
MKA: Memory-Keyed Attention for Efficient Long-Context Reasoning

Dong Liu 1 2 3 Yanxuan Yu 4 Xuhong Wang 5 Ben Lengerich 3 Ying Nian Wu 2

Abstract
As long-context language modeling becomes in-
creasingly important, the cost of maintaining
and attending to large Key/Value (KV) caches
grows rapidly, becoming a major bottleneck in
both training and inference. While prior works
such as Multi-Query Attention (MQA) and Multi-
Latent Attention (MLA) reduce memory by shar-
ing or compressing KV features, they often trade
off representation quality or incur runtime over-
head. We propose Memory-Keyed Attention
(MKA), a hierarchical attention mechanism that
integrates multi-level KV caches—local, session,
and long-term—and learns to route attention
across them dynamically. We further introduce
FastMKA, a broadcast-routed variant that fuses
memory sources before attention computation for
enhanced efficiency. Experiments on different
sequence lengths show that MKA improves per-
plexity over MHA and MLA, while FastMKA
achieves comparable accuracy to MLA with up
to 4× faster training and 40% lower evaluation
latency. These results highlight MKA as a prac-
tical and extensible framework for efficient long-
context attention.

1. Introduction
Large Language Models (LLMs) have rapidly advanced and
are now capable of processing context lengths up to 128K
or even 1M tokens (Peng et al., 2023; Jiang et al., 2024;
Tworkowski et al., 2023). This unprecedented expansion
of context length unlocks new applications such as long-
document reasoning and multi-turn dialogue with persistent
memory. However, supporting long contexts during infer-
ence introduces severe memory and latency bottlenecks, par-
ticularly due to the scaling cost of attention with Key/Value
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Figure 1. MKA hierarchical memory design

(KV) caches.

In self-attention, each newly generated token must attend
to all past tokens stored in the KV cache. This results in
quadratic compute and increasingly large memory reads.
For instance, with a context length of 32K, the KV cache for
a LLaMA-7B model (Touvron et al., 2023) can occupy up to
16GB and take over 11ms to access on a single GPU, which
dominates more than 50% of the inference latency. This cost
limits the throughput of LLMs in production environments.

Several methods have attempted to address the ineffi-
ciencies in attention computation. Multi-Query Atten-
tion (MQA) (Shazeer, 2019) and Grouped-Query Atten-
tion (GQA) (Ainslie et al., 2023) reduce KV duplication
by sharing them across heads. Multi-Latent Attention
(MLA) (Team, 2024) compresses the KV cache via low-rank
factorization. However, these methods sacrifice represen-
tation fidelity or lack the flexibility to differentiate among
memory types.

In this paper, we propose Memory-Keyed Attention
(MKA), a novel attention mechanism that hierarchically
organizes memory into three levels—local (L1), session
(L2), and long-term (L3)—and dynamically learns how to
route each query token across these sources. As illustrated
in figure 1, MKA leverages lightweight routing gates that
modulate attention over heterogeneous memory types. This
design enables context-aware attention with significantly
lower memory bandwidth and improved token reuse.
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To ensure scalability, MKA adopts a block-wise softmax im-
plementation inspired by FlashAttention (Dao et al., 2022)
and supports GPU-efficient kernel fusion. Moreover, long-
term memory (L3) is indexed via semantic chunking and
vectorized hashing, allowing the model to recall relevant his-
torical content efficiently. Our experiments shows that MKA
can reduce training time & evaluation latency significantly
compared to MHA, MQA, GQA, MLA. Our contribution
can be introduced as follows:

• We identify the inefficiencies of existing long-context
attention mechanisms and propose a hierarchical mem-
ory system tailored for attention routing.

• We introduce Memory-Keyed Attention (MKA), a dy-
namic routing mechanism across local, sessional, and
long-term memory with hardware-friendly implemen-
tations, we further accelerate MKA training and infer-
ence by designing broad-cast routing (FastMKA).

• We show that FastMKA outperforms prior methods
in both accuracy and efficiency, making it suitable
for high-throughput LLM inference with long-context
inputs.

