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ABSTRACT

Reversible operations have recently been successfully applied to classification
problems to reduce memory requirements during neural network training. This
feature is accomplished by removing the need to store the input activation for
computing the gradients at the backward pass and instead reconstruct them on
demand. However, current approaches rely on custom implementations of back-
propagation, which limits applicability and extendibility. We present MemCNN,
a novel PyTorch framework which simplifies the application of reversible func-
tions by removing the need for a customized backpropagation. The framework
contains a set of practical generalized tools, which can wrap common operations
like convolutions and batch normalization and which take care of the memory
management. We validate the presented framework by reproducing state-of-the-
art experiments comparing classification accuracy and training time on Cifar-10
and Cifar-100 with the existing state-of-the-art, achieving similar classification
accuracy and faster training times.

1 INTRODUCTION

Reversible functions, which allow exact retrieval of its input from its output, can reduce memory
overhead when used within the context of training neural networks with backpropagation. That is,
since only the output requires to be stored, intermediate feature maps can be freed on the forward
pass and recomputed from the output on the backward pass when required. Recently, reversible
functions have been used with some success to extend the well established residual network (ResNet)
for image classification from He et al. (2015) to more memory efficient invertible convolutional
neural networks (Gomez et al., 2017; Chang et al., 2017; Jacobsen et al., 2018) showing competing
performance on datasets like Cifar-10, Cifar-100 (Krizhevsky & Hinton, 2009) and ImageNet (Deng
et al., 2009).

The reversible residual network (RevNet) of Gomez et al. (2017) is a variant on ResNet, which
hooks into its sequential structure of residual blocks and replaces them with reversible blocks, that
creates an explicit inverse for the residual blocks based on the equations from Dinh et al. (2014)
on nonlinear independent components estimation. The reversible block takes arbitrary non-linear
functions F and G and renders them invertible. Their experiments show that RevNet scores similar
classification performance on Cifar-10, Cifar-100, and ImageNet, with less memory overhead.

Reversible architectures like RevNet have subsequently been studied in the framework of ordinary
differential equations (ODE) (Chang et al., 2017). Three reversible neural network based on Hamil-
tonian systems are proposed, which are similar to the RevNet, but have a specific choice for the
non-linear functions F and G which are shown stable during training within the ODE framework on
Cifar-10 and Cifar-100.

The i-RevNet architecture extends the RevNet architecture by also making the downscale operations
invertible Jacobsen et al. (2018), effectively creating a fully invertible architecture up until the last
layer, while still showing good classification accuracy compared to ResNet on ImageNet. One
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particularly interesting finding shows that bottlenecks are not a necessary condition for training
neural networks, which shows that the study of invertible networks can lead to a better understanding
of neural networks training in general.

The different reversible architectures proposed in the literature (Gomez et al., 2017; Chang et al.,
2017; Jacobsen et al., 2018) have all been modifications of the ResNet architecture and all have been
implemented in TensorFlow (Abadi et al., 2015). However, these implementations rely on custom
backpropagation, which limits creating novel invertible networks and application of the concepts
beyond the application architecture. Our proposed framework MemCNN overcomes this issue by
being compatible with the default backpropagation facilities of PyTorch. Furthermore, PyTorch
offers convenient features over other deep learning frameworks like a dynamic computation graph
and simple inspection of gradients during backpropagation, which facilitates inspection of invertible
operations in neural networks.

In this work we present MemCNN 1 a novel PyTorch (Paszke et al., 2017) implementation which
simplifies the use of reversible functions by removing the need for a customized backpropagation.
MemCNN provides tools to drop-in memory saving reversible functions within conventional Py-
Torch neural networks. Furthermore, it provides wrappers to convert arbitrary non-linear functions
to memory saving reversible functions. We have validated the presented framework by implement-
ing two state-of-the-art architectures (ResNet and RevNet) utilizing MemCNN, which are included
in the GitHub repository, and compare them to existing state-of-the-art implementations in Tensor-
Flow (Abadi et al., 2015) on the Cifar-10 and Cifar-100 classification tasks on accuracy and training
time. Our framework was found to achieve similar classification accuracy and faster training times.
Validation experiments described in this work are included in the framework as well.

2 METHODOLOGY

2.1 THE REVERSIBLE BLOCK
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Figure 1: Graphical representation of the reversible block. First, input x is partitioned in two
same shaped sets x1 and x2 after which F and G are applied to obtain y1 and y2, which are finally
concatenated to form output y. The reversible block can be chained by subsequent reversible blocks
or be combined with regular functions operating on an unpartitioned set, e.g. f(x) = y.

