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ABSTRACT

Optimal selection of a subset of items from a given set is a hard problem that
requires combinatorial optimization. In this paper, we propose a subset selection
algorithm that is trainable with gradient based methods yet achieves near optimal
performance via submodular optimization. We focus on the task of identifying a
relevant set of sentences for claim verification in the context of the FEVER task.
Conventional methods for this task look at sentences on their individual merit and
thus do not optimize the informativeness of sentences as a set. We show that our
proposed method which builds on the idea of unfolding a greedy algorithm into a
computational graph allows both interpretability and gradient based training. The
proposed differentiable greedy network (DGN) outperforms discrete optimization
algorithms as well as other baseline methods in terms of precision and recall.

1 INTRODUCTION

In this paper, we develop a subset selection algorithm that is differentiable and discrete, which can
be trained on supervised data and can model complex dependencies between elements in a straight-
forward and comprehensible way. This is of particular interest in natural language processing tasks
such as fact extraction, fact verification, and question answering where the proposed optimization
scheme can be used for evidence retrieval.

Conventional evidence retrieval methods that look at lexical or semantic similarity typically treat
sentences or documents independently, potentially missing dependencies between them and there-
fore select redundant evidence. One way to address this shortcoming is by adding a diversity promot-
ing submodular objective function (Tschiatschek et al., 2014; Lin & Bilmes, 2011; Lovász, 1983;
Fujishige, 2005; Krause, 2010). Submodularity is a property of set functions that can be expressed
by the notion of diminishing returns that allows near-optimal solutions to be found in polynomial
time for NP-hard problems.

A submodular set function is a function that maps sets to scalar values and has the property that
the incremental value of the function computed with an additional element to an input set never
increases as the input set grows. Submodular functions are defined by this natural diminishing
returns property, which makes them well suited for tasks such as claim verification. With respect to
a claim, the amount of relevant information in a set of sentences has diminishing returns as the set
grows, meaning that the amount of additional information in an additional piece of evidence shrinks
as the set of selected evidence grows. Thus, any relevancy-measuring function that is learned from
data would potentially benefit from a diminishing returns constraint as it would discount redundancy
in favor of diverse but relevant evidence. Claim verification often requires complicated induction
from multiple sentences, so promoting diversity among selected sentences is important to capture
all facets of the claim. The resulting submodular optimization model can then handle dependencies
between sentences and features, and despite making the sentence selection problem more difficult
computationally, a near-optimal solution can be found efficiently using a simple forward greedy
algorithm.

The main contribution of this paper is a new optimization scheme which integrates continuous
gradient-based and discrete submodular frameworks derived by unfolding a greedy optimization
algorithm: the Differentiable Greedy Network (DGN). By unfolding a greedy algorithm into a
computational graph, we can combine the advantages in interpretability and representation learn-
ing. Deep unfolding is a technique that transforms inference algorithms into computational graphs,
thereby allowing the original model parameters to be trained discriminatively on labeled data while
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still exactly corresponding to the original model parameters (Hershey et al., 2014). We show that
making a greedy algorithm differentiable and adding trainable parameters leads to promising im-
provements in recall@k of 10%-18% and precision@k of 5%-27% for a sentence selection task,
where k = 1, 3, 5, 7 is the number of selected evidence sentences, on the Fact Extraction and Veri-
fication (FEVER) dataset (Thorne et al., 2018) and, with fewer parameters, performs very similarly
to a conventional deep network. As the DGN is bootstrapping a greedy algorithm, it can be easily
extended to work on other information retrieval tasks such as question answering as well as other
problems that rely on greedy approaches. While more sophisticated neural architectures can deliver
better performance, we focus on showing the power of our new optimization scheme on a simpler
model.

In Section 2, we discuss related work in the domains of information retrieval, submodularity, and
deep unfolding. In Section 3, we define submodularity and present the proposed Differentiable
Greedy Network (DGN). Section 4 contains experiments and results for baseline models and DGN
applied to sentence selection for the FEVER dataset as well as an ablation study. We draw conclu-
sions in Section 5. Also, the attached Appendix 6 contains an additional example demonstrating the
utility of promoting diversity.