2. Related Work
2.1. Long-context Attention Mechanisms

As LLMs are scaled to handle inputs of 32K, 128K, or even
1M tokens (Peng et al., 2023; Shukor et al., 2025), the chal-
lenge of performing efficient attention over long contexts
has become a major bottleneck. A key issue lies in the size
and bandwidth cost of Key/Value (KV) caches. Many ef-
forts have been proposed to reduce attention overhead in this
setting. FlashAttention (Dao et al., 2022) improves mem-
ory throughput by computing softmax in a tiled, IO-aware
fashion. Multi-Query Attention (MQA) (Shazeer, 2019) and
Grouped-Query Attention (GQA) (Ainslie et al., 2023) re-
duce KV duplication by sharing across heads, thus reducing
cache size to 1

H and g
H respectively.

More recent works like Multi-Latent Attention
(MLA) (Team, 2024) compress attention by factoriz-
ing the KV memory into a smaller latent space. However,
these approaches are limited to static memory layouts
and struggle with retrieving long-range or task-specific
context. In contrast, our proposed MKA generalizes these
ideas through a hierarchical memory design with dynamic
routing, enabling scalable and query-aware memory access
across different time horizons.

2.2. Hierarchical and External Memory Systems

Incorporating multiple memory timescales has long been a
goal in neural network design. Early memory-augmented
models such as Memory Networks (Weston et al., 2015)
and Differentiable Neural Computers (Graves et al., 2016)

support explicit memory reads and writes, but are difficult to
scale to large language models. More practical approaches
such as Transformer-XL (Dai et al., 2019) cache segments
of hidden states to extend effective context length, while
Compressive Transformers (Rae et al., 2020) introduce a
two-level memory with lossy compression.

Retrieval-Augmented Generation (RAG) (Lewis et al., 2021)
and RETRO (Borgeaud et al., 2022) retrieve similar docu-
ments from a corpus during inference, effectively serving as
external long-term memory. However, these methods rely
on external index structures and are typically applied at the
sequence level. By contrast, MKA integrates internal multi-
level memory—local, session, and long-term—within the
model, and learns per-token routing to dynamically select
which level to attend to during each step of generation.

2.3. Dynamic Routing and Query-aware Attention

Routing-based attention has recently gained interest due to
its potential for conditional computation. Sparse Mixture-of-
Experts (MoE) models (Lepikhin et al., 2021; Fedus et al.,
2022) route tokens through different feedforward networks,
though not through memory. Routing Transformers (Roy
et al., 2021) cluster tokens before performing sparse at-
tention within groups, but rely on static clustering and do
not model multiple memory levels. Query-aware caching
methods such as TOVA (Oren et al., 2024) and Quest (Tang
et al., 2024) focus on loading the most relevant KV cache
pages based on current queries, but typically discard unused
tokens.

In contrast, MKA retains the full cache but dynamically
routes attention across three memory tiers. Our approach
supports query-dependent access, soft selection (via learned
weights), and slot reuse—achieving high memory efficiency
without sacrificing accuracy.

3. Motivation: Beyond MLA and MHA
The design of MLA achieves KV compression through low-
rank projections and shared K/V structures across heads.
However, it does not explicitly support heterogeneous mem-
ory sources, nor does it allow selective reuse of memory
slots. MKA extends this direction by introducing 3-level
memory:

• L1: Local cache for current window tokens (standard
causal attention).

• L2: Session memory, derived from low-rank summary
or gated history.

• L3: Long-term memory, explicitly indexed and re-
trieved from a dynamic memory bank.
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Figure 2. Hierarchical Memory-Keyed Attention (MKA) with
Multi-Level Routing

To select between memory sources, MKA employs a rout-
ing gate λℓ ∈ R3 that is dynamically learned per query
token.

4. Methodology
In this section, we present the design of Memory-Keyed
Attention (MKA). We begin by analyzing the bottlenecks
of long-context inference, then introduce the hierarchical
MKA structure, and follow with symbolic and CUDA-style
pseudocode, tiled execution, and a theoretical formulation
that supports recursive attention computation with mem-
ory efficiency. The detailed pseudocode can be found at
appendix.

