
Crash To Not Crash:
Playing Video Games To Predict Vehicle Collisions

Kangwook Lee * 1 Hoon Kim * 1 Changho Suh 1

Abstract
Today’s vehicle collision prediction algorithms
are rule-based, and have not benefited from
the recent developments in deep learning.
This is because it is almost impossible to col-
lect a large amount of collision data from the
real world. To address this challenge, we col-
lect a large accident data set using a popular
video game named GTA V. Using this acci-
dent data set, we develop efficient prediction
algorithms based on modern CNN architec-
tures. The performances of our algorithms
are compared with the simple rule-based algo-
rithms. We observe that the best CNN-based
algorithm among several variants achieves the
prediction accuracy of 96.2% while the best
rule-based one achieves the accuracy of 89.6%.
We also show that our approaches can identify
the source of danger when a collision is pre-
dicted. Moreover, our approaches are shown
to learn how the wheel angles, vehicle ori-
entations, and distances affect the collision
probability.

1. Introduction

Nearly 1.3 million people die in road crashes each year,
and 3 out of 4 deaths are caused by incautious driving.
Thus, one can save a significant number of lives by warn-
ing the driver ahead of a collision. The goal of collision
prediction system (CPS) is to predict vehicle collisions
as early as possible by using a variety of expensive
sensors such as radar, LIDAR, and camera. While the
recent success of deep learning has brought revolutions
in numerous applications, most of the existing colli-
sion prediction algorithms still rely on rule-based ones.
This is because deep learning algorithms require a large

*Equal contribution 1KAIST, Daejeon, Korea. Corre-
spondence to: Changho Suh <chsuh@kaist.ac.kr>.

Proceedings of the 34 th International Conference on Ma-
chine Learning, Sydney, Australia, 2017. JMLR: W&CP.
Copyright 2017 by the author(s).

(a) t− 0.8 s (b) t− 0.6 s (c) t− 0.4 s (d) t− 0.2 s

Figure 1. We show 4 images taken before the accident which
happens at time t. From left to right, the estimated collision
probability for each image is 0.00, 0.45, 0.99 and 1.00. Our
algorithm successfully predicts the vehicle collision from
these images. See (Lee et al., 2017) for similar demo videos.

amount of training data but collecting sensor data from
a large number of accident scenes has been considered
impossible. In a recent work (Richter et al., 2016), it
has been shown that video games or simulators are
able to address the challenge of data scarcity since an
arbitrarily huge amount of data can be collected from
the virtual world. Not only that, they also demonstrate
that their deep learning algorithms, trained with large
synthetic data sets collected from the video games, can
provide superior performances over those trained with
small data sets that are collected from the real world.

In this work, we propose deep learning-based vehicle
collision prediction algorithms, trained with a large
data set collected from a popular video game named
Grand Theft Auto V (GTA V). We first build our data
generation framework, which we use to collect a large
image data set. Our dataset, called GTACrash, consists
of 26705 images taken from diverse accident scenes and
27325 images taken from nonaccident scenes. Using this
data set, we train the collision prediction algorithms
based on the state-of-the-art CNN (Convolutional Neu-
ral Network) architectures to predict whether or not
the driver’s car is going to collide within a certain
period of time given an input image.

Our evaluation shows that the best CNN-based algo-
rithm achieves the prediction accuracy of 96.2% while
the best rule-based algorithm achieves the accuracy of
89.6%. We also show that the CNN-based algorithms
can reliably identify the source of danger in accident
images. Further, we show that the CNN-based algo-
rithms learn how the wheel angles, vehicle orientations,
and distances affect the collision probability.

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

In Fig. 1, we visualize the prediction results of our
CNN-based algorithm for a sample accident scene.
In this accident scene, the orange car on the next
lane starts changing its lane at time t − 0.8 s, and
it eventually collides with the driver’s car at time t.
The 4 images shown in the figure are taken at times
t − 0.2 s, t − 0.4 s, . . . , t − 0.8 s. For each image, our
algorithm estimates the probability of collision as well
as identifies the source of danger. Observe that our
algorithm is able to predict the accident t − 0.4 s be-
fore the accident happens and identify the dangerous
vehicle. See (Lee et al., 2017) for similar demo videos.

