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ABSTRACT

This paper proposes a Pruning in Training (PiT) framework of learning to reduce
the parameter size of networks. Different from existing works, our PiT framework
employs the sparse penalties to train networks and thus help rank the importance
of weights and filters. Our PiT algorithms can directly prune the network without
any fine-tuning. The pruned networks can still achieve comparable performance to
the original networks. In particular, we introduce the (Group) Lasso-type Penalty
(L-P /GL-P), and can alternatively implement them using (Group) Split LBI (S-P /
GS-P)– an regularization solution path with corresponding penalties to regularize
the networks, and a pruning strategy proposed by Fu et al. (2016b) is used to help
prune the network. We conduct the extensive experiments on MNIST, Cifar-10,
and miniImageNet. The results validate the efficacy of our proposed methods.
Remarkably, on MNIST dataset, our PiT framework can produce a small network
which only has 17.5% parameter size of LeNet-5, and achieves the 98.47% recog-
nition accuracy.

1 INTRODUCTION

The expressive power of Deep Convolutional Neural Networks (DNNs) comes from the millions of
parameters, which are optimized by various algorithms such as Stochastic Gradient Descent (SGD),
and Adam Kingma & Ba (2015). However, one has to strike a trade-off between the representation
capability and computational cost, caused by the plenty of parameters in the real world applications,
e.g., robotics, self-driving cars, and augmented reality. Pruning significant number of parameters
would be essential to reduce the computational complexity and thus facilitate a timely and efficient
fashion on a resource-limited platform, e.g. devices of Internet of Things (IoT). In addition, it has
long been conjectured that the state-of-the-art DNNs may be too complicated for most specific tasks;
and we may have the free lunch of “reducing 2× connections without losing accuracy and without
retraining” Han et al. (2015b).

To compress DNNs, recent efforts had been made on learning the DNNs of small size. They either
reduce the number and size of weights of parameters of original networks, and fine-tune the pruned
networks Abbasi-Asl & Yu (2017); Yang et al. (2018), or distill the knowledge of large model Hinton
et al. (2014), or directly learning the compact and lightweight small DNNs, such as ShuffleNet Ma
et al. (2018), MobileNet Howard et al. (2017), and SqueezeNet Iandola et al. (2017). Note that, (1)
to efficiently learn the compressed DNNs, previous works had to introduce additional computational
cost in fine-tuning, or training the updated networks; (2) it is not practical nor desirable to learn the
tailored, or bespoke networks for any applications, beyond computer vision tasks.

To this end, the center idea of this paper is to propose a Pruning in Training (PiT) framework that
enables pruning networks in the training process. Particularly, the sparsity regularizers, including
lasso-type, and split LBI penalties are applied to train the networks. Such regularizers not only
encourage the sparsity of DNNs, i.e., fewer (sparse) connections with non-zero values, but also can
accelerate the speed of DNNs convergence. Furthermore, in the learning process, we can iteratively
compute the regularization path of layer-wise parameters of DNNs. The parameters can be ranked
by the regularization path in a descending order, as Fu et al. (2016a). The parameters in the high
rank are in the high priority of not being pruned.
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More importantly, our PiT can learn the sparse structures of DNNs, and utilize the functionality
of filters and connection weights (in fully connected layers). In the optimal cases, the weights
(or filters) of each layer should be learned fully orthogonal to each other and thus formulate an
orthogonal basis. The orthogonal constraint may be only enforced as the initialization (e.g., SVD
Jia (2017) and Saxe et al. (2014)), or via the other regularization tricks, such as dropout preventing
co-adaption Srivastava et al. (2014), or batch normalization reducing the internal covariate shift of
hidden layers Ioffe & Szegedy (2015). Therefore, our PiT can help uncover redundant information
in a network by compressing less important filters and weights, and facilitate pruning out more
interpretable networks.

2 RELATED WORKS

The deeper and wider deep CNN architectures can enable the superior performance on various tasks,
and yet cause the prohibitively expensive computation cost. To efficiently train the networks, the
regularization is usually applied to the weight parameters (Sec. 2.1). It is also essential to prune
networks to reduce the size of networks (Sec. 2.2)

2.1 NETWORK REGULARIZATION

Due to large number of parameters, the deep networks require large amount of memory and com-
putational resources, and are inclined to overfit the training data. To alleviate this problem, it is
essential to regularize the networks in training stage; such as dropout Srivastava et al. (2014) pre-
venting the co-adaptation, and adding L2 or L1 regularization to weights. In particular, the L1

regularization enforces the sparsity on the weights and results in a compact, memory-efficient net-
work with slightly sacrificing the prediction performance Collins & Kohli (2014). Further, group
sparsity regularization Yuan & Lin (2006) can also been applied to deep networks with desirable
properties. Alvarez et al. Alvarez & Salzmann (2016) utilized a group sparsity regularizer to auto-
matically decide the optimal number of neuron groups. The structured sparsity Wen et al. (2016a);
Yoon & Hwang (2017) has also been investigated to exert good data locality and group sparsity.
Different from these works, the (Group) Split LBI penalty is for the first time, introduced to regular-
ize the networks. This regularization term can not only enforce the structured sparsity, but also can
efficiently compute the solution paths of each variable.