4.1. FastMKA: Accelerate MKA by Broadcast Routing

While MKA enables dynamic query-aware access to multi-
level memories (L1, L2, L3), it requires repeated projection
and attention computation over each memory source, lead-
ing to non-trivial overhead. To alleviate this, we propose
FastMKA, a simplified yet effective variant that performs
broadcast routing—a soft fusion of hierarchical memory
levels before attention—thereby avoiding multiple attention
paths and significantly reducing runtime cost.

In FastMKA, the local, session, and long-term memory
representations are broadcasted and weighted via a shared
routing MLP. The resulting fused memory is then used to
generate a single key-value pair for attention. This mech-
anism retains the benefits of multi-level memory while in-
curring only one round of attention computation, making
FastMKA highly efficient and compatible with standard
Transformer pipelines.

Algorithm 1 Symbolic MKA: Memory-Keyed Attention
with Hierarchical Routing
Require: Input X ∈ RB×S×D

Ensure: Output O ∈ RB×S×D, KV cache (K,V )
1: q ← XWq , q ∈ RB×S×D

2: qh ← reshape(q)→ RB×H×S×dh

3: {Define memory levels}
4: M1 ← X {Local memory}
5: M2 ← repeat(mean(X, dim = 1)) {Block memory}
6: M3 ← 0 ∈ RB×S×D {Long-term memory}
7: λ← softmax(MLP(q)) ∈ RB×S×3

8: for ℓ = 1 to 3 do
9: kℓ ←MℓWk, vℓ ←MℓWv

10: khℓ ← reshape(kℓ), vhℓ ← reshape(vℓ)
11: aℓ ← softmax(qh · khℓ

⊤
) · vhℓ

12: end for
13: Oh ←

∑3
ℓ=1 λℓ ⊙ aℓ {Fused multi-memory output}

14: O ← reshape(Oh) ·Wo

15: K ← [K∥kh1 ], V ← [V ∥vh1 ] {Update cache}
16: return (O, (K,V ))

4.2. Block-Memory Keyed Attention (Block-MKA)
Design

Block-MKA introduces a multi-level memory design with
the following key contributions:

1. Hierarchical Memory Design (L1/L2/L3): Inspired by
computer architecture, we construct attention computa-
tion with distinct memory levels.

• L1 Memory (On-chip SRAM): Fast, high-
bandwidth memory used for immediate attention
computation and softmax normalization within
small local blocks.

• L2 Memory (High Bandwidth Memory - HBM):
Medium capacity memory storing intermediate
activations, query-key-value representations, and
cached softmax statistics.

• L3 Memory (Vectorized Hash-based DRAM
Cache): High-capacity, slower memory with chunk-
based recalls to manage historical attention blocks,
leveraging vectorized hashing for efficient retrieval
of attention patterns from past activations.

2. Vectorized Hashing and Chunk-based Recall: We in-
tegrate vectorized hashing mechanisms into the L3 mem-
ory to facilitate rapid and efficient chunk-based recall of
attention patterns, enabling reuse of past computations
and reducing redundant calculations.

3. CUDA Kernel Implementation with Tiled α/z Sup-
port: We provide detailed CUDA kernel implementa-
tions for our block attention operations, supporting tile-
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Algorithm 2 Symbolic FastMKA: Lightweight Memory-
Keyed Attention with Broadcast-Routing
Require: Input X ∈ RB×T×D; projection matrices

Wq,Wk,Wv,Wo

Ensure: Output O ∈ RB×T×D; optional cache (K,V )
1: Q← XWq {Query projection}
2: Qh ← reshape(Q)→ RB×H×T×dh

3: {Hierarchical memory levels}
4: L1 ← X {L1: Local memory}
5: L2 ← repeat(mean(X, dim = 1), T ) {L2: Session

memory}
6: L3 ← 0 ∈ RB×T×D {L3: Long-term memory}
7: λ← softmax(MLP(X)) ∈ RB×T×3

8: Xrouted ←
∑3

ℓ=1 λℓ · Lℓ {Broadcast-weighted fusion}
9: K ← XroutedWk, V ← XroutedWv

10: Kh ← reshape(K)→ RB×H×T×dh

11: Vh ← reshape(V )→ RB×H×T×dh {Update cache}
12: A← softmax(Qh ·K⊤

h /
√
dh) · Vh

13: O ← reshape(A) ·Wo

14: return (O, (Kh, Vh))

based normalization constants α and partition functions
z, optimizing parallel computation on GPUs.

