to show that in general the optimization problem
(5) is not jointly convex in terms of {a,W,Ωr,Ωc}, and this holds even if the activation function
is linear and we do not have the hidden layer. However, as we will show later, for any fixed a,W ,
the reparametrization makes the partial optimization over Ωr and Ωc bi-convex. More importantly,
we can derive an efficient algorithm that finds the optimal Ωr(Ωc) for any fixed a,W,Ωc(Ωr) in
O(max{d3, p3}) time with closed form solutions. This allows us to apply our algorithm to networks
of large sizes, where a typical hidden layer can contain thousands of nodes. Before we delve into
the details on solving (5), it is instructive to discuss some of its connections and differences to other
learning paradigms.

Maximum-A-Posteriori Estimation. Essentially, for model parameter W , (5) defines a sequence of
MAP problems where each MAP is indexed by the pair of precision matrices (Ω

(t)
r ,Ω

(t)
c ) at iteration t.

Equivalently, at each stage of the optimization, we can interpret (5) as placing a matrix variate normal
prior on W where the precision matrix in the prior is given by Ω

(t)
r ⊗ Ω

(t)
c . From this perspective,

if we fix Ω
(t)
r = Ip and Ω

(t)
c = Id, ∀t, then (5) naturally reduces to learning with `2 regularization,

or weight decay (Krogh & Hertz, 1992). More generally, for non-diagonal precision matrices, the
regularization term for W becomes:

||Ω1/2
r WΩ1/2

c ||2F = ||vec(Ω1/2
r WΩ1/2

c )||22 = ||(Ω1/2
c ⊗ Ω1/2

r )vec(W )||22, (6)

and this is exactly the Tikhonov regularization (Golub et al., 1979) imposed onW where the Tikhonov
matrix Γ is given by Γ := Ω

1/2
c ⊗ Ω

1/2
r . But instead of manually designing the regularization matrix

Γ to improve the conditioning of the estimation problem, under the principle of empirical Bayes we
propose to also learn both precision matrices (so Γ as well) from data.

2The constraint uv = 1 is only for the ease of presentation in the following part and can be readily removed.
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Approximate Volume Minimization. Let us consider the log det(·) function over the positive
definite cone. It is well known that the log-determinant function is concave (Boyd & Vandenberghe,
2004). Hence for any pair of matrices A1, A2 ∈ Sm++, the following inequality holds:

log det(A1) ≤ log det(A2) + 〈∇ log det(A2), A1 −A2〉 = log det(A2) + Tr(A−1
2 A1)−m (7)

Applying the above inequality twice by fixing A1 = WΩcW
T /2d,A2 = Σr and A1 =

WTΩrW/2p,A2 = Σc respectively leads to the following inequalities:{
d log det(WΩcW

T /2d) ≤ −d log det(Ωr) + 1
2 Tr(ΩrWΩcW

T )− dp
p log det(WTΩrW/2p) ≤ −p log det(Ωc) + 1

2 Tr(ΩrWΩcW
T )− dp

Using the fact that Tr(ΩrWΩcW
T ) = ||Ω1/2

r WΩ
1/2
c ||2F , we immediately have:

d log det(WΩcW
T )+p log det(WTΩrW ) ≤ ||Ω1/2

r WΩ1/2
c ||2F −(d log det(Ωr)+p log det(Ωc))+c (8)

where c is a constant that only depends on d and p. Recall that |det(ATA)| computes the squared
volume of the parallelepiped spanned by the column vectors of A. Hence (8) gives us a natural
interpretation of the objective function in (5): the regularizer essentially upper bounds the log-volume
of the two parallelpipeds spanned by the row and column vectors of W . But instead of measuring the
volume using standard Euclidean inner product, it also takes into account the local curvatures defined
by Σr and Σc, respectively. For vectors with fixed lengths, the volume of the parallelepiped spanned
by them becomes smaller when they are more linearly correlated, either positively or negatively. At a
colloquial level, this means that the regularizer in (5) forces fan-in/fan-out of neurons at the same
layer to be either positively or negatively correlated with each other, and this corresponds exactly to
the effect of learning from the experience of others.