2 RELATED WORK

Evidence retrieval is a key part of claim verification or question answering which aims to provide
reasoning and a measure of interpretability (Lei et al., 2016). The FEVER dataset (Thorne et al.,
2018) comes with a baseline evidence retrieval system, which returns the top k sentences based
on cosine similarity of term-frequency inverse-document-frequency (TF-IDF) features between the
claim and candidate sentences. Models (Vaswani et al., 2017; Huang et al., 2018; Seo et al., 2016)
that use attention on top of recurrent or convolutional neural networks can be adopted for this prob-
lem. However, all these types of models often focus only on learning similarities between claims and
candidate evidence sentences, but neglect to model dependencies between the candidate sentences
themselves, which is an advantage of a model that uses submodular functions which we focus on.

Central to our work here is the idea of deep unfolding Hershey et al. (2014) a technique that fills the
continuum between the two extremes of generative models and deep learning models and combines
the advantages of deep learning (discriminative training through backpropogation, ability to leverage
large datasets) and generative models (ability to leverage domain knowledge, optimization bounds,
fast training on smaller datasets).

Deep unfolding (Hershey et al., 2014) has demonstrated a principled way to derive novel network
architectures that are interpretable as inference algorithms by turning iterations of the inference
algorithms into layers of a network. Previous work has unfolded Gaussian mixture models for mul-
tichannel source separation, the sequential iterative shrinkage and thresholding algorithm (SISTA)
for sparse coding, and nonnegative matrix factorization (NMF) (Gregor & LeCun, 2010; Chen et al.,
2015; Hershey et al., 2014; Wisdom et al., 2016; 2017; Le Roux et al., 2015). Particularly for sparse
models, unfolding has only been applied to inference algorithms that use regularization approaches
to promote sparsity.

Tschiatschek et al. (2018) considered subset selection through greedy maximization as well. Since
output of their proposed method is differentiable as they can be interpreted as a distribution over
sets, the proposed method can be combined with gradient based learning. However, their proposed
method is different from us as it relies on stochastic submodular optimization algorithms. Moreover,
we focus on sentence selection which comes with its own complexities. Others have proposed
related versions of learning through discrete functions, including deep submodular functions (DSF)
(Bilmes & Bai, 2017), submodular scoring functions (Sipos et al., 2012), iterative hard thresholding
(Xin et al., 2016), and the argmax function (Mensch & Blondel, 2018). The common thread of these
related works is relaxation of the discrete functions. Our proposed network is distinct in that it learns
the parameters of submodular function and feature encoder through the greedy optimization using a
relaxed argmax function at training time. At test time, the model uses the argmax, so when it runs,
it is still solving the submodular function maximization problem.
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Algorithm 1 FORWARD GREEDY (V, k, f)

1: Â← ∅
2: while |Â| < k do
3: v∗ ← argmaxv∈V \Âf(v|Â)
4: Â← Â ∪ {v∗}
5: end while
6: return A

3 DIFFERENTIABLE GREEDY NETWORKS

We start with a brief review of submodularity as it applies to our development of Differentiable
Greedy Networks. The innovation of this paper stems from making greedy optimization of a sub-
modular set function differentiable, but at test time, the performance guarantees are determined by
the submodularity of the function, the constraints of the optimization problem, and the optimization
algorithm used.

3.1 SUBMODULARITY

Submodularity is a property that describes set functions analogous to how convexity describes func-
tions in a continuous space. Rather than exhaustively searching over all combinations of sub-
sets, submodular functions provide a fast and tractable framework to compute a near optimal so-
lution (Lovász, 1983; Fujishige, 2005; Krause, 2010).

Let the set of available objects, known as the ground set, be denoted as V . Submodularity can be
expressed via the notion of diminishing returns, i.e., the incremental gain of the objective diminishes
as the context grows. If we define the incremental gain of adding element v to A as f (v|A) =
f (A ∪ {v})− f (A), then a submodular function f is defined as satisfying