2.2 NETWORK PRUNING

Compressing the networks involves the pruning and compressing the weights and filters of DNNs.
The common strategies include (1) matrix decomposition methods Jaderberg et al. (2014); Zhang
et al. (2016; 2015); Tai et al. (2016) by decomposing the weight matrix of DNNs as a low-rank
product of two smaller matrices; (2) low-precision weights methods Zhu et al. (2017); Zhou et al.
(2017) by learning to store low-precision weights of DNNs; and (3) pruning methods Han et al.
(2015b); Li et al. (2017) directly removing weights of connections, or neurons.

Our framework is one of pruning methods. Previous pruning works, iteratively prune the weights
or neurons, and fine-tune the network Han et al. (2015b); Guo et al. (2016). Remarkably, network
regularization is of significant important in pruning methods. The sparse properties of features
maps and/or weights of DNNs exerted by network regularization, are utilized in Wen et al. (2016b);
Lebedev & Lempitsky (2016). Luo et al. Luo et al. (2017) adopt the statistics information from next
layer to guide and save the importance of filters of the current layer. Molchanov et al. Molchanov
et al. (2017) employed Taylor expansion to approximate the change of cost function which can be
further utilized as the criterion in pruning network parameters. A LASSO-based channel selection
strategy is investigated in He et al. (2017). Abbasi-Asl et al. Abbasi-Asl & Yu (2017) defined a filter
importance index of greedy pruning the network. Comparing with all the methods, our framework
is different in two points: (1) Criterion of importance of weights and filters. We rank the importance
of weights and filters by their solution paths computed by sparse regularizers, rather than designing
the elaborated metrics as previous works Abbasi-Asl & Yu (2017); Yang et al. (2018). Specifically,
our algorithm is a process of solving the discrete partial differential equations; and our framework
can result in the solution paths of optimizing the weights and filters, whose importance are ranked,

2



Under review as a conference paper at ICLR 2019

according to the selected order in the path, as Fu et al. (2016b). (2) Pruning in training: once DNNs
are trained, we simply prune out less important weights/filter by a threshold.

3 METHODOLOGY

In this section, the Residual Network (ResNet) structureHe et al. (2016) is employed to elaborate
our framework. Our algorithms can be used in the other DNNs, e.g. Lenet-5.

3.1 NOTATION

We adopt the notations of ResNet strucutre, in which the output of the ith block Oi can be repre-
sented as:

Oi = F (x, {W}i) +Wix

where x the input of the first layer of the ith block, {W}i and Wi respresent the filter weights in
the ith block and the shortcut weight matrix, respectively. The function F(·) represent the multiple
convolutional layers. Denote the weight matrix of the first convolutional layer as Wconv1 and that of
the fully connected layer as Wfc. Suppose there are I blocks, then we denote all the parameters of
the network as Θ := {Wconv1, {W}1, ..., {W}I ,W1, ...,WI ,Wfc} and Θ−W := Θ\W for W ∈
Θ. Our key objective is to train a sparse DNN of less parameters, and yet comparable performance
to the non-sparse DNN. The training function of DNN is defined as,

min
Θ
L (Θ;X , y) + λ · P (Θ) (1)

where P (·) is the penalty function of parameters Θ. If we use (X , y) as the sample set of the dataset;
then in classification task, the loss function is the cross-entropy function as

L(Θ;X , y) = − 1

N

N∑
n=1

K∑
k=1

yn,k log{pn,k(Θ)}, (2)

where N and K are the number of samples and classes and pn,k (Θ) denotes the probability of the
nth sample belongs to class k. Generally, we can use Stochastic Gradient Descent (SGD) algorithm
to update Θ; and the algorithm is summarized in algorithm 1.

Algorithm 1 SGD for ResNet
1: Input: Learning rate η, X and y
2: Initialize: k = 0, Θk is initialized randomly.
3: Iteration
4: Θk+1 = Θk − η∇ΘL(Θk)
5: Output: {Θk+1}

3.2 REGULARIZATION ON ONE LAYER

One direct intuition is to adopt the sparsity regularization on the parameters, or those of the one layer
of the network, such as Liu et al. (2015); Wen et al. (2016b). To reduce the number of connection
weights, one can consider different types of regularization, including (1) Lasso-type penalty (L1),
(2) Group-Lasso-type penalty Yuan & Lin (2006); (3) An iterative regularization path with structural
sparsity (e.g., elastic net Zou & Hastie (2005), and Split LBI Huang et al. (2016)): here we employ
the Split LBI which learns the structural sparsity via variable splitting and Linearized Bregman
Iteration (LBI), due to the computational efficiency of the LBI, and model selection consistency,

Lasso-type penalty can be directly implemented on the fully connection layer i as,

P (W ) = ‖W‖1; (3)
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Group-Lasso-type penalty Yuan & Lin (2006) aims at regularizing the groups of parameters Θ,
and W (g) is a group of partial weights in Θ,

P (W ) =

G∑
g=1

‖W (g)‖2 (4)

where ‖W (g)‖2 =

√∑|W (g)|
i=1

(
W

(g)
i

)2

, and
∣∣W (g)

∣∣ is the number of weights in W (g); G is the

total number of groups.

