
Workshop track - ICLR 2017

FAST ADAPTATION IN GENERATIVE MODELS WITH
GENERATIVE MATCHING NETWORKS

Sergey Bartunov† & Dmitry P. Vetrov‡
National Research University Higher School of Economics (HSE)†‡, Yandex‡
Moscow, Russia

ABSTRACT

We develop a new class of deep generative model called generative matching net-
works (GMNs) which is inspired by the recently proposed matching networks for
one-shot learning in discriminative tasks. By conditioning on the additional input
dataset, generative matching networks may instantly learn new concepts that were
not available during the training but conform to a similar generative process, with-
out explicit limitations on the number of additional input objects or the number
of concepts they represent. Our experiments on the Omniglot dataset demonstrate
that GMNs can significantly improve predictive performance on the fly as more
additional data is available and generate examples of previously unseen handwrit-
ten characters once only a few images of them are provided.

1 INTRODUCTION

Deep generative models are currently one of the most promising directions in generative modelling.
In this class of models the generative process is defined by a composition of conditional distributions
modelled using deep neural networks which form a hierarchy of latent and observed variables.

Such models are trained by stochastic gradient methods which can handle large datasets and a wide
variety of model architectures but also present certain limitations. The training process usually con-
sists of small, incremental updates of networks’ parameters and requires many passes over training
data. Notably, once a model is trained it cannot be adapted to newly available data without complete
re-training to avoid catastrophic interference (McCloskey & Cohen, 1989; Ratcliff, 1990). There is
also a risk of overfitting for concepts that are not represented by enough training examples caused
by high capacity of the models. Hence, most of deep generative models are not well-suited for rapid
learning which is often required in real-world applications where data acquisition is expensive.

In this paper we present Generative Matching Networks (GMNs), a new class of deep generative
models suitable for fast learning in few-shot setting. Instead of learning a single generative distribu-
tion for a fixed training dataset, GMNs develop an adaptation mechanism that can be used at the test
time to learn new concepts similar to the training data, e.g. new classes of handwritten characters
with just a single image of each.

Similarly-stated problems were considered before in the literature, for example, Salakhutdinov et al.
(2013) used ideas from deep learning and Bayesian nonparametrics to create a model suitable for
low-data regime. Later, Lake et al. (2015) proposed Bayesian program learning approach for data-
efficient inference of probabilistic generative programs. However, while these approaches demon-
strated the ability of few-shot learning of generative models, they relied on the extensive sampling-
based inference procedures which made the fast learning ability generally hard to achieve.

The next generation of conditional generative models used the amortized variational inference ap-
proach (Gershman & Goodman, 2014), i.e. learning a complementary neural network performing
regression over parameters of the approximate posterior. Rezende et al. (2016) proposed a condi-
tional variational autoencoder (VAE) (Kingma & Welling, 2013; Rezende et al., 2014) that was able
to condition on a single object to produce new examples of the concept it represents. Later, Edwards
& Storkey (2016) proposed another extension of VAE that maintained a global latent variable cap-
turing statistics about multiple input objects which was used to condition the generative distribution.

1

Workshop track - ICLR 2017

1. Computing attention kernel 2. Aggregating prototypes

 G(xt)gG(xt)

fG(z)
 G

�G

rG =
X

t

aG(z,xt) G(xt)

aG

Matching space

Prototype space

3. Decoding an observation

z rG

Decoder (deconv net)

p(x|z,X)

z ⇠ p(z)

Figure 1: Conditional generation of a new sample.

It allowed to implement the fast learning ability, but due to the particular model architecture used
the model was not well-suited to datasets consisting of several different concepts.

2 GENERATIVE MATCHING NETWORKS

Generative matching networks aim to model conditional generative distributions of the form
p(x|X,θ), where X = x1,x2, . . . ,xT is a conditioning dataset of size T . Similarly to other deep
generative models we introduce a local latent variable z. Thus the full joint distribution of our model
can be expressed as:

p(x, z|X,θ) = p(z|X,θ)p(x|z,X,θ). (1)

We also maintain a recognition model approximating the posterior over the latent variable z:
q(z|x,X,φ) ≈ p(z|x,X,θ).