f (v|A) ≥ f (v|B) ∀A ⊆ B ⊂ V, v /∈ B. (1)
Submodular functions can be both maximized and minimized. Submodular functions that are max-
imized tend to exhibit concave behavior such as probabilistic coverage, sums of concave composed
with monotone modular functions (SCMM), and facility location. Constrained monotone submodu-
lar function maximization algorithms include the forward greedy algorithm (Nemhauser et al., 1978;
Fisher et al., 1978) and continuous greedy algorithm (Vondrák, 2008). Likewise, constrained non-
monotone submodular function maximization algorithms include local search algorithm (Lee et al.,
2009), greedy-based algorithms (Gupta et al., 2010), and other algorithms that use some combina-
tion of these (Mirzasoleiman et al., 2016). In this paper, we focus on the forward greedy algorithm.
Greedy optimization algorithms provide a natural framework for subset selection problems like re-
trieval, summarization, sparse approximation, feature selection, and dictionary selection. One can
derive lower bounds if the objective function in a given subset selection problem is submodular
(Nemhauser et al., 1978), and even for some non-submodular cases (Cevher & Krause, 2011; Das &
Kempe, 2011; Powers et al., 2016).

For retrieval tasks like evidence extraction, submodular function optimization allows for dependence
between potential pieces of evidence. For example, consider a problem where given a claim, the
goal is to select sentences that help verify or refute the claim. A common simplifying assumption
made in selection models is that the sentences are independent of each other, thereby ensuring the
selection has linear time complexity in terms of the number of sentences. While this independence
assumption doesn’t necessarily adversely affect the relevancy of the selected sentences, it might lead
to redundancy in the selected sentences.

The submodular function f(·) that we optimize is an SCMM given as follows:

fα(A) =
∑
u∈U

αu log(1 +
∑
a∈A

hua), (2)

where αu ∈ R+, ∀u ∈ U are non-negative trainable parameters at index u of the feature dimension
that allow the functions to be tuned on data, and hua ∈ R+ are the output features from the encoding
layer for sentences A and feature indices U . Specifically, they allow the network to identify the
relative importance of different features U . For the sentence selection task that we test the DGN on
in Section 4, these features correspond to the semantic similarities of a claim and potential evidence.
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Given the monotone submodular objective function, the optimization problem is to find the optimal
subset A∗ that maximizes fα(·):

A∗ ∈ argmax
A∈V,|A|≤k

fα(A). (3)

Even though Problem (3) is NP-hard, we chose the objective function to be submodular, so a near
optimal solution can be found in polynomial time (Nemhauser et al., 1978). Specifically, we can
use the forward greedy algorithm, detailed in Algorithm 1, to find a subset Â, such that fα(Â) ≥
(1 − 1/e)fα(A

∗) where (1 − 1/e) ≈ 0.63. This guarantee ensures that any estimated solution set
is no more than a constant factor worse than the true optimal set in terms of the objective function,
and in practice the greedy algorithm often performs well above this tight lower bound.

3.2 DIFFERENTIABLE GREEDY NETWORKS

Now we present the Differentiable Greedy Network (DGN), an unfolded discrete optimization algo-
rithm, which will allow for discriminative training of parameters while retaining the original guar-
antees of the forward greedy algorithm shown in Algorithm 1.

The most important change to make the network differentiable is to the argmax function in line 3 of
Algorithm 1. During training, the argmax cannot be used directly because its gradients are not well-
defined, so we approximate the argmax with softmax and use a temperature parameter τ to scale
how close it approximates the argmax (Jang et al., 2017). This is an important parameter during
training, as the temperature greatly affects the gradient flow through the network. As is discussed in
Section 4, setting the temperature too low results in large gradients with high variance which makes
training unstable and limits the gains in precision-recall. The temperature should not be too high
either as the output starts to look more uniform and less like the argmax.

Figure 1 depicts the DGN as a computational graph. It is built out from Algorithm 1, where lines
2-4 comprise the greedy layers. The overall structure of the network on the left shows that the input
features, X , are run through a linear encoding layer follows by ReLU as an activation function. We
choose the ReLU function specifically because the submodularity of the SCMM function requires
non-negativity and because of its stability during training (Nair & Hinton, 2010). The resulting
non-negative features, H , are then run through successive greedy layers along with the state vector
which encodes the progression of sentence selections. The right diagram details a greedy layer. In
the left branch, for greedy iteration i, the network enumerates the possible next states, {si ∪ {v} :
∀v ∈ V \si}. The network then evaluates these potential next states in the context of the current state
si and finds the sentence that provides the biggest increase in terms of fα(·), which is then added to
the current state to form the new state si+1.