3.3 OPTIMIZATION

This Split LBI algorithm Huang et al. (2016) introduces an augmented variable Γ which is enforced
sparsity and kept close to W , by variable splitting term 1

2ν ‖Γ −W‖
2
2. Then the objective function

turns to:

L(W,Γ; Θ−W ,X , y) = L(W ; Θ−W ,X , y) +
1

2ν
‖Γ−W‖22, (ν > 0)

To enforce the sparsity of Γ, we here implement the LBI algorithm on the W , and the algorithm can
be summarized in algorithm 2, where

ProxL(Z) = arg min
W

1

2
‖W − Z‖22 + P (W ) (5)

The 5th-8th lines are Split LBI algorithm, which returns a regularization path of
{Θk
−W ,W

k, W̃ k,Γk}. It starts from the null model with Γ0 = 0, and tends to select more and
more variables as the algorithm evolves, until over-fitted. At each step, the sparse estimator W̃ k

is the projection of W k onto the subset of the support set of Γk. The remainder of the projection
is affected by weak signals with small magnitude and mostly the ones mainly affected by random
noise. Particularly, we highlight several points,

• The κ is the damping factor, which enjoys the low bias with larger value, however, at the
sacrifice of high computational cost. The α is the step size. In Huang et al. (2016), it has
been proved that the α is the inverse scale with κ and should be small enough to ensure the
statistical property. In our scenario, we set it to 0.01/κ.

• The tk = kα is the regularization parameter, which plays the similar role with λ in Lasso.
It’s the trade-off between underfiting and overfiting, which can be determined via the
loss/accuracy on the validation dataset.

• The ν controls the difference between W̃ and W . In Huang et al. (2016), it has been
proved that larger value of ν can enjoy better model selection consistency, however may
suffer from the larger parameter estimation error. In Sun et al. (2017); Zhao et al. (2018), it
has been proved that as long as ν 9 0, the dense estimator W can enjoy better prediction
error by leveraging weak signals. We will discuss it in the next subsection.

• Each component of the closed form solution W ∈ Rp1×p2 in equation 5 can be simplified
as,{

κmax(0, 1− 1/‖Z(g)‖2)Z(g) P defined in equation 4 for g ∈ {1, ...,G}
κmax(0, 1− 1/|Zi|)Zi P defined in equation 3 for i ∈ {1, ...,p1 × p2}

(6)

3.4 PRUNING STRATEGY

The pruning algorithm is inspired by the Fu et al. (2016b). Particularly, it has been pointed out in
Zhao et al. (2018) that the dense estimator can be orthogonally decomposed into three parts: strong
signals which correspond to non-zero elements in W̃ , weak signals and random noise. Due to the
ability to leverage additional weak signals as long as ν is large enough, it has been proved theoreti-
cally and experimentally that, the dense estimator outperforms the sparse estimator in prediction.

4



Under review as a conference paper at ICLR 2019

Algorithm 2 SGD for ResNet with Split LBI
1: Input: Learning rate η, ν > 0, step size of LBI α, damping factor κ > 0, X and y
2: Initialize: k = 0, Θk is initialized randomly, Γk = Zk = 0
3: Iteration
4: Θk+1

−W = Θk
−W − η∇Θ−W

L(Θk
−W ,W

k,Γk)
# LBI update

5: W k+1 = W k − κα∇WL(Θk
−W ,W

k,Γk)

6: Zk+1 = Zk −α∇ΓL(Θk
−W ,W

k,Γk)

7: Γk+1 = κProxJ(Zk+1)

8: W̃ k+1 = W k ◦
[
1{i ∈ Sk+1}

]
i,j

(
Sk+1 = supp(Γk)

)
9: Output: {Θk+1

−W ,W
k+1, W̃ k+1,Γk+1}

This inspires us to sequentially consider all available solutions for all sparse variables along the Reg-
ularization Path (RP) by gradually decreasing the values of regularization coefficients. Specifically,
we can order the parameter set Θ according to the magnitude values of weights W . Following this
order, we identify the top r% of weights in Θr. The complementary set Θ1−r = Θ\Θr can be
pruned. Compared to the pruning methods in Han et al. (2015a), we can prune the weights in the
training process and do not need to fine-tune the weights.

3.5 REGULARIZATION ON MULTIPLE LAYERS

Furthermore, one can easily extend algorithm 2 to prune at L (L > 1) layers. We take the Split
LBI as an example; the other two methods can also be directly applied to multiple layers. The
corresponding algorithm is described in algorithm 3.