4.3. Hierarchical Block-wise MKA Algorithm

Standard attention is computed as follows:

S = QK⊤, P = softmax(S), O = PV (1)

The quadratic complexity arises due to the computation of
full S ∈ RN×N . To mitigate this, Block-MKA computes
attention in blocks with intermediate memory management:

Step 1: Divide sequences into T blocks with dimension B,
T = N/B:

Q = [Q1; . . . ;QT ], K = [K1; . . . ;KT ], V = [V1; . . . ;VT ]
(2)

Step 2 (L1 and L2): Perform local softmax normalization
with online α/z calculation within each block leveraging
on-chip memory (L1) and HBM (L2):

Sij = τQiK
⊤
j , Pij =

exp(Sij − αij)

zij
, Oi =

∑
j

PijVj

(3)

Normalization constants αij and zij are computed online
as:

αij = max
k

Sijk, zij =
∑
k

exp(Sijk − αij) (4)

Step 3 (L3 - Hashing and Chunk Recall): Use vectorized
hashing to retrieve similar past attention patterns from L3
memory. For each block, a chunk-based recall method
efficiently retrieves stored historical attentions, reducing the
overall computational complexity from quadratic to nearly
linear.

4.4. Algorithm and Pseudocode

We provide detailed pseudocode illustrating hierarchical
memory use:

Algorithm 3 Hierarchical Block-MKA Algorithm
Require: Q,K,V ∈ RN×d; block size B; scaling factor

τ
Ensure: Output O ∈ RN×d

1: Partition Q,K,V into {Qi,Kj ,Vj}Ti,j=1, where T =
N/B

2: for i = 1 to T do
3: Load Qi into L2 (HBM)
4: Initialize Oi ← 0, zi ← 0, mi ← −∞
5: for j = 1 to T do
6: Load Kj ,Vj into L2 (HBM)
7: Sij ← τ ·QiK

⊤
j in L1 (SRAM)

8: mi ← max(mi,max(Sij))

9: S̃ij ← Sij −mi

10: αij ← exp(S̃ij)Vj

11: zij ←
∑

exp(S̃ij)
12: Retrieve α̂ij , ẑij via vectorized hash from L3

(DRAM)
13: αij ← αij + α̂ij , zij ← zij + ẑij
14: Oi ← Oi + αij , zi ← zi + zij
15: end for
16: Oi ← Oi/zi
17: end for
18: O← [O1; . . . ;OT ]
19: return O

5. Theoretical Formulation: Recursive MKA
with Online Softmax

We aim to derive a memory-efficient and numerically stable
formulation of hierarchical attention:

Attn(Q) =

3∑
ℓ=1

λℓ · Softmax(QK⊤
ℓ )Vℓ, (5)

where λℓ ≥ 0 and
∑

ℓ λℓ = 1. Direct evaluation requires
computing full attention maps, which is memory-intensive.
We reformulate this as an online recursive computation that
avoids storing attention weights explicitly.
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5.1. Recursive Reformulation

Let α(0) = 0, z(0) = 0, and define the recursive update:

α(ℓ) = α(ℓ−1) + λℓ · exp(QK⊤
ℓ )Vℓ, (6)

z(ℓ) = z(ℓ−1) + λℓ · exp(QK⊤
ℓ ), (7)

for ℓ = 1, 2, 3. We then define the final output as:

Attn(Q) :=
α(3)

z(3)
. (8)

Theorem 5.1 (Equivalence of Recursive MKA and Standard
Softmax Aggregation). Let λℓ ≥ 0 with

∑3
ℓ=1 λℓ = 1.

Then,∑3
ℓ=1 λℓ · exp(QK⊤

ℓ )Vℓ∑3
ℓ=1 λℓ · exp(QK⊤

ℓ )
=

3∑
ℓ=1

λℓ · Softmax(QK⊤
ℓ )Vℓ.