The core reversible operation of MemCNN follows the equations of Gomez et al. (2017); Dinh
et al. (2014), since they support a template for specific reversible implementations through F and
G. However, for incorporation of the equations with the default automatic differential system of
PyTorch we have encapsulated the equations as a reversible block function RF,G which partitions
its input x into two sets x1 and x2 of equal shape and computes the concatenation y = (y1, y2) using
equation 1. Figure 1 shows a graphical representation of the reversible block function RF,G .

RF,G(x) := (y1, y2) with x = (x1, x2)

y1 = x1 + F(x2)

y2 = x2 + G(y1)
(1)

R−1F,G(y) := (x1, x2) with y = (y1, y2)

x1 = y1 −F(x2)

x2 = y2 − G(y1)
(2)

Where F and G can be arbitrary nonlinear functions like convolutions, ReLUs, etc., as long as they
have matching input and output shapes, i.e. shape(x1) = shape(x2) = shape(y1) = shape(y2).
Using the same equations, x can be approximated from y by x = R−1F,G(y) rewriting the formulas
of equation 1 to its inverse in equation 2.

1MemCNN is available at: https://github.com/silvandeleemput/memcnn
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Table 1: Accuracy (acc.) and training time (time, in hours:minutes) comparison of the PyTorch
implementation (MemCNN) versus the Tensorflow implementation from Gomez et al. (2017) on
Cifar-10 and Cifar-100. (Krizhevsky & Hinton, 2009)

Tensorflow PyTorch
Cifar-10 Cifar-100 Cifar-10 Cifar-100

Model acc. time acc. time acc. time acc. time
resnet-32 92.74 2:04 69.10 1:58 92.86 1:51 69.81 1:51
resnet-110 93.99 4:11 73.30 6:44 93.55 2:51 72.40 2:39
resnet-164 94.57 11:05 76.79 10:59 94.80 4:59 76.47 3:45
revnet-38 93.14 2:17 71.17 2:20 92.54 1:10 69.33 1:40
revnet-110 94.02 6:59 74.00 7:03 93.25 3:43 72.24 3:44
revnet-164 94.56 13:09 76.39 13:12 93.40 7:19 74.63 7:21

2.2 IMPLEMENTATION DETAILS

The entire reversible block has been implemented as a ‘torch.nn.Module’ which can wrap Pytorch
modules for arbitrary functions F and G and has a default forward and backward pass implemented
using a ‘torch.autograd.Function’ for support with the automatic differentiation system of PyTorch.

The forward pass follows equation 1 to compute RF,G(x) = y and afterwards frees x from mem-
ory by default. The backward pass first checks if x is stored in memory, if not, x is computed
through equation 2, Subsequently, x′ derivatives for x, F ′W derivatives for the weights of F , and
G′W derivatives for the weights of G are computed by using the PyTorch ‘autograd’ solver.

3 EXPERIMENTS AND RESULTS

To validate MemCNN, we reproduced the experiments from Gomez et al. (2017) on Cifar-10 and
Cifar-100 (Krizhevsky & Hinton, 2009) using their Tensorflow (Abadi et al., 2015) implementation
on GitHub 2, and made a direct comparison with our PyTorch implementation on accuracy and
train time. We have tried to keep all the experimental settings, like data loading, loss function,
train procedure, and training parameters, as similar as possible. All experiments were performed
on a single NVIDIA GeForce GTX 1080 with 8GB of RAM. The results are listed in Table 1.
Model performance of our PyTorch implementation obtained similar accuracy to the TensorFlow
implementation with less training time on Cifar-10 and Cifar-100.

4 DISCUSSION AND CONCLUSION

We have presented MemCNN, a novel PyTorch framework, for applying reversible operations for
neural networks. It shows similar accuracy on Cifar-10 and Cifar-100 datasets with the current state-
of-the-art method for reversible operations in Tensorflow and provides overall faster training times.
The main features of the framework are: smooth integration of reversible functions with other non-
reversible functions by removing of the need for a custom back propagation and simple wrapping of
non-invertible non-linear functions, and easy gradient inspection through Pytorch facilities.

Although these results validate our framework we would like to shed some light on potential fu-
ture applications and improvements. We would like to provide other reversible architectures like
i-RevNet (Jacobsen et al., 2018) and the Hamiltonian-network (Chang et al., 2017) for comparison.
Furthermore, we would like to work around the limitations of shape equality for the input and output
for the reversible block function and its functions F and G. To our opinion, the presented frame-
work, which can be found on GitHub, facilitates the study of invertible functions in the context of
neural networks.

2https://github.com/renmengye/revnet-public
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