4 EXPERIMENTS

Algorithm 3 SGD for ResNet with Split LBI on multiple layers
1: Input: Learning rate η, ν > 0, step size of LBI α, damping factor κ > 0, X and y
2: Initialize: k = 0, Θk is initialized randomly, Γk1 = Zk1 = 0, ..., ΓkL = ZkL = 0
3: Iteration
4: Θk+1

−W = Θ−{Wk
1 ,...,W

k
L}
− η∇Θ−{Wk

1 ,...,Wk
L
}
L(Θ−{Wk

1 ,...,W
k
L}
, {W k

1 , ...,W
k
L}, {Γk1 , ...,ΓkL})

# LBI update at L layers
5: For l = 1, ..., L
6: W k+1

l = W k
l − κα∇WL(Θ−{Wk

1 ,...,Wk
L}
,{W k

1 , ...,W
k
L},{Γk

1, ...,Γ
k
L})

7: Zk+1
l = Zk

l −α∇ΓL(Θ−{Wk
1 ,...,Wk

L}
,{W k

1 , ...,W
k
L},{Γk

1, ...,Γ
k
L})

8: Γk+1
l = κProxJ(Zk+1

l )

9: W̃ k+1
l = W k

l ◦
[
1{i ∈ Sk+1

l }
]
i,j

(
Sk+1
l = supp(Γk

l )
)

10: End
11: Output: {Θ−{Wk+1

1 ,...,Wk+1
L }, {W

k+1
1 , ...,W k+1

L }, {W̃ k+1
1 , ..., W̃ k+1

L }, {Γk+1
1 , ...,Γk+1

L }}

We conduct the experiments on three datasets, namely, MNIST, CIFAR10, and MiniImageNet. We
use the standard supervised training and testing splits on all datasets, except MiniImageNet, whose
setting is splitted by ourselves, and will be released. The classification accuracy is reported on each
dataset.

Competitors. We compare three methods of pruning networks. (1) Plain: we train a plain network
and use the L2− penalty P (W ) = ‖W‖2. For all layers, we set the coefficient λ as 5e−4 in Eq (1).
We prune the trained network by ranking the weights and filters, in term of their magnitude values
in the descending order. This pruning strategy can be taken as a simplified version of our pruning
algorithm in Sec. 3.4. (2) Rand. We randomly remove the weights or filters in the networks. This is
a naive baseline. (3) Ridge-Penalty (R-P) Han et al. (2015b): We use the same ranking methodology
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(%) 100 25 12.5 6.25 3.13 1.57

Plain 99.17 60.87 29.65 20.82 20.82 20.82
Rand 99.11 43.72 30.07 18.35 24.12 22.62
R-P 99.12 61.05 46.91 30.34 30.34 30.34

GL-P 99.05 74.29 47.28 28.58 28.58 28.58
GS-P 99.00 85.09 32.58 22.88 22.88 22.88

(%) 100 25 12.5 6.25 3.13 1.57

Plain 99.12 80.46 62.61 45.49 32.34 21.30
Rand 99.19 62.23 37.71 23.58 18.58 14.36
R-P 99.16 75.47 60.31 37.97 26.11 18.11

GL-P 98.95 98.95 90.29 60.37 32.91 20.31
GS-P 98.97 98.96 98.67 68.27 42.10 24.95

(1) Pruning the conv.c3 layer (2) Pruning the conv.c5 layer
(%) 100 25 12.5 6.25 3.13 1.57

Plain 99.10 96.73 95.65 89.60 78.40 64.17
Rand 99.09 91.56 71.05 51.92 33.65 29.91
R-P 99.13 96.39 95.31 91.29 82.75 68.35

L-P 99.10 98.89 98.89 98.89 98.89 98.89
S-P 99.13 98.73 98.61 98.23 96.75 92.53

(%) 100 25 12.5 6.25 3.13 1.57

Plain 99.11 98.36 94.52 78.15 68.72 47.35
Rand 99.15 66.29 50.76 34.61 24.05 19.78
R-P 99.13 98.62 96.50 84.04 67.08 56.34

L-P 99.10 99.11 99.11 99.11 99.09 96.47
S-P 99.03 99.00 99.00 99.01 99.03 95.41

(3) Pruning the fc.c6 layer (4) Pruning the fc.f7 layer

Table 1: Pruning one layer in LeNet-5 on MNIST dataset (Top-1 Accuracy).

to rank the weights and filters by L2 regularization path. For that particular layer that we want to do
the pruning, the coefficient λ would be finally set as 1e− 3.

We also compare two variants of our PiT framework. (4) Lasso-type penalty or Group-Lasso-type
penalty (L-P / GL-P): the L-P is used to prune the weights of fully connected layers, and we employ
the GL-P to directly remove the filters of convolutional layers. (5) Split LBI or Group Split LBI
penalty(S-P / GS-P): the split BLI penalty is utilized to prune the weights. Accordingly, we have the
Group Split LBI penalty by regularizing the groups of filter parameters as Yuan & Lin (2006). Note
that all the results are trained for one time; and we do not have fine-tuning step after the pruning.

4.1 LETNET ON MNIST

The handwritten digits MNIST dataset is widely used to experimentally evaluate the machine learn-
ing methods. We use the standard supervised split and LeNet-5 LeCun et al. (1998) which is com-
posed of 3 convolutional layers and 2 fully connected layers. All the models are trained and get
converged in 50 epochs. Note that each experiment is repeated for five times, and the averaged re-
sults are reported. In the experiments, we consider saving the portion of 100%, 50%, 25%, 12.5%,
6.25%, 3.13%, and 1.57% of original parameters on each layer. Please refer to the Appendix for
more detailed results.