Proof. Define sℓ = exp(QK⊤
ℓ ) ∈ RB×T and observe:

LHS =

∑3
ℓ=1 λℓ · sℓVℓ∑3
ℓ=1 λℓ · sℓ

, RHS =

3∑
ℓ=1

λℓ ·
(

sℓ∑
sℓ

)
Vℓ.

Bringing both sides to a common denominator:

3∑
ℓ=1

λℓ ·
(

sℓ∑
ℓ λℓsℓ

)
Vℓ =

∑3
ℓ=1 λℓ · sℓVℓ∑3
ℓ=1 λℓ · sℓ

.

Hence, both expressions are mathematically equivalent.

5.2. Numerical Stability via Max-Shift

To ensure stable computation of exp(QK⊤
ℓ ) across ℓ, we

employ a hierarchical max-shift. Let µ(0) = −∞, and
define:

µ(ℓ) = max(µ(ℓ−1),max(QK⊤
ℓ )), (9)

sℓ = exp(QK⊤
ℓ − µ(ℓ)), (10)

z(ℓ) = z(ℓ−1) · exp(µ(ℓ−1) − µ(ℓ)) + λℓsℓ, (11)

α(ℓ) = α(ℓ−1) · exp(µ(ℓ−1) − µ(ℓ)) + λℓsℓVℓ. (12)

This mirrors FlashAttention’s scan update trick and ensures
stable operation in low-precision or long-context regimes.

5.3. Local vs. Global MKA Modes

We define two instantiations of recursive MKA:

• Local-MKA: uses only K1, V1 and K2, V2 from local
and session memory. Computation is windowed and
block-parallel, scaling as O(n).

• Global-MKA: includes long-term memory K3, V3 re-
trieved via hashing. Recursive scan with chunk recall
yields amortized sublinear complexity.

5.4. Convergence Guarantee

Define:

a(ℓ) := λℓ · exp(QK⊤
ℓ )Vℓ, z(ℓ) := λℓ · exp(QK⊤

ℓ ).

Then:

Attn(Q) =

∑3
ℓ=1 a

(ℓ)∑3
ℓ=1 z

(ℓ)
=

3∑
ℓ=1

λℓ·

(
exp(QK⊤

ℓ )∑
j λj exp(QK⊤

j )

)
Vℓ,

which matches the standard form and completes the equiva-
lence proof.

5.5. Runtime Bounds and Complexity

We now analyze the complexity of MKA with respect to
memory levels:

• L1 (Local Attention): Standard causal block attention
over B tokens, cost O(B2d), computed from on-chip
SRAM.

• L2 (Session Memory): Pooled or low-rank block sum-
maries over T = N/B blocks, cost O(BTd).

• L3 (Long-Term Memory): Vector-hash recall of R≪
T past blocks, each of size B, with cost O(BRd).

Let N be total sequence length, B block size. Total runtime
per step is:

O(BTd+BRd) with R≪ T, (13)

which is subquadratic in N and superior to O(N2d) full
attention. Memory access is minimized via tiled L1 compu-
tation and chunk-based L3 recall.

6. Experiments
6.1. Experimental Setup

Models. We start from the public GPT-2 small check-
point1 and replace its block attention with

(i) the original Multi-Head Attention (MHA); (ii) our
implementation of Ropeless-MLA (low-rank Q/K/V , no
ROPE); (iii) the proposed MKA featuring three-level mem-
ory and a learnable routing gate.

Dataset. All experiments are conducted on
WikiText-2(raw) (train=36718, valid=3760, test=4358
sentences). We use the GPT-2 BPE tokenizer (vocab 50257)
and set pad token=eos token.

1117M parameters, 12 layers, hidden size d = 768, H = 12
heads

5



MKA: Memory-Keyed Attention for Efficient Long-Context Reasoning

Training Details. Each model is fine-tuned for one epoch
only2, with batch size 4 and sequence length 128. Optimizer:
AdamW (lr= 5×10−5, β=(0.9, 0.999), no warm-up).

Metric. Language-model quality is measured by
cross-entropy loss L and its exponential form, Perplexity
(PPL), PPL = eL (lower is better).

6.2. Main Results

Table 1. Comparison of attention mechanisms on WikiText-2 after
fine-tuning. FMKA achieves the best trade-off between accuracy
and speed.