3.3 THE ALGORITHMS

Algorithm 1 Block Coordinate Descent for Approximate Empirical Bayes

Input: Initial value φ(0) := {a(0),W (0)}, Ω
(0)
r ∈ Sp++ and Ω

(0)
c ∈ Sd++, first-order optimization algorithm A,

constants 0 < u ≤ v.
1: for t = 1, . . . ,∞ until convergence do
2: Fix Ω

(t−1)
r , Ω

(t−1)
c , optimize φ(t) by backpropagation and algorithm A

3: Ω
(t)
r ← INVTHRESHOLDING(W (t)Ω

(t−1)
c W (t)T , d, u, v)

4: Ω
(t)
c ← INVTHRESHOLDING(W (t)TΩ

(t)
r W (t), p, u, v)

5: end for
6:
7: procedure INVTHRESHOLDING(∆,m, u, v)
8: Compute SVD: Qdiag(r)QT = SVD(∆)
9: Hard thresholding r′ ← T[u,v](m/r)

10: return Qdiag(r′)QT

11: end procedure

In this section we describe a block coordinate descent algorithm to optimize the objective function
in (5) and detail how to efficiently solve the matrix optimization subproblems in closed form using
tools from convex analysis. Due to space limit, we defer all the proofs to appendix. Given a pair of
constants 0 < u ≤ v, we define the following thresholding function T[u,v](x):

T[u,v](x) := max{u,min{v, x}}. (9)
We summarize our block coordinate descent algorithm to solve (5) in Alg. 1. In each iteration, Alg. 1
takes a first-order algorithm A, e.g., the stochastic gradient descent, to optimize the parameters of the
neural network by backpropagation. It then proceeds to compute the optimal solutions for Ωr and Ωc
using INVTHRESHOLDING as a sub-procedure. Alg. 1 terminates when a stationary point is found.

We now proceed to show that the procedure INVTHRESHOLDING finds the optimal solution given all
the other variables fixed. Due to the symmetry between Ωr and Ωc in (5), we will only prove this for
Ωr, and similar arguments can be applied to Ωc as well. Fix both W , Ωc and ignore all the terms that
do not depend on Ωr, the sub-problem on optimizing Ωr becomes:

min
Ωr

Tr(ΩrWΩcW
T )− d log det(Ωr), subject to uIp � Ωr � vIp. (10)

5



Under review as a conference paper at ICLR 2019

Proposition 1. The optimization problem (10) is convex.

Define the constraint set C := {A ∈ Sp++ | uIp � A � vIp} and the indicator function IC(A) = 0 iff
A ∈ C else∞. Given the convexity of (10), we can use the indicator function to first transform (10)
into an unconstrained one and use the first-order optimality condition to characterize the optimal
solution:

0 ∈ ∂
(

1

d
Tr(ΩrWΩcW

T )− log det(Ωr) + IC(Ωr)
)

= WΩcW
T /d− Ω−1

r +NC(Ωr), (11)

where NC(A) := {B ∈ Sp | Tr(BT (Z − A)) ≤ 0,∀Z ∈ C} is the normal cone w.r.t. C at A.
Equivalently, we have Ω−1

r −WΩcW
T /d ∈ NC(Ωr). The following key lemma characterizes the

structure of the normal cone w.r.t. C:

Lemma 1. Let Ωr ∈ C, then NC(Ωr) = −NC(Ω−1
r ).

Lemma 1 implies WΩcW
T /d−Ω−1

r ∈ NC(Ω−1
r ). Geometrically, this means that the optimum Ω−1

r
is the Euclidean projection of WΩcW

T /d onto C. Hence it suffices if we can solve the following
Euclidean projection problem efficiently, where Ω̃r ∈ Sp is a fixed real symmetric matrix:

min
Ωr

||Ωr − Ω̃r||2F , subject to uIp � Ωr � vIp (12)

Theorem 1. Let Ω̃r ∈ Sp with eigendecomposition as Ω̃r = QΛQT and ProjC(·) be the Euclidean
projection operator onto C, then ProjC(Ω̃r) = QT[u,v](Λ)QT .

Corollary 1. Let WΩcW
T be eigendecomposed as Qdiag(r)QT , then the optimal solution to (10)

is given by QT[u,v](d/r)QT .