The main idea behind GMNs is to employ the dependency on the conditioning dataset X by adopt-
ing the matching procedure originally proposed in (Vinyals et al., 2016) for supervised learning
problems to unsupervised setting. In the basic version of our model, the prior is simply a stan-
dard Normal distribution and the conditional likelihood p(x|z,X,θ) generates a new observation
by matching sample from the prior z with each of the conditioning objects x′ ∈ X to extract few
representative examples that would be used as prototypes for generation.

Further we describe the generative process more formally. First, we denote the space of latent vari-
ables as Z and the space of observations as X . In addition to the latent space Z our model also
defines the matching space ΦG and the prototype space ΨG (subscript ·G here stands for “genera-
tive”). The former is used to match samples of the latent variable with conditioning objects while
the latter is used as a space of decoder’s inputs. We map both z and x′ ∈ X to the same matching
space ΦG by establishing fG : Z → ΦG and gG : X → ΦG respectively. The results of mapping
are compared using a similarity function sim(·, ·) (dot product in our implementation) to form an
attention kernel aG(z,x):

aG(z,xt) =
exp(sim(fG(z), gG(xt)))∑T

t′=1 exp(sim(fG(z), gG(xt′)))
, rG =

T∑

t=1

aG(z,xt)ψG(xt) (2)

This attention kernel is used for interpolation between the prototypes of conditioning objects that
are defined in the prototype space ΨL. The conditioning objects are converted to prototypes using
mapping ψG : X → ΨG. Finally, the weighted average rG of those prototypes is used as an input to
decoder which returns a distribution on x, e.g. a deconvolution network. The described generative
process is also shown on the figure 1.

In order to make our model applicable in the case when no additional data X is available, by default
we assume presence of a pseudo-input x∗ which is implicitly modelled as a supposed output of the
functions f∗G = fG(x∗), g∗G = gG(x∗) and ψ∗G = ψG(x∗). Further we refer to models without
pseudo-input as conditional.

The recognition model q(z|x,X,φ) = N (z|µ(x,X,φ),Σ(x,X,φ)) has the similar structure and
maintains its own functions fR, gR and ψR defining spaces ΨR and ΦR. The only difference is that

2

Workshop track - ICLR 2017

Table 1: Conditional negative log-likelihoods for the test part of Omniglot.

Number of conditioning examples
Model Ctest 0 1 2 3 4 5 10 19
GMN, Ctrain = 2 1 89.7 83.3 78.9 75.7 72.9 70.1 59.9 45.8
GMN, Ctrain = 2 2 89.4 86.4 84.9 82.4 81.0 78.8 71.4 61.2
GMN, Ctrain = 2 4 89.3 88.3 87.3 86.7 85.4 84.0 80.2 73.7
GMN, Ctrain = 2, conditional 1 93.5 82.2 78.6 76.8 75.0 69.7 64.3
GMN, Ctrain = 2, conditional 2 86.1 83.7 82.8 81.0 76.5 71.4
GMN, Ctrain = 2, conditional 4 86.8 85.7 82.5 78.0
VAE 89.1
GMN, Ctrain = 1, avg 1 92.4 84.5 82.3 81.4 81.1 80.4 79.8 79.7
GMN, Ctrain = 2, avg 2 88.2 86.6 86.4 85.7 85.3 84.5 83.7 83.4
GMN, Ctrain = 1, avg, conditional 1 88.0 84.1 82.9 82.4 81.7 80.9 80.7
GMN, Ctrain = 2, avg, conditional 2 85.7 85.0 85.3 84.6 84.5 83.7

function fR is defined as fR : X → ΦR since instead of latent variable, the recognition model is
conditioned on observation (and represents a distribution over latent variables). We also found it
useful to employ the full contextual embedding described in (Vinyals et al., 2016; 2015) that allows
to perform multiple attention steps of the form (2) over conditioning data, thus processing it jointly.
It also allowed us to implement data-dependent prior p(z|X,θ). Please refer to the appendix for
more details about model architecture.