2. Related Work

Most of the existing collision prediction algorithms are
based on various motion models such as physics-based
ones, maneuver-based ones, and interaction-aware ones.
See (Raut & Malik, 2014) for a complete survey. These
approaches predict collisions by developing precise mo-
tion models, fitting the motions of the nearby vehicles,
and estimating the future trajectories of them. These
approaches, however, are applicable only when the
past trajectories and maneuvers of nearby vehicles are
available to the driver. This sets the fundamental
limitation of those approaches: they require all the
nearby vehicles to frequently exchange those informa-
tion, making themselves dependent on the underlying
communication infrastructure and hence vulnerable to
communication errors. Different from these approaches,
our algorithms do not assume any particular infrastruc-
ture. Instead, our algorithms predict collisions like
human drivers: they perceive the driving scene and
predict upcoming collisions.

Another line of related works is about self-driving and
collision avoidance algorithms. In (Pomerleau, 1989),
the authors demonstrate that a successfully trained neu-
ral network can mimic the way humans drive. Recently,
deep learning has been applied to self-driving (Chen
et al., 2015; Bojarski et al., 2016), achieving extraor-
dinary performances. In (Bojarski et al., 2017), the
authors explain how their deep neural networks per-
ceive the scene, and show that they pay more attentions
to key objects such as lane markings, nearby vehicles,
etc. In (Kahn et al., 2017; Thorsson & Steinert, 2016),
the authors apply reinforcement learning to develop
collision avoidance systems (Kahn et al., 2017; Thors-
son & Steinert, 2016). While these approaches have
brought huge improvements in self-driving and collision
avoidance algorithms, it is questionable whether they
can handle unusual scenarios such as vehicle collisions,
which are rarely observed in real data. Further, these
approaches are still far from being stable enough to

be deployed. Our approach is immediately deployable
in today’s vehicles since it is meant to assist human
drivers, not to take over their roles.

A few recent works demonstrate that a large amount of
realistic driving scenes can be collected from a virtual
world via video games (Johnson-Roberson et al., 2016;
Richter et al., 2016). They avoid the costly process
of labeling images by collecting images from computer
games, whose ground truth labels are readily obtain-
able. In this work, we go further by creating extreme
environments such as vehicle accident scenes in the
virtual world, which are hard to observe in the real
world. To the best of our knowledge, our data set is
the first driving data set that contains more than tens
of thousands of accident images.

3. Data Collection

In this section, we describe our data generation frame-
work and introduce our dataset, called GTACrash.

3.1. Data Generation

In order to collect a large amount of driving data, we
first implement our own data generation framework
based on Script Hook V (Blade, 2017), an open-source
library that enables access to the low-level internal
functions of GTA V. A few important functions
available in our framework, which play key roles in
our data generation process, are described as follows:
Start_Cruising(s) lets the player’s car cruise along
the lane at speed s; Get_Nearby_Vehicles() returns
the list of vehicles in the current scene of the game;
Set_Vehicle_Out_Of_Control(v) makes the vehicle
v drive out of control; Is_My_Car_Colliding()
checks whether the driver’s car is colliding;
Get_Bounding_Box(v) returns the bounding box of
the vehicle v; and Set_Wheel_Angle(v, a) sets the
wheel angle of the specified vehicle v as a.

A data generation process begins with calling
Start_Cruising(s), making the player’s car cruise
along the lane at the specified speed. The player keeps
exploring the virtual world until the end of the genera-
tion process. This is possible because the player’s car
has a full access to the internal states of the virtual
world such as the road lanes and the map of the world.
We now describe two different data generation modes:
one for generating nonaccident scenes and the other
for accident scenes. In both modes, the data generator
collects screenshots of the game frames at the rate of
10 frames per second, and keeps only a subset of the
collected screenshots according to certain rules.