Similar arguments can be made to derive the solution for Ωc in (5). The final algorithm is very
simple as it only contains one SVD, hence its time complexity is O(max{d3, p3}). Note that the
total number of parameters in the network is at least dp, hence the algorithm is efficient as it scales
sub-quadratically in terms of number of parameters in the network.

4 EXPERIMENTS

So far we develop our model and algorithms based on a simple neural network with one hidden
layer and a single output. However, it is straightforward to extend the AEB framework to more
sophisticated models with various structures. In this section we demonstrate the effect of our AEB
method on learning practical deep neural networks.

4.1 EXPERIMENTAL SETUP

Multiclass Classification (MNIST & CIFAR10): In the experiments, we show that AEB provides an
effective regularization on the network parameters. To this end, we use a convolutional neural network
as our baseline model. MNIST considers the following structure: CONV5×5×1×10-CONV5×5×10×20-
FC320×50-FC50×10. The notation CONV5×5×1×10 denotes the convolutional layer with kernel size
5× 5 from depth 1 to 10; the notation FC320×50 denotes the fully connected layer with size 320×
50. Similarly, CIFAR10 considers the structure: CONV5×5×3×10-CONV5×5×10×20-FC500×500-
FC500×500-FC500×10. To show the effect of regularization, we gradually increase the training set
size. MNIST considers the step from 60 to 60,000 (11 different experiments) and CIFAR10 considers
the step from 5,000 to 50,000 (10 different experiments). For each training set size, we repeat the
experiments for 10 times. The mean along with its standard deviation are shown as the statistics.
Moreover, since both the optimization and generalization of neural networks are sensitive to the size
of minibatches (Keskar et al., 2016; Goyal et al., 2017), we study two minibatch settings for 256 and
2048, respectively. In our AEB model, we place a matrix-variate normal prior over the weight matrix
of the last softmax layer, and we use Alg. 1 to optimize both the model weights of the convolutional
network and two covariance matrices of the weight matrix in the last layer.

Multitask Regression (SARCOS): SARCOS relates to an inverse dynamics problem for a seven
degree-of-freedom (DOF) SARCOS anthropomorphic robot arm (Vijayakumar & Schaal, 2000). The
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goal of this task is to map from a 21-dimensional input space (7 joint positions, 7 joint velocities,
7 joint accelerations) to the corresponding 7 joint torques. Hence there are 7 tasks and the inputs
are shared among all the tasks. The training set and test set contain 44,484 and 4,449 examples,
respectively. The network structure is given by FC21×256-FC256×100-FC100×7. Again, we apply our
AEB method on the last layer weight matrix, where each row corresponds to a separate task vector.

We compare our AEB method with classic regularization methods in the literature, including weight
decay, dropout (Srivastava et al., 2014), batch normalization (BN) (Ioffe & Szegedy, 2015) and the
DeCov method (Cogswell et al., 2015). We also note that we fix all the hyperparameters such as
learning rate to be the same for all the methods. To better understand the working mechanism of
the proposed method, we report evaluation metrics on test set as a measure of generalization, the
trajectory of the loss function during training, and the correlation of the weight matrix.

4.2 RESULTS

Multiclass Classification (MNIST & CIFAR10): Results on the multiclass classification for differ-
ent training sizes are show in Fig. 2. For both MNIST and CIFAR10, we find AEB, Weight Decay,
and Dropout are the effective regularization methods, while Batch Normalization and DeCov vary
in different settings. Batch Normalization suffers from large batch size in CIFAR10 (comparing
Fig. 2 (c) and (d)) but is not sensitive to batch size in MNIST (comparing Fig. 2 (a) and (b)). The
performance deterioration in large batch size of Batch Normalization is also observed by Hoffer et al.
(2017). DeCov, on the other hand, improves the generalization in MNIST with batch size 256 (see
Fig. 2 (a)), while it demonstrates only comparable or even worse performance in other settings. To
conclude, as training set size grows, AEB consistently performs better generalization as comparing to
other regularization methods. We also note that AEB is not sensitive to the size of minibatches while
most of the methods suffer from large minibatches. In appendix, we show the combination of AEB
with other generalization methods can usually lead to even better results.