In some respects, the overall network looks conventional, especially the linear plus ReLU encoding
layer. The connections betweenH and the greedy layers are very reminiscent of a recurrent network
where an input or hidden state is fed into layers with shared weights. The greedy layers, though,
deviate significantly from conventional network architectures. Functionally, the greedy layers serve
a similar purpose as an attention mechanism, but where attention would assign importance or rele-
vance of a sentence to a claim or query, the submodular function in the greedy layer can be designed
not only to measure the relevance of a sentence, but also explicitly model dependencies like redun-
dancy between sentences and does so in a straightforward and interpretable manner. Examples of
how the DGN models the sentence dependencies can be found in Section 4. The intuition behind
how the DGN relates sentences together goes back to the submodularity of the objective function
within the network. For the evidence extraction task described in Section 4, the input features are
effectively similarity values between the claim and sentences across different feature indices. By
applying a compressive concave function for a specific feature index u aggregated across a set of
sentences A and summing over the feature indices ∀u ∈ U , a set of sentences that are similar to the
claim but at different indices in the feature dimension would be preferred to a set of sentences that
are equally similar but at the same indices.

4 EXPERIMENTS

We apply the DGN to the Fact Extraction and Verification (FEVER) dataset (Thorne et al., 2018).
FEVER data consists of claims, classification of the claims as Supported, Refuted, or NotEnough-
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Figure 1: The Differentiable Greedy Network (DGN). The overall structure of the network on the
left shows that the input features X are run through a linear encoding layer and a ReLU activation
function. The resulting non-negative featuresH are then run through successive greedy layers along
with the state vector which encodes the progression of sentence selections. The right diagram details
a greedy layer. In the left branch, for greedy iteration i, the network enumerates the possible next
states, {si ∪{v} : ∀v ∈ V \si}. The network then evaluates these potential next states in the context
of the current state si and finds the sentence that provides the biggest increase in terms of fα(·),
which is then added to the current state to form the new state si+1. During training, the selection
is done through a softmax with temperature τ to differentiably approximate the argmax, and at test
time we use the argmax to ensure the submodular guarantee of the model.

Info (NEI), and evidence that the classification is based on. The claims and evidence come from
Wikipedia. The baseline system for FEVER has two main steps: evidence retrieval and recognizing
textual entailment (RTE). The dataset has 109,810 verifiable claims in the training set, 13,332 in
the validation set and 6,666 in the test set. The baseline system selects k sentences from a set of
retrieved documents that have the highest TF-IDF cosine similarity to a claim.The FEVER scoring
function computes the precision, recall, and F1 score for the retrieved sentences with respect to the
labeled evidence sentences in verifiable claims. The evidence sentences are then run through the
a baseline RTE network along with the claim to classify the claim as Supported, Refuted, or NEI.
Notably, the best RTE baseline system drops from 88.00% accuracy to 50.37% when going from
oracle evidence retrieval to the baseline retrieval system demonstrating that there is significant room
to improve the evidence retrieval module. Also, the attached Appendix 6 contains an additional
example demonstrating the utility of promoting diversity.

We narrow our focus to sentence retrieval given oracle documents. Most claims have one or two
evidence sentences, but the distribution is fairly heavy-tailed. Based on the distribution, we set the
max number of greedy iterations to k = 7 in our experiments, which covers 93% of the claims and
provides a reasonable balance between coverage, precision, and computational complexity. Claim
verification often requires complicated induction from multiple sentences, so ideally, a more com-
plicated model would be able to model the interactions between sentences. The next step is to
introduce the concept of redundancy to the model by substituting in a diversity-promoting value
function, SCMM, for the baseline value function, cosine similarity.