Accident Scenes: We first illustrate how we collect

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

Figure 2. Sample images from our data set GTACrash.
See (Lee et al., 2017) for more samples.

the accident data set. The data collector samples
random times according to a Poisson process. At
each of the sampled time, the collector makes one
of the nearby vehicles start driving carelessly at ran-
dom time, while the player keeps driving at the con-
stant speed. We implement this by utilizing the func-
tions available in our data generation framework as
follows. We call Get_Nearby_Vehicles() to obtain
the list of nearby vehicles at random time. We then
choose one of those nearby vehicles at random, and
make the chosen car start driving carelessly by calling
Set_Vehicle_Out_Of_Control(v). We observe that
with high probability, the chosen car eventually ends up
with crashing into the player’s car. Note that the player
continues driving at the constant speed merely following
the lane, and it does not attempt to avoid the collision.
Whether or not a car accident actually happens can be
checked by using Is_My_Car_Colliding(). When an
accident is detected in frame i, we take the 5 screen-
shots of the 5 consecutive frames i− 1, i− 2, . . . , i− 5.
That is, for each accident scene, we collect 5 images
that are taken i × 0.1 s before the collision happens
for i = 1, 2, . . . , 5. For each image, we also collect
the ground-truth bounding boxes of the vehicles via
Get_Bounding_Box(v). Further, we also store the id
of the vehicle that is out of control in each image.

Nonaccident Scenes: The nonaccident scenes are
collected in a similar way. The only difference is that
the other vehicles in the virtual world drive normally
at all time. For each sampled driving scene, the screen-
shots of the 5 consecutive frames are collected. Fur-
ther, we annotate each image with the ground-truth
bounding boxes of visible objects and the number of
visible vehicles in the image. We define G0

K as the
set of nonaccident images with K visible vehicles for
K ∈ {0, 1, 2, . . .}. In our experiments, we observe that
|G0

0 | is much larger compared to |G0
K | for K > 1. In or-

der to increase the diversity of the data set, we discard
50% of the images in G0

0 at random.

3.2. Overview of GTACrash

Our dataset GTACrash consists of 5465 nonaccident
scenes (5465×5 nonaccident frames) and 5341 accident
scenes (5341×5 accident frames). We randomly sample
one fifth of the data set as the test set. Note that it
takes only about 48 hours on a single computer running
GTA V to collect the dataset.

The driving scenes are randomly sampled from about
48 hours long game playing, which is equivalent to
about 60 days long driving in the virtual world. This
makes the driving scenes of our data set extremely
diverse: Those images are taken in arterial roads and
highways, in days and nights, and on sunny, rainy, and
snowy days. Fig. 2 shows some sample driving scenes
from GTACrash. The first four figures are nonaccident
images, and the others are accident images. For more
samples, see (Lee et al., 2017).

4. Collision Prediction Algorithms

Here, we propose collision prediction algorithms based
on the state-of-the-art CNN architectures. We also
introduce simple rule-based algorithms, which are based
on object detection algorithms.

4.1. CNN-based Algorithms

We present a class of CNN-based prediction algorithms,
whose network architectures are based on those of
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan
& Zisserman, 2014), and ResNet50 (He et al., 2016).
More specifically, we modify the networks by replacing
the FC (fully-connected) layers of these CNN architec-
tures1 with two FC layers. The first hidden layer is
of size m, and the last layer of size 2 corresponds to
the binary classification results. For each of the CNN
architecture, we test the following training strategies.
The first approach is basic: it initializes all the pa-
rameters in a network with random values, and trains
the network from scratch. If our data set is large
enough to train the large network from scratch with-
out overfitting, this has potential to achieve the best
performance. Another approach is the transfer learn-
ing (tl) approach (Pan & Yang, 2010), which will be
useful if our data set is not large enough to train the
network from scratch but sufficient for fine-tuning the
weights. The parameters of the convolution layers are
initialized with those trained with ImageNet data set,
while the parameters of the FC layers are randomly
initialized. Then, the entire network is trained with
the new data set. The last approach is the deep feature
(df) approach (Donahue et al., 2014; Sharif Razavian
et al., 2014): by viewing the output of the convolution
part as a generic image feature, we train the FC layers
only while keeping the parameters of the convolution
part as those trained with ImageNet. Note that the
deep feature approach can be viewed as a special case
of the transfer learning approach: here we call it the
df approach for short.

1The layers after pool5 for AlexNet and VGG16 and the
last FC layer of ResNet50.

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

Figure 3. Three shapes of the danger zone. From left: tri-
angle, polygon with 7 sides, and trapezoid.