Multitask Regression (SARCOS): In this experiment we are interested in investigating whether our
AEB method can lead to better generalization for multiple related regression problems. To do so,
we report the explained variance as a normalized metric, e.g., one minus the ratio between mean
squared error and the variance of different methods in Table 1. The larger the explained variance, the
better the predictive performance. In this case we observe a consistent improvement of AEB over
other competitors on all the 7 regression tasks. We would like to emphasize that all the experiments
share exactly the same experimental protocol, including network structure, optimization algorithm,
training iteration, etc, so that the performance differences can only be explained by different ways of
regularizations. For better visualization, we also plot the result in appendix.

Optimization: It has recently been empirically shown that BN helps optimization not by reducing
internal covariate shift, but instead by smoothing the landscape of the loss function (Santurkar
et al., 2018). To understand how AEB improves generalization, in Fig. 3, we plot the values of the
cross entropy loss function on both the training and test sets during optimization using Alg. 1. The
experiment is performed in MNIST with batch size 2048. In this experiment, we fix the number of
outer loop to be 2 and each block optimization over network weights contains 50 epochs. Because of
the stochastic optimization over model weights, we can see several unstable peaks in function value
around iteration 50 when trained with AEB, which corresponds to the transition phase between two
consecutive outer loops with different row/column covariance matrices. In both cases AEB converges
to better local optima of the loss landscape, which lead to better generalization on the test set as well
because they have smaller loss values on the test set when compared with training without AEB.

(a) MNIST (Batch Size: 256) (b) MNIST (Batch Size: 2048) (c) CIFAR10 (Batch Size: 256) (d) CIFAR10 (Batch Size: 2048) 

Figure 2: Generalization of AEB on MNIST and CIFAR10. AEB improves generalization under both minibatch
settings and is most beneficial when training set is small.
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Table 1: Explained variance of different methods on 7 regression tasks from the SARCOS dataset.

Method 1st 2nd 3rd 4th 5th 6th 7th

MTL 0.4418 0.3472 0.5222 0.5036 0.6024 0.4727 0.5298
MTL-Dropout 0.4413 0.3271 0.5202 0.5063 0.6036 0.4711 0.5345
MTL-BN 0.4768 0.3770 0.5396 0.5216 0.6117 0.4936 0.5479
MTL-DeCoV 0.4027 0.3137 0.4703 0.4515 0.5229 0.4224 0.4716
MTL-AEB 0.4769 0.3969 0.5485 0.5308 0.6202 0.5085 0.5561

(a) Training Set Size = 600 (b) Training Set Size = 6000

Figure 3: Optimization of AEB on MNIST with batch size 2048.
Sequential Tikhonov regularizations in AEB help to converge to
better local optima during training.
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Figure 4: Applying AEB on different lay-
ers in neural networks for MNIST with
batch size 2048.

Stable rank and spectral norm: Given a matrix W , the stable rank of W , denoted as s-rank(W ),
is defined as s-rank(W ) := ||W ||2F /||W ||22. In other words, the stable rank of a matrix is the
ratio of its squared Frobenius norm and squared spectral norm. Clearly, for any matrix W ,
we have 1 ≤ s-rank(W ) ≤ rank(W ). As its name suggests, the stable rank is more stable
than the rank because it is largely unaffected by tiny singular values. Let r = rank(W ), then
s-rank(W ) = rank(W ) when σ1(W ) = · · · = σr(W ) and s-rank(W ) = 1 when rank(W ) = 1.
It has recently been shown (Neyshabur et al., 2017, Theorem 1) that the generalization error of
neural networks crucially depends on both the stable ranks and the spectral norms of connection
matrices in the network. Specifically, it can be shown that the generalization error is upper bounded

by O
(√∏L

j=1 ||Wj ||22
∑L
j=1 s-rank(Wj)/n

)
, where we omit constant terms that do not depend on

weight matrices and L is the number of layers in the network. Essentially, this upper bound suggests
that smaller spectral norm (smoother function mapping) and stable rank (skewed spectrum) leads to
better generalization.

