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Gradient based optimization and machine learning applications require the computation of derivatives.
For example, artificial neural networks (ANNs), a widely used learning system, use backpropagation
to calculate the error contribution of each neuron after a batch of data is processed. Languages such
as Python and R are are popular for machine learning. Therefore, there has been interest in the last
few years to build tools for Python and R to compute derivatives.

Automatic Differentiation (AD), also known as autodiff and algorithmic differentiation, is a method to
compute the derivatives of subprograms [9, 4]. The adjoint mode of AD is equivalent to backpropaga-
tion in machine learning. There have existed several tools, such as pycppad [3], pyadolc [12, 13, 11],
and CasADI [2], that are Python wrappers for C++ tools . The ad package [15], algopy [16], and
theano [10] were initial efforts to provide a native Python AD capability. Recently, autograd has
emerged as a popular option to compute derivatives in Python.

Inspired in part by pyadolc’s hand written interface to the AD tool ADOL-C, we have recently
developed automatically generated, maintainable interfaces between ADOL-C and Python and R [7].
Here we present a performance comparison between autograd and ADOL-C and comment on the
capabilities provided by the two tools.

1 Autograd and ADOL-C

Autograd differentiates native Python and Numpy code and handle a large subset of Python’s features
[17]. First, within a driver, the function being differentiated is supplied to autograd’s grad function
(for scalar valued output) that then returns a function that computes the original’s derivative. To
compute the gradient, autograd records the list of operations used to compute the outputs from the
inputs. After the function is evaluated, autograd has a list of all operations that were performed
and which nodes they depended on. This is the computational graph of the function evaluation. To
compute the derivative, autograd applies the rules of differentiation to each node in the graph. Figure
1 shows an example of autograd usage.

ADOL-C is an operator overloading AD tool that provides accurate first- and higher-order derivatives
for applications in C++ [14]. It has been used to differentiate small- and large-scale applications.
ADOL-C’s differentiation process consists of two steps. First, the top level function to be differen-
tiated is traced. That is, ADOL-C forms a list, known as tape, of the operations performed by the
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# Assume the computation of interest
# ay = some_function(adarray)

#Invoke grad
gradfunction = autograd.grad(some_function)

# Compute the gradient
g = gradfunction(adarray)

Figure 1: Autograd usage.

adolc.trace_on(1)
adarray = adolc.as_adouble(array)
for item in adarray.flat:

item.declareIndependent()

# Perform main computation that computes
# ay = some_function(adarray)

ay.declareDependent()
adolc.trace_off()

g = adolc.gradient(1, adarray)

Figure 2: ADOL-C usage.

function for a set of input values. Driver routines can then be used to compute the original function,
gradient, Jacobian, Hessian, and higher order derivatives. Figure 2 shows an example of ADOL-C
usage.

2 Performance Analysis

We conducted a preliminary performance comparison of ADOL-C and autograd. We used both tools
to differentiate several functions that produce scalar valued output. We fixed the size of input arrays
to be 100,000 and report the average time for 10 runs. For ADOL-C we report the average time
taken to trace the function as well as compute the gradient. For autograd, we report the average
time taken to invoke grad and invoke the function returned by it. We ran the tests on machines with
a Supermicro X8DTU mainboard, 2x Intel E5520 Xeon CPUs, 24GB DDR3 1066MHz Memory
(6x4GB modules) with 1Gbit ethernet connected.

We emphasize that the values of the gradients generated by both tools match. Table 1 shows the
performance of ADOL-C computed gradients against autograd computed gradients. The results
are surprising because we see that for some tests ADOL-C is two orders of magnitude faster than
autograd. For others, autograd is one order of magnitude faster than ADOL-C. The performance of
the two tools certainly warrants further investigation.

3 Feature Comparison

Functions that should be differentiated in a nonstandard manner are handled elegantly by autograd
using the @primitive decorator which allows the user to provide a custom function that computes
the derivative. The ADOL-C interface to Python has no equivalent capability at the moment although,
ADOL-C has the capability while differentiating C++ code [6].

For the most part, autograd does not require changes to the input code other than those noted in [17].
For ADOL-C, a few changes may be required in the computation routines. Consider the lines of
code in Figure 3(a). Any mathematical functions called, such as math.cos, must be rewritten using
the equivalent ADOL-C functions, in this case adolc.cos. However, if a function is performed on
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Table 1: Performance comparison of ADOL-C and Autograd

Name ADOL-C (s) Autograd (s)

gradient trace gradient

ackley [5] 1.20 3.744 884.41
cam [8] 0.26 2.14 846.61
correlation coefficient population 3.94 10.08 5174.16
deceptive [5] 0.51 4.34 886.01
electricpotential [18] 0.52 4.34 899.98
enthalpy [1] 0.56 4.26 0.016
exponential [5] 0.35 3.87 899.98
f6schaffer [5] 2.41 9.75 1026.81
f7schaffer [5] 4.41 10.01 908.29
langerman [5] 3.78 8.89 842.41
lunacek [5] 2.58 6.83 876.80
magneticflux 1.27 9.78 0.045
moddoublesum [5] 1.03 3.60 883.89
polygon [5] 1.19 5.93 0.037
schwefel221 [5] 0.02 1.80 858.75
schwefel222 [5] 0.52 2.35 854.09
standarddeviationpop 1.00 3.24 845.68
standarddeviationsample 1.02 3.21 846.83
torque [19] 1.07 7.21 0.032
total energy 1.19 7.65 0.029

secondSum = numpy.sum(numpy.cos(2.0*math.pi*array[:len(array)]))
secondSum += math.cos(2.0*math.pi*chromosome[c])

(a)

secondSum = numpy.sum(numpy.cos(2.0*math.pi*adarray[:len(adarray)]))
secondSum += adolc.cos(2.0*math.pi*adchromosome[c])

(b)

Figure 3: (a) Original Python computation. (b) Python computation with ADOL-C.

the whole array using numpy, such as numpy.cos, the code remains unchanged, because numpy can
automatically call the overloaded functions from adolc.

Often the Jacobian or Hessian is sparse and presents the opportunity to greatly reduce storage and
computational requirements in the automatically generated derivative computation. ADOL-C exploits
sparsity by interfacing with ColPack, a tool that compresses structurally independent columns of
the Jacobian and Hessian matrices through graph coloring approaches. To the best of the authors’
knowledge autograd has no comparable capability.

4 Conclusion and Outlook

The utility of derivative based AD tools lies is their ease of use, mathematical features, and perfor-
mance. We have performed a comparison two tools, ADOL-C and Python for differentiating Python
and NumPy code. ADOL-C is continuously developed and the SWIG interface allows its capabilities
to be used from R and Python. Autograd is still under active development with planned support for
GPU operations and in-place array operations and assignment to arrays. We expect that continuous
development of autograd and ADOL-C to result in a convergence of their capabilities in the long
term.
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