We use mean-pooled FastText word embeddings of dimension F for each claim andD potential evi-
dence sentences and element-wise multiply the claim feature vector with the sentences (Bojanowski
et al., 2016). Thus, the inputs X ∈ RF×D signify similarity scores between the claim and sentences
for each of the feature dimensions. Connecting back to Equations (2) and (3), F = |U | andD = |V |.
Compared to TF-IDF features, the FastText word embeddings encode semantic structures of words
that are more meaningful than simple lexical matching statistics and motivate the idea of promoting
diversity. Consider a claim and three sentences, where the goal is to select the best two sentences
as evidence. Using the SCMM in Equation (2), the forward greedy algorithm in Algorithm 1 would
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Figure 2: Recall@7 on the validation set. The DGN seems to fit very quickly to the full set in
terms of cross entropy, but the recall improves consistently. Decreasing the learning rate results in a
smoother and consistently decreasing loss, but lower recall.

first select the sentence with the highest similarity to the sentence. If the other two sentences have
are approximately equally similar to the claim, the SCMM will prefer the one that is similar across
different feature dimensions than the chosen sentence. Therefore, this submodular framework will
encourage semantic diversity among relevant sentences to a claim.

The DGN encoder projects input featuresX to a matrixH ∈ RF
′×D

+ by passing the features through
two linear layers with ReLU non-linearity. The state vector s is of dimensionD. We perform random
hyperparameter searches over learning rate, encoder output dimension F ′, and softmax temperature
τ . The training loss is accumulated layer-wise cross entropy from output of the greedy layers(eq 4).
We choose to compute the loss at each layer, rather than at the end to help better correct decisions
made at the individual layers. The loss is computed as follows.

Let sssk ∈ RD denotes the state at layer k, which assigns a normalized score to each of the sentences.
Labels are given by L ⊂

{
1, ..., D

}
. The Cross Entropy loss is given as:

LossCE(L,sss
1, .., sssk) =

min(K,|L|)∑
j=1

D∑
i=1

[
ILj=i · log sssji + ILj 6=i · log(1− sssji )

]
, (4)

where IA is the indicator function for eventA, andK indicates the number of greedy layers(7 in this
paper).

We compare the DGN to several baselines, each emphasizing a particular comparison for the DGN:
a feedforward greedy algorithm to test the importance of learning better weights for the submodular
objective function, a shallow feedforward network to test the impact of modeling dependence be-
tween sentences that we call the Encoder model, and a deeper feedforward network model DeepEn-
coder. Both the Encoder and DeepEncoder models consist of dense linear layers with ReLU activa-
tion functions with softmax output layers.They are trained with a binary cross entropy loss function.
We use Adam as the network optimizer with default parameters except for learning rate (Kingma &
Ba, 2014). The models are implemented in PyTorch (Paszke et al., 2017).

The results in Table 1 show recall, precision and F1 scores for the tested models. The untrained
baselines are a recreation of the FEVER system that selects the top k sentences based on cosine
similarity of sentence embeddings and a greedy algorithm that maximizes the submodular SCMM
function in Equation (2). We also perform an ablation study to measure the effect of the greedy
layers by removing them and measuring the performance of Encoder and also test against multi-
layer feedforward baseline (DeepEncoder). The Encoder model has 172K trainable parameters. The
DeepEncoder has 915K parameters. Each block of rows of Table 1 show recall, precision, and F1
when the models select k = 7, 5, 3, 1 sentences as evidence. The DGN outperforms the untrained
baselines, improving recall@7 by 10% while also improving precision. When selecting fewer sen-
tences, k = 5, 3, 1, the recall improves 14-18% while producing increasing gains in precision 5%,
10%, and 27%, respectively.

While the performance of the Encoder and DeepEncoder as shown in Tables 2 and 1 are very close
to that of the DGN, the DGN maintains several advantages. First, the DGN is much more robust to
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Table 1: Evidence retrieval results. Each block of rows show recall, precision, and F1 when the
models select k = 7, 5, 3, 1 sentences as evidence. The DGN significantly outperforms the untrained
baselines. When selecting fewer sentences, k = 5, 3, 1, the DGN produces increasing gains in recall,
precision, and F1. The DGN slightly, but consistently outperforms the Encoder.