To understand why AEB improves generalization, in Fig. 5 and Fig. 6, we plot both the stable rank
and the spectral norm of the weight matrix in the last layer of the CNNs used in our MNIST and
CIFAR10 experiments. We compare 3 methods: CNN without any regularization, CNN trained with
weight decay and CNN with AEB. For each setting we repeat the experiments for 5 times, and we
plot the mean along with its standard deviation. From Fig. 5a and Fig. 6a it is clear that AEB leads
to a significant reduction in terms of the stable rank when compared with weight decay, and this
effect is consistent in all the experiments with different training size. Similarly, in Fig. 5b and Fig. 6b
we plot the spectral norm of the weight matrix. Again, both weight decay and AEB help reduce
the spectral norm in all settings, but AEB plays a more significant role than the usual weight decay.
Combining the experiments with the generalization upper bound introduced above, we can see that
training with AEB leads to an estimator of W that has lower stable rank and smaller spectral norm,
which explains why it achieves a better generalization performance. Furthermore, this observation
holds on the SARCOS datasets as well, and we show the results in the appendix.

Ablations: In all the experiments, the AEB algorithm is performed on the softmax layer. Here, we
study the effects of applying AEB algorithm in all CONV/FC layers, all CONV layers, all FC layers,
and the last FC layer (i.e., softmax layer). We first discuss how we handle the convolutions in our
AEB algorithm. Consider a convolutional layer with {input channel, output channel, kernel width,
kernel height} being {a, b, kw, kh}, we vectorize the original 4-D tensor to be a 2-D matrix of size
akwkh × b. The AEB algorithm can therefore be directly applied on this transformed matrix. Next,
we perform the experiment on MNIST with batch size 2048 in Fig. 4. The training set size here is
chosen as {128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 60000}.
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(b) Spectral norm vs training size.

Figure 5: Comparisons of stable ranks and spectral norms from different methods on MNIST.
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(a) Stable rank vs training size.
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(b) Spectral norm vs training size.

Figure 6: Comparisons of stable ranks and spectral norms from different methods on CIFAR10.

We find that simply applying the AEB algorithm in the softmax layer reaches best generalization as
comparing to applying AEB on more layers. The improvement is more obvious when the training set
size is small. We argue that neural networks can be realized as a combination of a complex nonlinear
transformation (i.e., feature extraction) and a linear model (i.e., softmax layer). Since AEB represents
a correlation learning in the weight matrix, it implies that implicit correlations of neurons can also be
discovered. In the real world setting, different tasks should be correlated. Therefore, applying AEB in
the linear model shall improve the model performance by discovering these tasks correlations. On the
contrary, the nonlinear features should be decorrelated for the purpose of generalization (Cogswell
et al., 2015). Hence, applying AEB in previous layers may lead to adversarial effect.

Correlation Matrix: To verify that AEB imposes the effect of “learning from the experience of others”
during training, we visualize the weight matrix of the softmax layer by computing the corresponding
correlation matrix, as shown in Fig. 7. In Fig. 7, darker color means stronger correlation. We conduct
two experiments with training size 600 and 60,000 respectively. As we can observe, training with
AEB leads to weight matrix with stronger correlations, and this effect is more evident when the
training set is large. This is consistent with our analysis that AEB encourages learning from the
experience of others. As a sanity check, from Fig. 7 we can also see that similar digits, e.g., 1 and 7,
share a positive correlation while dissimilar ones, e.g., 1 and 8, share a negative correlation.

5 RELATED WORK

Different kinds of regularization approaches have been studied and designed for neural networks,
e.g., weight decay (Krogh & Hertz, 1992), early stopping (Caruana et al., 2001), Dropout (Srivastava
et al., 2014) and the more recent DeCov (Cogswell et al., 2015) method. BN was proposed to reduce
the internal covariate shift during training, but recently it has been empirically shown to actually
smooth the landscape of the loss function (Santurkar et al., 2018). As a comparison, we propose
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(a) CNN, Acc: 89.34

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.8

0.4

0.0

0.4

0.8

(b) AEB, Acc: 92.50
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(c) CNN, Acc: 98.99
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(d) AEB, Acc: 99.19

Figure 7: Correlation matrix of the weight matrix in the softmax layer. All the networks share the same structure
and optimization protocol. The left two correspond to dataset with training size 600 and the right two with size
60,000. Acc means the test set classification accuracy.

AEB through the lens of the empirical Bayes method, with the aim to reduce overfitting by allowing
neurons to learn from each other. From the optimization perspective, learning the row and column
covariance matrices help to converge to better local optimum that also generalizes better.