4.2. Detection-based Algorithms

As a rule-based approach to collision prediction,
we present simple detection-based algorithms. The
detection-based algorithms first detect nearby objects,
and decide whether the nearby objects are within a
proximity of the driver’s car. If the intersection area
between the bounding box of a nearby object and a
certain area around the driver, which we call the dan-
ger zone, is larger than a certain threshold, one can
classify the scene as an accident scene. Note that its
performance is highly affected by the performance of
the underlying object detection algorithm. In this work,
we consider an oracle algorithm: that is, we provide
the algorithm with the ground-truth bounding boxes
for all nearby objects for all scenes. It is clear that
the performance of this oracle algorithm sets an upper
bound on the performance of the detection-based algo-
rithms equipped with any detection algorithms. The
most important factors that affect the prediction per-
formance is the shape and the size of the danger zone.
We consider three shapes for the danger zone: triangle,
polygon with 7 sides, and trapezoid. We show the
shapes of the danger zones in Fig. 3. (The size of each
danger zone is optimized to maximize the prediction
performance.) We call the detection-based algorithm
‘Detection(i)’ if the ith shape in the figure is used for
the danger zone.

5. Experimental Results

In this section, we evaluate the performances of the
proposed algorithms. Throughout this section, the
size of hidden layer is fixed as m = 100. We train
the CNN-based algorithms using AdamOptimizer with
mini-batches of size 64. For the learning rates, we use
10−3 for the FC layers and 10−4 for the inner layers. We
first show that the CNN-based algorithms significantly
outperform the simple detection-based algorithms in
terms of prediction performance. More interestingly,
we show that the CNN-based algorithms are able to
learn a few important clues to a collision: the wheel
angles of the other vehicles, the distances to them, and
the orientations of them.

5.1. Prediction Performance

The prediction performances of the algorithms are
shown in Table. 1. The first row compares the classifi-
cation accuracies of the algorithms. One can observe
that VGG16 with transfer learning (tl) achieves the

0.5 0.4 0.3 0.2 0.1
Remaining time to crash (sec)

0.80

0.85

0.90

0.95

1.00

P
re
d
ic
ti
o
n
 a
cc

u
ra
cy

AlexNet

VGG16

ResNet50

Det

(a) Acc. vs time to crash

1 2 3 4 5 6 7 8 9 10
Number of vehicles in an image, K

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra
cy

,
p
K

AlexNet

VGG16

ResNet50

Random guess

(b) Identification acc. vs K
Figure 4. Prediction and identification accuracies.

Figure 5. Source identification examples.

best accuracy of 0.962, which is a huge improvement
over the accuracy of 0.896, achieved by the best detec-
tion algorithm. The second row reports the area under
curve (AUC) of the receiver operating characteristic
(ROC) curve. We observe that the VGG16 with the
basic strategy achieves the best AUC of 0.986 while the
best detection-based one achieves the AUC of 0.922.

Recall that each accident scene consists of 5 consecutive
frames, where the first frame is taken 0.5 s before the
accident happens and the last frame is taken 0.1 s before
the accident. Clearly, the collision prediction task is
easier with the images of the frames that are closer
to the accident. Fig. 4a shows how the classification
accuracy changes as a function of ‘the remaining time
to crash’. Observe that the performance gap between
the CNN-based algorithms and the detection-based
algorithms increases as the remaining time to crash
increases, implying that the CNN-based algorithms can
predict a collision earlier than the others.

5.2. Identification of Dangerous Vehicles

In addition to raising the alarm, a CPS system may
also pinpoint the source of the danger. For instance,
it can highlight the source using the head-up display,
i.e., a transparent display that can render computer
graphics without blocking the frontal view.

The detection-based algorithms can directly locate the
source of the danger: the car that intersects the danger
zone most is the source of the danger. On the other
hand, the CNN-based algorithms cannot immediately
locate the source of the danger. In order to enhance
the interpretability of the CNN-based algorithms, we
propose the following two-stage algorithm, inspired by
the occlusion approach proposed in (Zeiler & Fergus,
2014). The first stage of the algorithm is the object
detection stage: it first detects all the objects in the
front view such as vehicles, pedestrians, animals, etc.
Assume that K ≥ 1 objects are detected in the image.
It then masks out each of the K objects by patching
the bounding box of the object with the average pixel
values. Then, each of the patched images is fed to

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

Table 1. Prediction Performance. For the CNN-based algorithms, ‘b’ denotes the basic learning strategy, ‘tl’ denotes the
transfer learning approach, and ‘df’ denotes the deep feature approach.