Model Recall@7 Precision@7 F1@7
Top-k 0.704 0.179 0.285
Greedy 0.706 0.179 0.286
Encoder 0.809 0.205 0.327
DGN 0.811 0.206 0.328
Model Recall@5 Precision@5 F1@5
Top-k 0.598 0.205 0.305
Greedy 0.600 0.205 0.306
Encoder 0.734 0.251 0.374
DGN 0.738 0.253 0.377
Model Recall@3 Precision@3 F1@3
Top-k 0.438 0.244 0.313
Greedy 0.439 0.245 0.314
Encoder 0.615 0.342 0.440
DGN 0.615 0.342 0.440
Model Recall@1 Precision@1 F1@1
Top-k 0.194 0.322 0.242
Greedy 0.194 0.322 0.242
Encoder 0.353 0.588 0.441
DGN 0.356 0.593 0.445

Table 2: Evidence retrieval results for the DeepEncoder model and the DGN. Each row shows
recall, precision, and F1 when the models select k = 7 sentences as evidence. The DGN achieves
comparable performance of the DeepEncoder models with a fraction of the parameters in the best
performing DeepEncoder.

Model # Trainable Parameters Recall@7 Precision@7 F1@7
DeepEncoder 915K 0.815 0.207 0.330
DGN 167K 0.811 0.206 0.328

class imbalances. In order to get the Encoder and DeepEncoder models to work, the positive samples
(evidence sentences) needed to be weighted more heavily in the cross entropy loss. Moreover, the
encoder models were very sensitive to this value–set too low the model rejected every sentence,
and too high the model selects every sentence. The greedy algorithm regularizes the network to
select k sentences, though, and therefore is insensitive to the class imbalance. Second, since the k
greedy layers are performing k iterations of submodular function optimization, the DGN explicitly
and transparently models dependencies between functions given the right choice of submodular
function.

To illustrate how the dependencies encoded by the submodular function help, consider the following
claim, which has two distinct facts that need to be verified: “Jarhead, a 2005 American biographical
war drama, was directed by the award-winning auteur Sam Mendes.” The first half of the claim
asserts that Sam Mendes directed “Jarhead,” but looking at the labeled evidence the algorithm also
needs to verify that he has won an award in the arts (presumably film). The DGN does just this
in the first two greedy layers picking up on both facets of the claim with sentences a, fα({a}) =
14.48, and b, fα({b}) = 12.86: “He is best known for directing the drama film American Beauty
(1999), which earned him the Academy Award and Golden Globe Award for Best Director, the crime
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Table 3: Effects of various optimization modifications: softmax temperature annealing, sentence
order shuffling

Greedy optimization modification Recall@7 Precision@7 F1@7
Temperature annealing 0.756 0.192 0.306
No temperature annealing 0.763 0.194 0.309
Sentence shuffling 0.802 0.203 0.324
No sentence shuffling 0.811 0.206 0.328

film Road to Perdition (2002), and the James Bond films Skyfall (2012) and Spectre (2015),” and
“Jarhead is a 2005 American biographical war drama film based on U.S. Marine Anthony Swofford’s
2003 memoir of the same name, directed by Sam Mendes, starring Jake Gyllenhaal as Swofford
with Jamie Foxx, Peter Sarsgaard and Chris Cooper.” On the other hand, the DeepEncoder selects
sentence b, verifying that Jarhead was directed by Sam Mendes, but the next highest rated sentence
is sentence c: “Samuel Alexander Mendes, (born 1 August 1965) is an English stage and film
director.” The DGN ranked both sentences b and c fairly highly, fα({c}) = 12.26, but determined
that sentence c was more redundant with sentence b than a was, fα({a, b}) − fα({a}) = 8.00
compared to fα({a, c})− fα({a}) = 7.25, so the score for c dropped more than for b.

The DGN also had some interesting failure cases. A potential downside to promoting diversity in the
selected sentences is if the DGN selects the wrong sentence when the actual evidence sentences are
ones that the submodular function deems redundant. For the claim “Phoenix, Arizona is the capital
of the Atlantic Ocean,” which is easily refuted, the labelled evidence sentence a is “Phoenix is the
capital and most populous city of the U.S. state of Arizona.” The DGN rates this sentence highly
in the first greedy layer, fα({a}) = 13.23, but not as highly as sentence b, fα({b}) = 15.99: “In
addition , Phoenix is the seat of Maricopa County and, at 517.9 square miles (1,341 km2), it is the
largest city in the state, more than twice the size of Tucson and one of the largest cities in the United
States.” In the second layer, fα({a, b})− fα({b}) = 7.5, which again lowers the score enough that
the algorithm selects sentence c: “Despite this, its canal system led to a thriving farming community,
many of the original crops remaining important parts of the Phoenix economy for decades, such as
alfalfa, cotton, citrus, and hay (which was important for the cattle industry).” The incremental gain
of sentence a continues to drop enough in subsequent layers to prevent selection as the DGN selects
other sentence. Intuitively, this type of error seems especially problematic for claims that need to be
refuted, specifically when the fallacy in the claim is seemingly unrelated to the evidence needed to
refute it. There is very little connecting Arizona, for which Phoenix is the capital, and the Atlantic
Ocean. In this case, we might prefer the algorithm to select more redundant sentences, because the
extra information needed to refute it, Arizona, is not closely related to the correspondingly important
part of the claim, Atlantic Ocean.