Method PPL ↓ Train Time (s) ↓ Eval Time (s) ↓
MHA (baseline) 2.54 226.1 48.2
MQA 2.50 395.3 244.7
GQA 2.49 778.6 294.5
MLA 2.43 782.4 87.2
FMKA (ours) 2.51 161.8 52.3

Table 2. Training time (in seconds) per epoch under different se-
quence lengths. FastMKA consistently runs faster than MLA,
MQA, and GQA.

Method 1K 2K 4K 8K 16K

MHA 226.1 472.5 945.3 1889.2 3774.3
MQA 395.3 731.4 1492.5 3002.0 6017.8
GQA 778.6 1462.7 2881.6 5773.9 11520.1
MLA 782.4 1341.6 2566.2 5032.5 10106.2
FMKA (ours) 161.8 318.2 642.6 1269.3 2530.9

6.3. Analysis

6.4. Analysis

• Accuracy. FastMKA achieves competitive perplex-
ity (2.51) compared to Multi-Query Attention (MQA,
2.50), Grouped-Query Attention (GQA, 2.49), and
Multi-Latent Attention (MLA, 2.43), while signifi-
cantly outperforming the MHA baseline (2.54). This
shows that our hierarchical routing mechanism cap-
tures contextual dependencies effectively, even with
fewer key-value projections.

• Training Efficiency. FastMKA is up to 4× faster than
MLA and GQA, and 2.4× faster than MQA when
training with 16K sequences. It also beats MHA by a
wide margin, thanks to its single-path broadcast routing
and shared KV projection. This makes it well-suited
for long-context fine-tuning under compute constraints.

2The goal is to compare convergence speed under equal com-
pute; additional epochs further reduce PPL but do not change the
ranking.

• Scalability. As context length increases from 1K to
16K, MQA and GQA suffer from sharp training time
growth due to head-specific KV reads and large mem-
ory footprints. In contrast, FastMKA scales linearly
and maintains high throughput, making it as a scalable
attention backend for long-context language models.

6.5. Discussion

MKA improves perplexity through dynamic routing over
hierarchical memory levels—local (L1), session (L2), and
long-term (L3)—without increasing the model’s parameter
count. This makes MKA attractive for memory-intensive
inference settings where representation fidelity and cache
reusability are critical.

However, the full MKA formulation requires repeated pro-
jection and attention over all memory levels, which can
be computationally expensive. To address this, we pro-
pose FastMKA, a broadcast-routing variant that fuses the
memory levels before attention is computed. FastMKA
significantly reduces training and inference latency while
preserving most of MKA’s accuracy benefits, as validated
by experiments on different sequence length on WikiText.

The lightweight design of FastMKA, with a single KV pro-
jection and soft token routing, makes it particularly suit-
able for high-throughput inference and edge deployment.
It offers a practical balance between accuracy, latency, and
memory usage, and serves as a strong drop-in replacement
for traditional attention in long-context scenarios.

7. Conclusion
We introduce Memory-Keyed Attention (MKA), a hier-
archical attention mechanism that enables efficient long-
context modeling by routing queries across multiple levels
of memory. MKA improves perplexity while maintaining
practical compute cost, making it a promising candidate for
memory-aware transformer design.

To further reduce overhead, we propose FastMKA, a
broadcast-routed variant that performs memory fusion be-
fore attention computation. FastMKA retains the architec-
tural benefits of MKA while achieving significantly lower
latency and training cost. FastMKA form a flexible frame-
work for scalable and efficient LLM inference with long-
sequence inputs.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. 2023. URL https://arxiv.org/abs/
2305.13245.