Detection AlexNet VGG16 ResNet50

Metric 1 2 3 b tl df b tl df b tl df

Accuracy 0.875 0.896 0.881 0.912 0.940 0.897 0.952 0.9620.923 0.905 0.960 0.870

AUC 0.907 0.922 0.904 0.964 0.977 0.956 0.9860.966 0.984 0.956 0.9860.939

the CNN-based algorithm. Denote by pi the output
for the ith image for 1 ≤ i ≤ K. Similarly, denote
by p0 the output for the original image. The two-
stage algorithm then finds the object whose presence
increases the collision probability most among the K
objects. That is, if x̂ = argmax1≤i≤K(p0 − pi), the
x̂th object is chosen as the source of danger.

We now evaluate the source identification performances
of the detection-based algorithms and the proposed two-
stage algorithm. Recall that each image is annotated
with the ground truth source of danger, which is the
car that is driving out of control in the image. We
measure the identification accuracy using these labels
as follows. We define G1

K as the set of accident images
with K visible vehicles for K ∈ {0, 1, 2, . . .}. Further,
denote the source of danger in image z by xz, and
the output of an identification algorithm by x̂z. For
fixed K, the empirical identification accuracy is defined
as qK =

∑
z∈G1

K
1(x̂z = xz)/|G1K |. Clearly, a random

guess can achieve qK = 1/K.

Shown in Fig. 5 are some examples of the source iden-
tification results. If p0 − pi < 0.01, the ith vehicle is
annotated with a green bounding box. Otherwise, we
draw a red bounding box, annotated with the value
of po − pi: the red bounding boxes denote dangerous
objects. For demo videos, see (Lee et al., 2017).

We also test how well the CNN-based algorithms iden-
tify the source of danger. Note that when there are
no vehicles in the danger zone, the detection-based
algorithms need to guess the source of danger at ran-
dom while our two-stage algorithms still have a chance
to correctly identify the source. In order to see this,
we evaluate the source identification accuracies of our
two-stage algorithms2 on the accident images where no
vehicles exist in the danger zone. Shown in Fig. 4b are
the results. We observe that the identification accu-
racies of the two-stage algorithms decay much slower
than those of the other algorithms.

2For the two-stage algorithm, we provide the second
stage of the algorithm with the ground-truth bounding
boxes. Note that in practice, one can run an efficient object
detection algorithm to obtain the bounding boxes.

−30 −15 0 15 30
Wheel angle, rw

0.0

0.5

1.0

p

(a) p vs wheel angle (b) Varying wheel angles

0 30 60 90 120 150 180
Vehicle orientation, rv

0.0

0.5

1.0

p
(c) p vs orientation (d) Varying vehicle orientations

30 60 90 120
Distance, d

0.0

0.5

1.0
p

Same

Opposite

(e) p vs distance (f) Varying distances

Figure 6. The rules learned by the CNN-based algorithms.

5.3. The Rules Learned by the CNN-based
Algorithms

In the previous sections, we observed that the CNN-
based algorithms constantly outperform the simple
detection-based algorithms. A natural question then
arises: What are the implicit prediction rules that are
learned by the CNN-based algorithms? For instance,
one may wonder whether the CNN-based prediction
algorithms are able to detect subtle evidences such
as abnormal wheel angles of other vehicles, unusual
orientation of them, etc. In this section, we show that
the CNN-based algorithms learn to output a higher
collision probability if

• (wheel angle) the wheel angles of the other cars are
not aligned with their lanes, or

• (vehicle orientation) the other cars are facing toward
the driver, or

• (distance) the nearby vehicles are closely located.

Wheel angle: We first collect a set of random driving
images. For each driving scene, we choose one of the
nearby vehicles on the other side of the lanes. We
then generate a sequence of driving images by varying
the wheel angle of the chosen car. This can be done
by using the function set_wheel_angle() of our data
generation framework. We then measure the output of

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

the CNN-based algorithms and observe how the wheel
angles are correlated with the prediction output. The
wheel angle rw is measured with respect to the direction
of the lane: rw = 0◦ if the wheel is aligned with the
lane; rw = +30◦ if the wheel is rotated by 30◦ toward
the driver’s lane; and rw = −30◦ if the wheel is rotated
by 30◦ toward the sidewalk.