Pruning each layer. The results are shown in Tab. 1. We employ our PiT algorithms to prune each
individual layers of LeNet-5, while we keep the parameters of the other layers unchanged. We have
the following observations:

(1) On two fully connected layers (fc.f6 and fc.f7), both the L-P and S-P of our PiT framework work
very well. For example, on the fc.f7 layer, our S-P only has 1.57% of the parameters on these layers.
Surprisingly, our performance is only 0.03% lower than that of the original network. In contrast, we
compare the pruning results with the baseline: Plain, Rand, and R-P. There is significant performance
dropping with the more parameters pruned. This shows the efficacy of our PiT framework.

(2) On the convolutional layer (conv.c5), our L-P and S-P layers also achieve remarkable results.
Note that the conv.c5 layer has 48k out of 60k number of parameters in Lenet-5. We show that our
S-P saves 12.5% of total parameters of this layer (i.e., 42k number of parameters have been removed
on this layer) and the results get only dropped by 0.3%. This demonstrates that our PiT framework
indeed can save the relatively important weights and filters, and effectively do the network pruning.

(3) The conv.c3 layer is another convolutional layer in LeNet-5. We found that this layer is very im-
portant to maintain a good performance of overall network. Nevertheless, the results of our pruning
L-P and S-P are still better than the other baselines.

Pruning two layers. Totally, the LeNet-5 has 60k parameters, while the conv.c5 and fc.f6 have 48k
and 10k number of parameters respectively. That means these two layers have the most number of
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(%) 100 25 12.5 6.25 3.13 1.57

fc.f6 + fc.f7

Plain 99.03 33.72 46.29 42.29 57.24 33.83
Rand 99.02 37.25 25.84 17.13 11.09 11.27
R-P 99.14 67.35 44.32 66.56 45.14 31.83
L-P 99.10 98.58 98.58 98.58 98.58 98.60
S-P 99.05 98.71 98.71 98.71 98.68 98.32

Com-Rat(%) — 91.83 87.74 85.70 84.68 84.17 83.91
(%) 100 25 12.5 6.25 3.13 1.57

conv.c5+fc.f6

Plain 99.16 70.04 51.58 32.83 14.54 20.84
Rand 99.16 40.24 22.76 15.30 12.06 10.36
R-P 99.08 83.21 50.68 34.07 25.39 12.87

GL-P / L-P 98.96 97.92 97.92 73.44 28.08 16.84
GS-P / S-P 98.69 98.47 98.47 88.77 50.71 28.14

Com-Rat(%) — 52.91 29.37 17.60 11.71 8.77 7.30

Table 2: Pruning two layers in LeNet-5 on the MNIST dataset. Each column indicates the percentage
of parameter saved on these two layers. Com-Rat, is short for the compression ratio of the total
network, i.e., the ratio of saved parameters divided the total number of parameters of LeNet-5.

(%) 100 25 12.5 1.57

Plain 92.96 28.91 29.21 11.76
Rand 93.58 17.04 15.14 13.97
R-P 93.75 82.35 55.53 21.19

GL-P 93.54 93.53 93.30 89.20
GS-P 93.17 93.23 93.27 93.27

(%) 100 25 12.5 1.57

Plain 93.44 37.32 20.60 18.84
Rand 92.90 25.63 30.82 34.33
R-P 93.95 64.03 46.21 27.67

GL-P 93.57 93.57 93.57 93.57
GS-P 93.52 93.53 93.53 93.49

(%) 100 25 12.5 1.57

Plain 93.42 41.69 18.36 27.28
Rand 93.44 14.39 13.42 11.43
R-P 93.35 54.27 32.17 32.51

GL-P 93.60 93.62 93.58 93.61
GS-P 93.27 93.18 93.26 93.24

(1) Pruning Block#1.0 (2) Pruning the Block#1.1 (3) Pruning the Block#2.0
(%) 100 25 12.5 1.57

Plain 93.48 49.77 40.31 36.75
Rand 93.50 31.60 35.15 37.40
R-P 93.78 64.74 51.29 49.65

GL-P 93.50 93.50 93.50 93.51
GS-P 93.50 93.16 93.27 93.29

(%) 100 25 12.5 1.57

Plain 93.41 55.48 22.94 35.36
Rand 93.11 37.42 36.66 37.10
R-P 93.61 74.24 57.27 38.32

GL-P 93.66 93.66 93.67 93.61
GS-P 93.59 93.63 93.48 93.42

(%) 100 25 12.5 1.57

Plain 93.11 51.73 34.17 18.86
Rand 93.84 46.47 46.62 43.55
R-P 93.73 54.31 67.49 56.04

GL-P 93.54 93.54 93.54 93.54
GS-P 93.82 93.46 93.33 93.26

(4) Pruning the Block#2.1 (5) Pruning the Block#3.0 (6) Pruning the Block#3.1
(%) 100 25 12.5 1.57

Plain 93.08 82.70 54.18 38.29
Rand 93.44 48.88 40.89 37.38
R-P 93.55 88.63 69.91 47.40

GL-P 93.65 93.65 93.65 93.68
GS-P 93.61 93.50 93.45 93.41

(%) 100 25 12.5 1.57

Plain 93.37 90.01 85.29 75.53
Rand 93.57 82.86 79.16 76.73
R-P 93.63 88.20 87.16 70.77

GL-P 93.79 93.79 93.79 93.77
GS-P 93.61 93.93 93.83 93.89

(7) Pruning the Block#4.0 (8) Pruning the Block#4.1

Table 3: Pruning each block in ResNet-18 on Cifar-10 dataset. Note that each block has two CNN
layers.

parameters. In this case, we utilize our PiT algorithms to prune both fc.f6 + fc.f7, and conv.c5+fc.f6
layers. The results are reported in Tab. 2. We can show that our PiT framework can still efficiently
compress the network while preserve significant performance.