Despite the name, empirical Bayes method is in fact a frequentist approach to obtain estimator with
favorable properties. On the other hand, truly Bayesian inference would instead put a (approxi-
mate/variational) posterior distribution over model weights to characterize the uncertainty during
training (MacKay, 1992; Hernández-Lobato & Adams, 2015; Blundell et al., 2015). However, due
to the complexity of nonlinear neural networks, analytic posterior is not available, hence strong
independent assumptions over model weight have to be made in order to achieve computationally
tractable variational solution. Typically, both the prior and the variational posterior are assumed
to fully factorize over model weights. As a comparison, in AEB we characterize the correlation
between model weights via learned covariance matrix with a Kronecker product structure, which
is more flexible and realistic. The application of empirical Bayes in the machine learning com-
munity is not new. McInerney (2017) proposed Bayes Empirical Bayes method for choosing the
hyper-hyperparameters of models, a.k.a., the Type-III MLE method. It proposes to use Monte Carlo
sampling to approximate both the marginal likelihood and the prior distribution, in order to optimize
the hyper-prior distribution over the hyper-hyperparameters. As a comparison, in our work we study
the matrix-variate prior with Kronecker factorization structure and we propose an analytic solution
that could be computed in closed form without any sampling.

Orthogonal to our work, the Kronecker factorization assumption has also been applied in the literature
of neural networks to approximate the Hessian matrix, or the Fisher information matrix, in second-
order optimization methods (Martens & Grosse, 2015; Zhang et al., 2017). The main idea here is to
approximate the curvature of the loss function’s landscape, in order to achieve better convergence
speed compared with first-order method while maintaining the tractability of such computation.

Determinantal point process (DPP) has been previously applied to compress neural networks (Mariet
& Sra, 2015). Specifically, a DPP kernel is placed over the activations of neurons from the same
layer, and then neurons with similar activations over a fixed dataset are merged into a single one.
However, it is well known that DPPs can capture only negative correlations (Kulesza & Taskar, 2011;
Kulesza et al., 2012), and as a result they do not stimulate neurons to learn from the experience of
other neurons. As a comparison, by explicitly learning both precision (covariance) matrices, our
framework can account for both positive and negative correlations among fan-in/fan-out of neurons
from the same layer.

6 CONCLUSION

In this paper we propose an approximate empirical Bayes method with matrix-variate normal prior
to learn the model parameters of deep neural networks. The prior encourages neurons to borrow
statistical strength from other neurons during the learning process, and it provides an effective
regularization when training large networks on small datasets. We connect our approach with
sequential MAP inference and volume minimization, and we also design an efficient block coordinate
descent algorithm to optimize the model. Empirically, on three datasets we demonstrate that our
AEB method improves generalization by finding better local optima that does not overfit. One future
direction is to develop a better approximate solution to optimize the two covariance matrices from
the marginal log-likelihood function.
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A PROOFS

Proposition 1. The optimization problem (10) is convex.

Proof. It is clear that the objective function is convex: the trace term is linear in Ωr and it is well-
known that the log det(·) is concave in the positive definite cone (Boyd & Vandenberghe, 2004),
hence it trivially follows that Tr(ΩrWΩcW

T )− d log det(Ωr) is convex in Ωr.

It remains to show that the constraint set is also convex. Let Ω1,Ω2 be any feasible points, i.e.,
uIp � Ω1 � vIp and uIp � Ω2 � vIp. Let ∀t ∈ (0, 1), we have:

||tΩ1 + (1− t)Ω2||2 ≤ t||Ω1||2 + (1− t)||Ω2||2 ≤ tv + (1− t)v = v,

where we use || · ||2 to denote the spectral norm of a matrix. Now since both Ω1 and Ω2 are positive
definite, the spectral norm is also the largest eigenvalue, hence this shows that tΩ1 +(1− t)Ω2 � vIp.

To show the other direction, we use the Courant-Fischer characterization of eigenvalues. Let λmin(A)
denote the minimum eigenvalue of a real symmetric matrix A, then by the Courant-Fischer min-max
theorem, we have:

λmin(A) := min
x6=0,||x||2=1

||Ax||2.