Shown in Fig. 6a are the average prediction proba-
bilities as a function of the wheel angle. We clearly
observe the positive correlation between the wheel angle
and the predicted probabilities of the CNN-based algo-
rithms. Note that the outputs of the detection-based
algorithms do not alter at all when the wheel angle
changes. Some sample images are shown in Fig. 6b.

Vehicle orientation: We also measure the correla-
tion between the vehicle orientation and the prediction
probability. The vehicle orientation rv is measured as
the angle between the direction of the lane and the ori-
entation of the vehicle: rv = 0◦ if the car is facing the
direction of the lane, and rv = 90◦ if the car is facing
the driver’s lane. The average prediction probability
as a function of the vehicle orientation is plotted in
Fig. 6c. We observe that the predicted probability is
close to one when 40◦ ≤ rv ≤ 130◦: this makes sense
because it is probable that the vehicle crosses over the
central line, and collides with the driver’s car.

Distance: Another interesting observation is the re-
lationship between the distance to the nearby vehicle
and the predicted probability. Shown in Fig. 6e is the
predicted probability as a function of the distance to
the nearby car, measured in pixels. Observe that when
the nearby vehicle is on the same lane ahead of the
driver’s car, the predicted probability decreases as the
other vehicle moves farther. On the other hand, when
the nearby vehicle is on the opposite lane, the predicted
probability is always zero, regardless of the distance
to the vehicle. This makes a perfect sense since the
distances to the cars driving normally on the opposite
lane should not affect the collision probability.

5.4. Prediction Performance on Real Images

Figure 7. Sample images in the data set of real images.

While the CNN-based algorithms show superior per-
formances on the driving images collected from the
virtual world, it remains questionable whether these
algorithms can predict accidents from the real images.
To evaluate the generalization performance of CNN-
based algorithms, we collect a data set of real images
as follows. We first collect 102 video clips on car ac-

cident from YouTube. For each clip, we collect two
accident images and two nonaccident images: Denoting
the time at which the accident happens by t, we collect
the frames at time t− 0.2 s and t− 0.4 s as accident im-
ages and the frames at time 0 and 0.2 s as nonaccident
ones. See Fig. 7 for some sample images.

The prediction performance of the VGG16(tl) algo-
rithm is evaluated on these real images: The prediction
accuracy is measured as 0.71, and the AUC is measured
as 0.63. The poor performance seems to be due to the
low quality of the data set. We believe that transfer
learning can significantly improve the performance on
real images: See Sec. 6 for more discussion.

6. Conclusion and Discussion

In this work, we collect a large image data set us-
ing video games, and propose a CNN-based algorithm
for collision prediction. Our approach is shown to 1)
predict collisions ahead of time, 2) detect the source
of danger, and 3) learn a few interesting rules. We
conclude the paper by presenting future directions.

Richer data sets: Video games are a source of infinite
data, and our GTACrash is only tip of the iceberg. A
richer data set can be generated by collecting rear view
images, views from multiple cars, simulated radar and
LIDAR sensor outputs, velocities of the nearby objects,
etc. Further, one can also vary the player’s driving
policy and the other vehicles’ driving policies. The
diversity of the data set can be further augmented by
adding more vehicle models and new virtual cities.

Alternative approaches: While we use a single im-
age for collision prediction, one may design prediction
algorithms which take a sequence of consecutive images
as input. One may estimate optical flows from consec-
utive images and train a CNN with the optical flows,
possibly via deep learning (Fischer et al., 2015). An-
other viable option is to use recurrent neural network
(RNN) (Hochreiter & Schmidhuber, 1997) that takes
multiple frames. Further, one may generate future im-
ages via a generative adversarial network (GAN) and
then predict collisions with generated future images.

Knowledge transfer to the real world: In (Richter
et al., 2016), the authors show that the semantic seg-
mentation model trained with 1/3 of the real data
set and a large virtual data set performs as good as
the model trained with the entire real data set: The
amount of real data can be reduced by transferring the
knowledge learned from the virtual world. We plan to
study whether the knowledge we collect in this work
can be transferred well to the real world.