3 EXPERIMENTS

We evaluate our model on the Omniglot dataset (Lake et al., 2015) which consists of 1623 classes
of handwritten characters from 50 different alphabets. Only 20 examples of each class are available
which makes this dataset specifically useful for few-shot learning problems. We used the canonical
train/test split provided by Lake et al. (2015). In order to speed-up training we downscaled images
to 28× 28 resolution.

We trained our model by maximizing the following objective: Epd(X) [log p(X|θ)] , where pd(X)
is a data-generating distribution over datasets of length T = 20 that was constrained to generate
datasets consisting of examples that represent up to C randomly selected classes so that the model
has a clear incentive to re-use conditioning data. Since exact maximization of the marginal like-
lihood is intractable, we approximated it using variational inference with the recognition model
serving as a variational approximation for the posterior.

We compared models by expected conditional log-likelihood Epd(X)p(xt|X<t) at different num-
ber of conditioning examples available, from 0 (the unconditional case) to 19 (t = 20). Besides
GMNs trained with and without pseudo-inputs our comparison included the standard VAE and
GMNs without attention where eq. (2) is replaced by simple, unweighted average of prototypes
as a similar dataset summarization approach was used in the neural statistican model (Edwards &
Storkey, 2016); this model is denoted as avg. The results can be found in table 1. One can see that
predictive performance of all variants of GMNs improves as more data is available to the model.
Attentional matching is clearly beneficial comparing to the simple prototypes averaging, especially
on datasets of higher diversity (Ctest) and with more conditioning examples.

4 CONCLUSION

In this paper we presented a new class of conditional deep generative models called Generative
Matching Networks. These models are capable of fast adaptation to a conditioning dataset by ad-
justing both the latent space and the predictive density while making very few assumptions on the
data. We believe that these ideas can evolve further and help to implement more data-efficient mod-
els in other domains such as reinforcement learning where data acquisition is especially hard.

3

Workshop track - ICLR 2017

ACKNOWLEDGMENTS

We would like to thank Michael Figurnov and Timothy Lillicrap for useful discussions. Dmitry P.
Vetrov is supported by RFBR project No.15-31-20596 (mol-a-ved) and by Microsoft: MSU joint
research center (RPD 1053945).

REFERENCES

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint
arXiv:1606.02185, 2016.

Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the 36th Annual Conference of the Cognitive Science Society, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation, 24:109–165, 1989.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 1278–1286, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-
shot generalization in deep generative models. arXiv preprint arXiv:1603.05106, 2016.

Ruslan Salakhutdinov, Joshua B Tenenbaum, and Antonio Torralba. Learning with hierarchical-
deep models. IEEE transactions on pattern analysis and machine intelligence, 35(8):1958–1971,
2013.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

4

Workshop track - ICLR 2017

(a) Full matching (b) Full matching, conditional (c) Average matching, conditional

Figure 2: Conditionally generated samples. First column contains conditioning data in the order it
is revealed to the model. Row number t (counting from zero) consists of samples conditioned on
first t input examples.

APPENDIX A. SAMPLES FROM THE MODEL

Figure 2 contains samples generated using different number of conditioning examples. One can
see that the conditional models (without pseudo-inputs) provide better-quality samples which is
somewhat contradicting with the log-likelihood evaluation yet studied before in the literature Theis
et al. (2015).

APPENDIX B. FULL MATCHING PROCEDURE

Although the basic model is capable of instant adaptation to the conditioning dataset X, it admits a
number of extensions that can seriously improve it’s performance.