For the matrix tΩ1 + (1− t)Ω2, let x∗ be the vector corresponding to the minimum eigenvalue, hence
we have:

λmin(tΩ1 + (1− t)Ω2) = min
x6=0,||x||2=1

||(tΩ1 + (1− t)Ω2)x||2

= (tΩ1 + (1− t)Ω2)x∗

≥ tλmin(Ω1) + (1− t)λmin(Ω2)

≥ tu+ (1− t)u
= u,

which also means that tΩ1 + (1− t)Ω2 � uIp, and this completes the proof. �

Lemma 1. Let Ωr ∈ C, then NC(Ωr) = −NC(Ω−1
r ).

Proof. Let S ∈ NC(Ωr). We want to show −S ∈ NC(Ω−1
r ). By definition of the normal cone, since

S ∈ NC(Ωr), we have:
Tr(SZ) ≤ Tr(SΩr), ∀Z ∈ C

Now realize that Ωr ∈ C and C is a compact set, it follows Ωr is the solution of the following linear
program:

max Tr(SZ), subject to Z ∈ C
Since both S and Z are real symmetric matrix, we can decompose them as Z := QZΛZQ

T
Z and

S := QSΛSQ
T
S , where both QZ , QS are orthogonal matrices and ΛZ ,ΛS are diagonal matrices with

the corresponding eigenvalues in decreasing order. Plug them into the objective function, we have:

Tr(SZ) = Tr(QSΛSQ
T
SQZΛZQ

T
Z) = Tr(ΛSQ

T
SQZΛZQ

T
ZQS).

Define K := QTSQZ and D = K ◦K, where we use ◦ to denote the Hadamard product between two
matrices. Since both QS and QZ are orthogonal matrices, we know that K is also orthogonal, which
implies:

p∑
j=1

Dij = 1,∀i ∈ [p], and
p∑
i=1

Dij = 1,∀j ∈ [p].

As a result, D is a doubly stochastic matrix and we can further simplify the objective function as:

Tr(ΛSQ
T
SQZΛZQ

T
ZQS) = Tr(ΛSKΛZK

T ) = λTSDλZ =

p∑
i,j=1

λS,iDijλZ,j ,

13
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where λS and λZ are p dimensional vectors that contain the eigenvalues of S and Z in decreasing
order, respectively. Now for any λS and λZ in decreasing order, we have:

u

p∑
i=1

λS,i ≤
p∑
i=1

λS,iλZ,1+p−i ≤
p∑

i,j=1

λS,iDijλZ,j ≤
p∑
i=1

λS,iλZ,i ≤ v
p∑
i=1

λS,i (13)

From (13), in order for Ωr to maximize the linear program, it must hold that D = K = Ip and all the
eigenvalues of Ωr are v. But due to the assumption that uv = 1, in this case we also know that all
the eigenvalues of Ω−1

r are 1/v = u, hence Ω−1
r also minimizes the above linear program, which

implies:
Tr(SΩ−1

r ) ≤ Tr(SZ), ∀Z ∈ C ⇔ Tr(−S(Z − Ω−1
r )) ≤ 0 ∀Z ∈ C.

In other words, we have −S ∈ NC(Ω−1
r ). Using exactly the same arguments it is clear to see that the

other direction also holds, hence we have NC(Ωr) = −NC(Ω−1
r ). �

Theorem 1. Let Ω̃r ∈ Sp with eigendecomposition as Ω̃r = QΛQT and ProjC(·) be the Euclidean
projection operator onto C, then ProjC(Ω̃r) = QT[u,v](Λ)QT .

Proof. Since Ωr ∈ C is real and symmetric, we can reparametrize Ωr as Ωr := UΛΩrU
T where U

is an orthogonal matrix and ΛΩr is a diagonal matrix whose entries corresponds to the eigenvalues of
Ωr. Recall that U corresponds to a rigid transformation that preserves length, so we have:

||Ωr − Ω̃r||2F = ||UΛΩrU
T − UUT Ω̃rUU

T ||2F = ||ΛΩr − UT Ω̃rU ||2F (14)

Define B := UT Ω̃rU . Now by using the fact that Ω̃r can be eigendecomposed as Ω̃r = QΛQT , we
can further simplify (14) as:

||ΛΩr
−UT Ω̃rU ||2F =

∑
i∈[p]