The best compressed model. When we prune the conv.c5 and fc.f6 layers, our model can achieve
the best and efficient performance. With only 17.60% parameter size of original LeNet-5, our model
can beat the performance as high as 98.47%. Remarkably, our PiT framework has not done any
fine-tuning and re-training the pruned network by any other dataset. This suggests that our PiT can
indeed uncover the important weights and filters. Our best models will be downloaded online.
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Block (%) 100 25 12.5 6.25 3.13 1.57

#4.0 + #4.1

Plain 93.13 75.87 20.64 10.01 10.00 10.00
Rand 93.28 11.82 10.28 10.08 10.12 10.15
R-P 93.46 78.00 27.48 10.02 10.00 10.00

GL-P 94.03 93.96 93.96 93.92 93.20 92.11
GS-P 92.90 92.92 92.88 92.93 92.85 92.70

Com-Rat(%) — 62.29 43.44 34.02 29.30 26.95 25.77
Block (%) 100 25 12.5 6.25 3.13 1.57

#3.1 + #4.0+#4.1

Plain 93.13 89.22 51.70 10.68 10.00 10.00
Rand 92.94 12.55 10.00 10.00 10.00 10.00
R-P 93.78 46.10 14.67 10.01 16.05 10.43

GL-P 92.65 92.64 92.47 92.17 91.43 90.96
GS-P 91.55 91.54 91.69 91.07 90.95 91.29

Com-Rat(%) — 56.91 35.36 24.59 19.20 16.51 15.16
Block (%) 100 25 12.5 6.25 3.13 1.57

#3.0+#3.1+#4.0+#4.1

Plain 92.97 10.00 10.00 10.00 10.00 10.00
Rand 92.83 13.94 12.67 14.72 12.57 13.64
R-P 93.96 18.63 10.00 10.00 10.00 10.00

GL-P 91.15 91.15 90.18 87.33 81.82 73.77
GS-P 90.61 89.19 88.47 88.26 88.40 87.94

Com-Rat(%) — 52.88 29.32 17.53 11.64 8.70 7.23

Table 4: Pruning multiple blocks in ResNet-18 on Cifar-10 dataset. (Chance-level = 10%). Com-
Rat, is short for compression ratio of the total network, as in Tab. 2.

4.2 RESNET-18 ON CIFAR10 DATASET

The CIFAR-10 dataset consists of 60,000 images of size 32 × 32 in 10 classes, with 6000 images
per class on average. There are 50,000 training images and 10,000 test images. We use the standard
supervised split; and ResNet-18 is employed as the classification network. All the models are trained
and get converged in 40 epochs. Note that each experiment is repeated for five times, and the
averaged results are reported. We still show the results which have 100%, 50%, 25%, 12.5%, 6.25%,
3.13%, and 1.57% parameter size of original networks on each layer.

Pruning one Residual Block. The results are shown in Tab. 3. In this table, we apply our PiT
algorithm on one residual block while the other layers are unchanged. We draw several conclusions,

(1) Our PiT framework (i.e., GS-P and GL-P) can efficiently train and prune the network. From
Block #3.0 – Block #4.1, surprisingly the pruned network with 1.57% of original parameter size of
ResNet-18, can also achieve almost the same recognition accuracies as the non-pruned ResNet-18.
From Block #1.0 – Block #2.1, the smallest pruned ratio of PiT can still hit significant high perfor-
mance if compared with the other competitors. This reflects the efficacy of our pruning algorithm. In
particular, in the training process, our PiT framework is optimized to learn and select the important
weights or filters; and our PiT can thus conduct a direct dimension reduction of these parameters.

(2) By the increased ratio of pruned parameters, the R-P method can also have better performance
than Rand, and Plain methods. This shows that our pruning algorithm also works in the general
cases. However, the R-P is not enforcing the sparse constraints in learning the weight parameters of
network. Thus it has inferior performance to two PiT methods.

Pruning multiple blocks. The ResNet-18 totally has around 10.95M parameters. Block #4.1, #4.0,
#3.1, #3.0 have 4.7M , 3.5M , 1.2M , and 0.88M parameters. These blocks have the most number
of parameters; and we prune these multiple blocks. The results are shown in Tab. 4. Note that even
only 1.57% parameter size of those layers are saved, our PiT algorithms (GL-P, and GS-P) can still
remain remarkable high recognition accuracy. Again it shows the efficacy of our PiT framework.
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(%) 100 50 25 12.5 6.25 3.13 1.57

Plain 83.92 13.53 8.12 5.32 5.29 5.92 6.31
Rand 82.36 17.90 6.52 6.38 7.90 9.58 8.67
R-P 82.79 13.72 7.10 6.38 6.29 6.52 5.76

L-P / GL-P 81.09 81.09 76.43 75.06 68.42 55.25 33.49
S-P / GS-P 78.95 77.81 73.92 70.65 68.67 67.58 65.17

Table 5: Top 5 accuracy on miniImagenet by pruning ResNet-18, the fully connected layer,
Block#4.0 and #4.1 layers.