Figure 2 shows and recall on the validation set for the same two models. Both models fit very
quickly to the full training and validation sets in terms of cross entropy, but the recall improves con-
sistently. By lowering the learning rate, both the mean layer-wise cross entropy and recall smoothly
improve, whereas raising the learning rate achieves a lower cross entropy after several epochs before
increasing steadily as well as a higher and monotonically increasing recall. We believe this to be an
artifact of the loss due to the greedy layers restriction of selecting a single sentence each. Looking
back at Equation 4, at each outer sum we calculate the cross entropy assuming there is only one
valid sentence. If there are more than one valid sentences, and the state, sssi, assigns large scores to
those valid sentences, all except one are penalized by CE loss at that step. The ones penalized will
be rewarded when calculating the loss at the later steps. This potentially can increase the loss when
the model performance is improving. We observed the summed loss to be an acceptable trade-off
as the goal is to maximize recall. Another advantage of the summed loss is that it reduces the issue
of vanishing gradients as seen in recurrent networks. It will add direct gradient flow to the earlier
layers of the unfolded network in the backward path. In order to test how fixing the sentence order
affects the model performance, we shuffled the sentences every epoch, which resulted in slightly
worse recall, precision, and F1 as can be seen in Table 3.
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Training the DGN was initially challenging. The choice of softmax temperature proved to be one
of the most important hyperparameter settings. Our first thought was to make the temperature very
low, τ = 0.01, so that it was a close approximation of the argmax. This resulted in both vanishing
and exploding gradients, because the loss was computing log of ones and zeros. To solve this, we
experimented with two approaches. In the first approach, we set the temperature to be a number
in the range (0.5,5) and is kept unchanged during the experiments. In the second approach, we
apply temperature annealing, where in the beginning the temperature is set in the range as the first
approach, and is annealed by 10% every epoch. Our experiments showed that both approaches
produce similar results, which can be seen in Table 3. To make the training simpler, we chose the
first approach. The experiments showed that temperatures in (3,6) range produce the best results,
which means the softmax is making rather soft selections at each greedy iteration during training.
Consistent with previous work, the higher temperature softmax less closely approximates the argmax
during training, but does have the positive effect of regularizing the gradient.

5 CONCLUSION

In this paper, we have shown that unfolding a greedy algorithm into a computational graph, allow-
ing us to retain the interpretability and unsupervised initialization of a conventional greedy sentence
selection approach while benefiting from supervised learning techniques. The proposed differen-
tiable greedy network (DGN) outperforms conventional discrete optimization algorithms in terms of
both recall and precision. Furthermore, as sentence retrieval is often part of a larger pipeline as in
the FEVER shared task, using a differentiable greedy network serves as a step towards an end-end
trainable system.

REFERENCES

Jeffrey A. Bilmes and Wenruo Bai. Deep submodular functions. CoRR, abs/1701.08939, 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. arXiv preprint arXiv:1607.04606, 2016.

V. Cevher and A. Krause. Greedy Dictionary Selection for Sparse Representation. IEEE Journal
of Selected Topics in Signal Processing, 5(5):979–988, September 2011. ISSN 1932-4553. doi:
10.1109/JSTSP.2011.2161862.

Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, and
Li Deng. End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Ar-
chitecture. arXiv:1508.03398 [cs], August 2015.

Abhimanyu Das and David Kempe. Submodular meets Spectral: Greedy Algorithms for Subset
Selection, Sparse Approximation and Dictionary Selection. arXiv:1102.3975 [cs, stat], February
2011. URL http://arxiv.org/abs/1102.3975. arXiv: 1102.3975.