(ΛΩr,ii−Bii)2+
∑
i 6=j

B2
ij ≥

∑
i∈[p]

(ΛΩr,ii−Bii)2 ≥
∑
i∈[p]

(T[u,v](Bii)−Bii)2,

where the last inequality holds because u ≤ ΛΩr,ii ≤ v,∀i ∈ [p]. In order to achieve the first
equality, B = UT Ω̃rU should be a diagonal matrix, which means UTQ = Ip ⇔ U = Q. In this
case, diag(B) = Λ. To achieve the second equality, simply let ΛΩr

= T[u,v](diag(B)) = T[u,v](Λ),
which completes the proof. �

B MORE EXPERIMENTS

In this section we present more experimental results.

Combination. As discussed in the main text, combining the proposed AEB with BN can further
improve the generalization performance, due to the complementary effects between these two
approaches: BN helps smoothing the landscape of the loss function while AEB also changes the
curvature via the row and column covariance matrices (see Fig. 8).

On the other hand, we do not observe significant difference when combining AEB with Dropout
on this dataset. While we are not clear what is the exact reason for this effect, we conjecture this is
due to the fact that Dropout works as a regularizer that prevents coadaptation while AEB instead
encourages neurons to learn from each other.

Covariance matrices in the prior. One byproduct that AEB brings to us is the learned row and
column covariance matrices, which can be used in exploratory data analysis to understand the
correlations between learned features and different output tasks. To this end, we visualize both
the row and column covariance matrices in Fig. 9. The two covariance matrices on the first row
correspond to the ones learned on a training set with 600 instances while the two on the second row
are trained with the full dataset on MNIST.

From Fig. 9 we can make the following observations: the structure of both covariance matrices
become more evident when trained with larger dataset, and this is consistent with the Bayesian
principle because more data provide more evidence. Second, we observe in our experiments that the
variances of both matrices are small. In fact, the variance of the row covariance matrix Σr achieves
the lower bound limit u at convergence, which also validates our approximation in computing the
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(a) Batch size = 256.
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(b) Batch size = 2048.

Figure 8: Combine AEB with BN and Dropout on MNIST.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.8

0.4

0.0

0.4

0.8

(a) Row Cov. matrix trained on 600 instances.
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(b) Column Cov. matrix trained on 600 instances.
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(c) Row Cov. matrix trained on 60,000 instances.
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(d) Column Cov. matrix trained on 60,000 instances.

Figure 9: Recovered row covariance matrix Σr and column covariance matrix Σc in the prior
distribution on MNIST.

marginal distribution in (2). Lastly, comparing the row covariance matrix Σr in Fig. 9 with the one
computed from model weights in Fig. 7, we can see that both matrices exhibit the same correlation
patterns, except that the one obtained from model weights are more evident, which is due to the
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fact that model weights are closer to data evidence than the row covariance matrix in our Bayesian
hierarchy.

On the other hand, the column covariance matrix in Fig. 9 also exhibit rich correlations between the
learned features, e.g., the neurons in the penultimate layer. Again, with more data, these patterns
become more evident.

Stable rank and spectral norm. In this paragraph we show the experimental results of stable
ranks and spectral norms on the SARCOS dataset. For the SARCOS dataset, the weight matrix
being regularized is of dimension 100 × 7. Again, we compare the results using three methods:
MTL, MTL-WeightDecay and MTL-AEB. All the network architectures used in this experiment are
consistent with the ones used before.

Table 2: Stable rank and spectral norm on the SARCOS dataset.

Stable Rank Spectral Norm
MTL 4.48 0.96
MTL-WeightDecay 4.83 0.92
MTL-AEB 2.88 0.70

As can be observed from Table 2, compared with the weight decay regularization, our AEB regular-
ization greatly reduces both the stable rank and the spectral norm of learned weight matrix, which
also helps to explain why MTL-AEB generalizes better compared with MTL and MTL-WeightDecay.

To conclude this section, we plot a bar chart in Fig. 10 to show the explained variance achieved by
different methods on 7 regression tasks from the SARCOS dataset for better visualization. Again, we
can see that AEB improves uniformly over all the other methods on all the 7 related regression tasks.
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Figure 10: Explained variance of different methods on 7 regression tasks from the SARCOS dataset.
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