4.3 RESNET-18 ON miniIMAGENET DATASET

The miniImageNet dataset is a subset of ImageNet and is composed of 60,000 images in 100 cate-
gories. In each category, we take 500 images as training set and other 100 as testing set. We also
use the ResNet-18 structure on miniImageNet. All the models are trained and get converged in 50
epochs. Note that each experiment is repeated for five times, and the averaged results are reported.
In term of the analysis in Sec. 4.2, we prune the fully connected layer, Block #4.0, and #4.1. The
results are shown in Tab. 5.

When no parameters are pruned, the R-P can achieve better results than our PiT algorithms. These
results make sense, since the ridge penalty does not enforce the sparsity to the network1. However,
with the increased ratio of parameters pruned, the performance of R-P gets degraded dramatically.
In contrast, the results of our methods in PiT framework get decreased very slow. For example, when
only 50% are saved in all the layers, the Top-5 accuracies are reduced by only 0% and 1.1% for L-P
/ GL-P, and S-P / GS-P respectively. Remarkably, if we only save 1.57% of original parameters on
those layers, the S-P / GS-P can still is as high as 65.17, which is only 13.78% performance dropped.
Again, note that all the methods have not done any fine-tuning step, and only been trained in one
round. That means our S-P / GS-P can indeed select the most expressive weights or filters, and thus
reduce the size of networks.

4.4 DISCUSSION AND FUTURE WORK

As the experiments shown in these three datasets, our PiT indeed can learn to prune networks without
fine-tuning. We give some further discussion and highlight the potential future works,

1. In all our experiments, our L-P / GL-P, and S-P / GS-P are applied to, at most, four layers in
one network. Theoretically, our PiT algorithms should be able to be directly applied to any
layers of DNNs, since PiT only adds some sparse penalties in the loss functions. However,
in practice, we found that the network training algorithm, i.e., SGD in Alg. 3, is unstable,
if we apply the sparse penalties more than four layers. It will take much more time and
training epochs to get the networks converged.

2. Essentially, our PiT presents a feature selection algorithm, which can dynamically learn
the importance of weights and filters in the learning process; mostly importantly, we donot
need any fine-tuning step, which, we believe, will destroy values and properties of selected
weights and filters. Therefore, it would be very interesting to analyze the statistical proper-
ties of selected features in each layer.

3. Theoretically, we can not guarantee the orthogonality of weights and filters in the trained
model. Empirically, we adapt some strategies. For example, the weights and filters of
each layer can be orthogonally initialized; and we apply the common regularization tricks,
e.g., dropout, and batch normalization. These can help decorrelate the learned parameters
of the same layers. Practically, our PiT framework works well in selecting the important
parameters and prune the networks as shown in the experiments. We also visualize the
correlation between removed and none removed filters in the Appendix.

4. It is a conjecture that the capacity of DNNs may be too large to learn a small dataset;
and it is essential to do network pruning. However, it is also an open question as how to
numerically measure the capacity of DNNs and the complexity of one dataset.

1In practice, ridge regression may have better performance than lasso.
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5 CONCLUSION

This paper proposes a Pruning in Training (PiT) framework. We add the sparse penalties in training
the networks, and the weights and filters can be ranked via their learned parameter values. The
networks can thus be directly pruned via the ranked weight order. Our framework can show good
results on several deep learning benchmark datasets.
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Figure 1: Correlation matrix of conv.c5 before and after the pruning. Note that we randomly select
15 filters to visualize in (a).
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6 APPENDIX

We visualize the correlation matrix of conv.c5 of LeNet-5 on MNIST dataset, in Fig. 1. We randomly
select 1000 images from the testing set of MNIST. In Fig. 1(a), each row is corresponding to one
pruned filter, and each column is corresponding to the remaining filter. We find that most of them
have lower correlation with one exception. In Fig. 1(b), we show the correlation between the
remaining filters.
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Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 99.17±0.02 60.87±14.00 29.65±4.89 20.82±3.32 20.82±3.32 20.82±3.32
Rand 99.11±0.01 43.72±5.74 30.07±7.48 18.35±4.58 24.12±5.75 22.62±6.43
R-P 99.12±0.04 61.05±7.46 46.91±6.36 30.34±6.82 30.34±6.82 30.34±6.82

L-P 99.05±0.04 74.29±1.06 47.28±12.12 28.58±3.22 28.58±3.22 28.58±3.22
S-P 99.00±0.01 85.09±5.76 32.58±2.65 22.88±6.89 22.88±6.89 22.88±6.89

(a) Pruning the conv.c3 layer
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 99.12±0.02 80.46±5.46 62.61±9.05 45.49±0.97 32.34±1.53 21.30±4.83
Rand 99.19±0.01 62.23±10.12 37.71±4.34 23.58±6.96 18.58±4.70 14.36±3.27
R-P 99.16±0.06 75.47±8.11 60.31±5.19 37.97±2.99 26.11±2.13 18.11±1.05