M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. An analysis of approximations for maximizing
submodular set functions-ii. In M.L. Balinski and A.J. Hoffman (eds.), Polyhedral Combinatorics,
volume 8 of Mathematical Programming Studies, pp. 73–87. Springer Berlin Heidelberg, 1978.

S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proc. ICML, pp.
399–406, Haifa, Israel, 2010.

A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained Non-monotone Submodular
Maximization: Offline and Secretary Algorithms, pp. 246–257. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. ISBN 978-3-642-17572-5. doi: 10.1007/978-3-642-17572-5 20. URL
http://dx.doi.org/10.1007/978-3-642-17572-5_20.

John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep Unfolding: Model-Based Inspiration
of Novel Deep Architectures. arXiv:1409.2574, September 2014.

9

http://arxiv.org/abs/1102.3975
http://dx.doi.org/10.1007/978-3-642-17572-5_20


Under review as a conference paper at ICLR 2019

Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and Weizhu Chen. Fusionnet: Fusing via fully-
aware attention with application to machine comprehension. In International Conference on
Learning Representations, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. 2017.
URL https://arxiv.org/abs/1611.01144.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

A. Krause. SFO: A toolbox for submodular function optimization. J. Mach. Learn. Res., 11:1141–
1144, March 2010.

Jonathan Le Roux, F. J. Weninger, and John R. Hershey. Sparse NMF - half-baked or well done?
MERL Technical Report, 2015. URL http://www.merl.com/publications/docs/
TR2015-023.pdf.
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6 APPENDIX

For completeness, we show here that the SCMM function in equation equation 2 is monotone non-
decreasing submodular.

Proposition 1 Let m : 2V → R+ be a modular function and g : R → R be a concave function.
The function f : 2V → R defined as f = g(m(A)) is submodular.

Proof: Given A ⊆ B ⊂ V and v ∈ V \B, let m(A) = x, m(B) = y, and m({v}) = z. Then
0 ≤ x ≤ y, and 0 ≤ c. Since g is concave, g(x + z) − g(x) ≥ g(y + z) − g(y), and therefore
g(m(A)+m({v}))− g(m(A)) ≥ g(m(B)+m({v}))− g(m(B)), which satisfies Equation (1). �

Furthermore, submodularity is closed under nonnegative addition so Equation (2) is submodular if
αu, hua ≥ 0, ∀u ∈ U, a ∈ V .

For an additional example of how submodularity is useful for diverse evidence extraction, consider
the following claim:

“Stripes only featured women.”
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For context, “Stripes” is a movie starring many male actors, so the claim is classified as Refuted.
The DeepEncoder selects a true evidence a sentence,

“He first gained exposure on Saturday Night Live, a series of performances that
earned him his first Emmy Award, and later starred in comedy films–including
Meatballs (1979), Caddyshack (1980), Stripes (1981), Tootsie (1982), Ghost-
busters (1984), Scrooged (1988), Ghostbusters II (1989), What About Bob?
(1991), and Groundhog Day (1993),”

and an incorrect one b that is quite semantically similar,

“He also received Golden Globe nominations for his roles in Ghostbusters, Rush-
more (1998), Hyde Park on Hudson (2012), St. Vincent (2014), and the HBO
miniseries Olive Kitteridge (2014), for which he later won his second Primetime
Emmy Award,”

both from actor Bill Murray’s Wikipedia page. Initially, the DGN rates those two sentences highly
as well, giving them the top two scores of fα({a}) = 7.87 and fα({b}) = 7.21, respectively.
Therefore, the DGN selects the same first evidence sentence as the DeepEncoder, but in the second
layer, the incremental value of b drops significantly to fα({a, b}) − fα({a}) = 4.74, because it is
highly redundant with a. Instead, the DGN selects c,

“Stripes is a 1981 American buddy military comedy film directed by Ivan Reit-
man, starring Bill Murray, Harold Ramis, Warren Oates, P. J. Soles, Sean Young,
and John Candy,”

which also provides information refuting the claim in the form of a list of male actor names, but
which is semantically different enough from a to only drop from a score of fα({c}) = 6.73 in the
first greedy layer to fα({a, c})− fα({a}) = 5.21 in the second greedy layer.
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