The disadvantage of the basic matching procedure (2) is that conditioning observations X are em-
bedded to the space Φ independently from each other, via pairwise comparisons. Similarly to dis-
criminative matching networks we address this problem by computing full contextual embeddings
(FCE) (Vinyals et al., 2015). In order to obtain a joint embedding of conditioning data we allow
K attentional passes over X of the form (2), guided by a recurrent controller R which accumulates
global knowledge about the conditioning data in its hidden state h. The hidden state is thus passed
to feature extractors f and g to obtain context-dependent embeddings.

We refer to this process as the full matching procedure which modifies equation (2) as:

rkG =

T∑

t=1

aG(z,xt)ψG(xt), aG(z,xt) =
exp(sim(fG(z, hk), gG(xt, hk)))

∑T
t′=1 exp(sim(fG(z, hk), gG(xt′ , hk)))

,

hk+1 = R(hk, r
k
G).

(3)

The output of the full matching procedure is thus the interpolated prototype vector from the last
iteration rKL and the last hidden state of hK+1. The analogous procedure is used for obtaining rKR in
recognition model.

Variables hK+1 aggregate information about the whole set of conditioning objects X. Thus we can
use similar process for making our model more flexible and establish data-dependent prior p(z|X).
We establish recurrent controller as follows

rkP =

T∑

t=1

aP (xt)ψP (xt), a(xt) =
exp(sim(fP (hk), gP (xt, hk)))

∑T
t′=1 exp(sim(fP (hk), gP (xt′ , hk)))

,

hk+1 = R(hk, r
k
P).

(4)

Output of the procedure is then used to compute parameters of the prior, i.e. means and diagonal
covariance matrix in our case: p(z|X) = N (z|µ(rK0),Σ(rK0)).

5

Workshop track - ICLR 2017

Similarly to the basic matching procedure, we also implicitly add a pseudo-input x∗ for models that
are not denoted as conditional.

In our implementation, we shared the recurrent controller between generative and recognition mod-
els and had a separate controller for the prior. During preliminary experiments we empirically found
that K = 4 attentional passes in the shared controller and a single pass for the prior’s controller
provides a reasonable trade-off between computational costs and predictive performance, hence we
used these values in all reported experiments.

APPENDIX C. MODEL ARCHITECTURE

CONDITIONAL GENERATOR

The conditional generator network producing parameters for p(x|z,X,θ) has concatenation of z
and the output of the matching operation [r, h] as input which is transformed to 3 × 3 × 32 tensor
and then passed through 3 residual blocks of transposed convolutions. Each block has the following
form:

h = conv1(x),

y = f(conv2(h) + h) + pool(scale(x)),

where f is a non-linearity which in our architecture is always parametric rectified linear function (He
et al., 2015).

The block is parametrized by size of filters used in convolutions conv1 and conv2, shared number of
filters F and stride S.

• scale is another convolution with 1× 1 filters and the shared stride S.
• In all other convolutions number of filters is the same and equals F .
• conv1 and pool have also stride S.
• conv2 preserve size of the input by padding and has stride 1.

Blocks used in our paper have the following parameters (W1 ×H1,W2 ×H2, F, S):

1. (2× 2, 2× 2, 32, 2)

2. (3× 3, 3× 3, 16, 2)

3. (4× 4, 3× 3, 16, 2)

Then log-probabilities for binary pixels were obtained by summing the result of these convolutions
along the channel dimension.

FEATURE ENCODER ψ

Function ψ has an architecture which is symmetric from the generator network. The only difference
is that the scale scale operation is replaced by bilinear upscaling.

The residual blocks for feature encoder has following parameters:

1. (4× 4, 3× 3, 16, 2)

2. (3× 3, 3× 3, 16, 2)

3. (2× 2, 2× 2, 32, 2)

The result is a tensor of 3× 3× 32 = 288 dimensions.

FUNCTIONS f AND g

Each function f or g used in our model is simply an affine transformation of feature encoder’s output
(interpreted as a vector) which is shared across different parts of the model to a 200-dimensional
space followed by parametric rectified non-linearity.

6

	Introduction
	Generative Matching Networks
	Experiments
	Conclusion