Crash To Not Crash: Playing Video Games To Predict Vehicle Collisions

References
Blade, Alexander. Script hook v. http://www.dev-c.
com/gtav/scripthookv/, 2017. Accessed: 2017-06-
06.

Bojarski, Mariusz, Del Testa, Davide, Dworakowski,
Daniel, Firner, Bernhard, Flepp, Beat, Goyal, Pra-
soon, Jackel, Lawrence D, Monfort, Mathew, Muller,
Urs, Zhang, Jiakai, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

Bojarski, Mariusz, Yeres, Philip, Choromanska, Anna,
Choromanski, Krzysztof, Firner, Bernhard, Jackel,
Lawrence, and Muller, Urs. Explaining how a deep
neural network trained with end-to-end learning
steers a car. arXiv preprint arXiv:1704.07911, 2017.

Chen, Chenyi, Seff, Ari, Kornhauser, Alain, and Xiao,
Jianxiong. Deepdriving: Learning affordance for
direct perception in autonomous driving. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pp. 2722–2730, 2015.

Donahue, Jeff, Jia, Yangqing, Vinyals, Oriol, Hoffman,
Judy, Zhang, Ning, Tzeng, Eric, and Darrell, Trevor.
Decaf: A deep convolutional activation feature for
generic visual recognition. In Icml, volume 32, pp.
647–655, 2014.

Fischer, Philipp, Dosovitskiy, Alexey, Ilg, Eddy,
Häusser, Philip, Hazırbaş, Caner, Golkov, Vladimir,
van der Smagt, Patrick, Cremers, Daniel, and Brox,
Thomas. Flownet: Learning optical flow with convo-
lutional networks. arXiv preprint arXiv:1504.06852,
2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Johnson-Roberson, Matthew, Barto, Charles, Mehta,
Rounak, Sridhar, Sharath Nittur, and Vasudevan,
Ram. Driving in the matrix: Can virtual worlds
replace human-generated annotations for real world
tasks? arXiv preprint arXiv:1610.01983, 2016.

Kahn, Gregory, Villaflor, Adam, Pong, Vitchyr, Abbeel,
Pieter, and Levine, Sergey. Uncertainty-aware re-
inforcement learning for collision avoidance. arXiv
preprint arXiv:1702.01182, 2017.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geof-
frey E. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

Lee, Kangwook, Kim, Hoon, and Suh, Changho. Online
supplementary material for the submission. https:
//sites.google.com/view/gtacrashanon, 2017.
Accessed: 2017-06-06.

Pan, S. J. and Yang, Q. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engi-
neering, 22(10):1345–1359, Oct 2010. ISSN 1041-
4347. doi: 10.1109/TKDE.2009.191.

Pomerleau, Dean A. Advances in neural informa-
tion processing systems 1. chapter ALVINN: An
Autonomous Land Vehicle in a Neural Network,
pp. 305–313. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1989. ISBN 1-558-60015-
9. URL http://dl.acm.org/citation.cfm?id=
89851.89891.

Raut, Swati B and Malik, LG. Survey on vehicle
collision prediction in vanet. In Computational In-
telligence and Computing Research (ICCIC), 2014
IEEE International Conference on, pp. 1–5. IEEE,
2014.

Richter, Stephan R, Vineet, Vibhav, Roth, Stefan, and
Koltun, Vladlen. Playing for data: Ground truth
from computer games. In European Conference on
Computer Vision, pp. 102–118. Springer, 2016.

Sharif Razavian, Ali, Azizpour, Hossein, Sullivan,
Josephine, and Carlsson, Stefan. Cnn features off-
the-shelf: An astounding baseline for recognition.
In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2014.

Simonyan, Karen and Zisserman, Andrew. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

Thorsson, Jonathan Leiditz and Steinert, Olof. Neural
networks for collision avoidance. 2016.

Zeiler, Matthew D and Fergus, Rob. Visualizing and
understanding convolutional networks. In European
conference on computer vision, pp. 818–833. Springer,
2014.

http://www.dev-c.com/gtav/scripthookv/
http://www.dev-c.com/gtav/scripthookv/
https://sites.google.com/view/gtacrashanon
https://sites.google.com/view/gtacrashanon
http://dl.acm.org/citation.cfm?id=89851.89891
http://dl.acm.org/citation.cfm?id=89851.89891