6

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245


MKA: Memory-Keyed Attention for Efficient Long-Context Reasoning

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., van den Driessche, G., Lespiau, J.-B.,
Damoc, B., Clark, A., de Las Casas, D., Guy, A., Menick,
J., Ring, R., Hennigan, T., Huang, S., Maggiore, L., Jones,
C., Cassirer, A., Brock, A., Paganini, M., Irving, G.,
Vinyals, O., Osindero, S., Simonyan, K., Rae, J. W., Elsen,
E., and Sifre, L. Improving language models by retrieving
from trillions of tokens. 2022. URL https://arxiv.
org/abs/2112.04426.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings of
ACL, pp. 2978–2988, 2019.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
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A. Appendix

Algorithm 4 Multi-Level Memory-Keyed Attention (MKA)
Require: X ∈ RB×S×D, projection matrices Wq, Wk, Wv, Wo, routing MLP parameters; number of heads H , and head

dimension dh = D/H
Ensure: O ∈ RB×S×D; KV cache present = (K,V )

1: Compute Query:
2: Q←Wq ·X
3: Qh ← reshape(Q, [B,S,H, dh]); transpose to (B,H, S, dh)
4: Define Memory Sources:
5: L1 ← X {Local memory (current tokens)}
6: L2 ← repeat(mean(X, dim = 1), S) {Session memory (summary)}
7: L3 ← 0 ∈ RB×S×D {Long-term memory}
8: Compute Routing Weights:
9: λ← softmax(MLP(X)) {Shape: B × S × 3}

10: For each Memory Source ℓ = 1, 2, 3:
11: for ℓ = 1 to 3 do
12: Kℓ ←Wk · Lℓ

13: Vℓ ←Wv · Lℓ

14: Ki,h ← reshape(Kℓ, [B,S,H, dh]); transpose to (B,H, S, dh)
15: Vi,h ← reshape(Vℓ, [B,S,H, dh]); transpose to (B,H, S, dh)
16: Aℓ ← Attention(Qh,Ki,h, Vi,h) {Scaled dot-product attention}
17: end for
18: Aggregate Attention Outputs:
19: A←

∑3
ℓ=1 λ[..., ℓ]⊙Aℓ

20: Reshape A back to (B,S,D)
21: Final Projection:
22: O ←Wo ·A
23: Update KV Cache:
24: Knew ← reshape(Wk ·X, [B,S,H, dh]); transpose to (B,H, S, dh)
25: Vnew ← reshape(Wv ·X, [B,S,H, dh]); transpose similarly
26: if previous cache present = (Kprev, Vprev) exists then
27: K ← concat(Kprev,Knew, dim = 3)
28: V ← concat(Vprev, Vnew, dim = 3)
29: else
30: K ← Knew, V ← Vnew
31: end if
32: present← (K,V )
33: return (O, present)
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Algorithm 5 Broadcast-Routed Memory-Keyed Attention (FastMKA)
Require: X ∈ RB×S×D, projection matrices Wq, Wk, Wv, Wo, routing MLP parameters; number of heads H , and head

dimension dh = D/H
Ensure: O ∈ RB×S×D; KV cache present = (K,V )

1: Compute Query:
2: Q←Wq ·X
3: Qh ← reshape(Q, [B,S,H, dh]); transpose to (B,H, S, dh)
4: Define Memory Sources:
5: L1 ← X {L1: Local memory}
6: L2 ← repeat(mean(X, dim = 1), S) {L2: Session memory}
7: L3 ← 0 ∈ RB×S×D {L3: Long-term memory}
8: Compute Routing Weights:
9: λ← softmax(MLP(X)) {Shape: B × S × 3}

10: Fuse Memory via Broadcast Routing:
11: Xrouted ←

∑3
ℓ=1 λ[..., ℓ] · Lℓ {Fused memory token-wise}

12: Compute Key/Value from Fused Memory:
13: K ←Wk ·Xrouted
14: V ←Wv ·Xrouted
15: Kh ← reshape(K, [B,S,H, dh]); transpose to (B,H, S, dh)
16: Vh ← reshape(V, [B,S,H, dh]); transpose to (B,H, S, dh)
17: Compute Attention:
18: A← Attention(Qh,Kh, Vh)
19: Final Projection:
20: O ←Wo · reshape(A, [B,S,D])
21: Update KV Cache:
22: Knew ← Kh, Vnew ← Vh

23: if previous cache present = (Kprev, Vprev) exists then
24: K ← concat(Kprev,Knew, dim = 2)
25: V ← concat(Vprev, Vnew, dim = 2)
26: else
27: K ← Knew, V ← Vnew
28: end if
29: present← (K,V )
30: return (O, present)
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