L-P 98.95±0.04 98.95±0.04 90.29±1.30 60.37±5.45 32.91±3.35 20.31±1.10
S-P 98.97±0.07 98.96±0.08 98.67±0.15 68.27±11.22 42.10±7.83 24.95±8.92

(a) Pruning the conv.c5 layer
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 99.10±0.02 96.73±1.05 95.65±1.76 89.60±3.49 78.40±5.48 64.17±6.93
Rand 99.09±0.01 91.56±3.89 71.05±6.08 51.92±8.87 33.65±6.17 29.91±8.49
R-P 99.13±0.05 96.39±0.48 95.31±0.79 91.29±3.46 82.75±5.59 68.35±6.29

L-P 99.10±0.03 98.89±0.05 98.89±0.05 98.89±0.05 98.89±0.05 98.89±0.05
S-P 99.13±0.03 98.73±0.10 98.61±0.15 98.23±0.40 96.75±0.88 92.53±3.17

(a) Pruning the fc.c6 layer
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 99.11±0.06 98.36±0.25 94.52±2.08 78.15±7.25 68.72±15.72 47.35±10.88
Rand 99.15±0.02 66.29±10.47 50.76±8.21 34.61±8.66 24.05±5.86 19.78±7.93
R-P 99.13±0.08 98.62±0.23 96.50±1.13 84.04±13.42 67.08±15.75 56.34±2.33

L-P 99.10±0.09 99.11±0.08 99.11±0.08 99.11±0.08 99.09±0.10 96.47±1.91
S-P 99.03±0.05 99.00±0.04 99.00±0.05 99.01±0.05 99.03±0.04 95.41±3.89

(a) Pruning the fc.f7 layer

Table 6: Pruning one layer in LeNet-5 on MNIST dataset.
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Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 92.96 28.91 29.21 18.09 16.48 11.76
Rand 93.58 17.04 15.14 15.38 14.38 13.97
R-P 93.75 82.35 55.53 31.01 25.18 21.19

L-P 93.54 93.53 93.30 92.61 91.29 89.20
S-P 93.17 93.23 93.27 93.30 93.26 93.27

(a) Pruning the Block#1.0
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.44 37.32 20.60 13.94 15.93 18.84
Rand 92.90 25.63 30.82 29.31 33.40 34.33
R-P 93.95 64.03 46.21 30.97 28.50 27.67

L-P 93.57 93.57 93.57 93.57 93.57 93.57
S-P 93.52 93.53 93.53 93.49 93.51 93.49

(a) Pruning the Block#1.1
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.42 41.69 18.36 24.32 27.18 27.28
Rand 93.44 14.39 13.42 12.60 12.41 11.43
R-P 93.35 54.27 32.17 28.09 32.83 32.51
L-P 93.60 93.62 93.58 93.57 93.59 93.61
S-P 93.27 93.18 93.26 93.26 93.26 93.24

(a) Pruning the Block#2.0
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.48 49.77 40.31 33.81 37.05 36.75
Rand 93.50 31.60 35.15 35.75 37.92 37.40
R-P 93.78 64.74 51.29 45.81 47.68 49.65

L-P 93.50 93.50 93.50 93.50 93.51 93.51
S-P 93.50 93.16 93.27 93.28 93.32 93.29

(a) Pruning the Block#2.1
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.41 55.48 22.94 21.70 30.32 35.36
Rand 93.11 37.42 36.66 34.00 36.42 37.10
R-P 93.61 74.24 57.27 41.14 37.44 38.32

L-P 93.66 93.66 93.67 93.68 93.66 93.61
S-P 93.59 93.63 93.48 93.46 93.45 93.42

(a) Pruning the Block#3.0
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.11 51.73 34.17 21.04 19.12 18.86
Rand 93.84 46.47 46.62 44.79 40.30 43.55
R-P 93.73 54.31 67.49 54.03 42.84 56.04

L-P 93.54 93.54 93.54 93.54 93.54 93.54
S-P 93.82 93.46 93.33 93.29 93.25 93.26

(a) Pruning the Block#3.1
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.08 82.70 54.18 45.27 39.31 38.29
Rand 93.44 48.88 40.89 38.45 36.97 37.38
R-P 93.55 88.63 69.91 47.08 49.69 47.40

L-P 93.65 93.65 93.65 93.65 93.66 93.68
S-P 93.61 93.50 93.45 93.38 93.44 93.41

(a) Pruning the Block#4.0
Ratio 100% 25% 12.5% 6.25% 3.13% 1.57%

Plain 93.37 90.01 85.29 79.24 77.75 75.53
Rand 93.57 82.86 79.16 77.26 76.65 76.73
R-P 93.63 88.20 87.16 79.41 75.00 70.77

L-P 93.79 93.79 93.79 93.80 93.77 93.77
S-P 93.61 93.93 93.83 93.84 93.93 93.89

(a) Pruning the Block#4.1

Table 7: Pruning one block in ResNet-18 on Cifar-10 dataset.
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