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ABSTRACT

As a widely-accepted evaluation criterion, complexity has attracted more and
more attention in the design of language models. The parameter count is a proxy
for complexity, which is often reported and compared in research papers. In gen-
eral, more parameters means better model performance, but higher complexity.
Therefore, reconciling the contradiction between the complexity and the model
performance is necessary. In this paper, we propose a simple method to make use
of model parameters more effectively, so that the LSTM-based language models
can reach better results without the cost of increasing parameters. The method
constructs another small-scale LSTM with a part of parameters originally belong-
ing to the vanilla LSTM in each layer, whose output can assist the next layer in
processing the output of the vanilla LSTM. We name these two LSTMs Major-
Minor LSTMs. In experiments, we demonstrate the language model with Major-
Minor LSTMs surpasses the existing state-of-the-art model on Penn Treebank and
WikiText-2 with fewer parameters.

1 INTRODUCTION

Language model (LM) is a foundational component of natural language processing (NLP) tasks,
which estimates the probability distribution of a sequence of words (w0, ..., wn) by modeling the
probability of the next word (wi) given preceding words (w0, ..., wi−1), i.e.

P (w0, ..., wn) = P (w0)
N∏
i=1

P (wi|w0, ..., wi−1)

Language model plays an important role of systems for machine translation Koehn (2009), speech
recognition (Yu & Deng, 2014), learning token embeddings (Botha & Blunsom, 2014; Press & Wolf,
2016), natural language generation (Radford et al., 2017; Merity et al., 2017) and text classification
(Howard & Ruder, 2018).

For word-level language model, the vanilla multi-layer Long Short Term Memory (LSTM) networks
have been demonstrated to achieve state-of-the-art performance (Yang et al., 2017; Merity et al.,
2017). As one of the successful variants of Recurrent Neural Network (RNN), LSTM (Hochreiter &
Schmidhuber, 1997) can not only process word sequences of any length, but also alleviate the issue
of gradient vanishing effectively.

Since the probability distribution to be predicted is complex, current LSTM-based language models
often utilize large-scale LSTMs with multiple layers to enhance generalization capability of the
language model, which lead to a huge amount of parameters. In fact, we have found through a lot
of experiments that when the scale of a certain LSTM layer is large enough, the improvement of
overall model performance will reduce as the LSTM output dimension increases, even the change
within a certain range will not cause obvious difference of the model result. But for these large-
scale LSTM layers, a small increase in their output size requires a large number of parameters to
generate. This means that in order to achieve model effect as good as possible, there will inevitably
be a part of parameters in the LSTMs with little contribution. Therefore, how to effectively improve
the utilization of model parameters is a challenge for language model.

For the sake of clarity, we call the LSTM in each layer of the vanilla LSTM-based language model
Major LSTM. In this paper, we propose to reduce the dimension of Major LSTM appropriately, and
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set up a Minor LSTM with the saved parameters, under the premise of not impairing the performance
of the Major LSTM significantly. The Minor LSTM generates a set of auxiliary features, which has
capability to assist the next layer in processing the output of the current Major LSTM. Since the scale
of the Minor LSTM is much smaller than the Major LSTM, the parameters building the Minor LSTM
do not exceed the saved parameters. The architecture of the layer we proposed is called Major-Minor
LSTMs (MMLSTMs), and for convenience the language model consisting of MMLSTMs is called
Major-Minor Language Model (MMLM). We will detailed introduce the architecture of MMLSTMs
and explain the rationality of the Minor LSTM later.

We integrate some existing methods (e.g. regularization, optimization, Mixture of Softmax) into
our MMLM, and evaluate it on standard language modeling benchmarks. The experimental results
show that the MMLM surpasses existing state-of-the-art language model on both Penn Treebank
and WikiText-2 datasets with fewer parameters.

2 RELATED WORK

Language modeling has gone through significant development from conventional N-gram language
models (Kneser & Ney, 1995; Chen & Goodman, 1999) to neural language models (Bengio et al.,
2003; Mikolov et al., 2010; Jozefowicz et al., 2016) in these decades. These classical N-gram models
suffer from data sparsity, which makes it difficult to represent large contexts and thus, long-range
dependencies. The LSTM-based language models effectively alleviate the problem of long-range
dependency, so their performance greatly exceed other neural network language models. In addition,
these LSTM-based language models also use a large amount of parameters for better generalization.

Zaremba et al. (2014) applied dropout to the non-recurrent connections in LSTM language models
with medium and large sizes, and achieved the best results with the large one at that time. Al-
though, the large model was only slightly better than the medium model in the final performance,
its parameter count is three times that of the latter. Gal & Ghahramani (2016) used the large LSTM
language model with a dropout variation to surpass the result of Zaremba et al. (2014). But there
was still no effective way to reduce the model complexity. Inan et al. (2016) introduced a novel the-
oretical framework leadingto tying together the input embedding and the output projection matrices,
greatly reducing the number of trainable parameters. Merity et al. (2017) proposed a weight-dropped
LSTM, which used DropConnect on hidden-to-hidden weights as a form of recurrent regularization.
Further, they introduced a variant of averaged stochastic gradient method named NT-AvSGD, which
was a successful improvement in the language model optimization method. Zolna et al. (2017) pro-
posed to train two identical copies of an RNN (that share parameters) with different dropout masks
while minimizing the difference between their predictions. Yang et al. (2017) identified the Soft-
max bottleneck by formulating language modeling as a matrix factorization problem, and proposed
a method called Mixture of Softmax to address it.

However, for these language models using multi-layer LSTMs, in order to improve the model per-
formance, they mainly leveraged the regularization method to reduce the over-fitting of the models
under the same parameter counts. In contrast, our method is more straightforward. We assist the
Major LSTM directly y constructing the Minor LSTM without increasing the cost of parameters. In
addition, our model can be combined with existing regularization methods to produce better results.

3 MAJOR-MINOR LSTMS (MMLSTMS) FOR LANGUAGE MODEL

3.1 THE VANILLA LSTM-BASED LANGUAGE MODEL

A vanilla LSTM-based language model can be simply divided into three components: the input of
word embeddings, the model of LSTMs, and the Softmax layer.
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The mathematical formulation of the LSTM is as follow:

ij = σ (Wi [hj−1; vj ] + bj) (1)
fj = σ (Wf [hj−1; vj ] + bf ) (2)
oj = σ (Wo [hj−1; vj ] + bo) (3)

gj = tanh (Wr [hj−1; vj ] + br) (4)
cj = ij � gj + fj � cj−1 (5)
hj = oj � tanh (cj) (6)

Where [Wi,Wf ,Wo,Wr] , [bi, bf , bo, br] are weight matrices and bias vectors. vj is the jth input
vector, hj is the current exposed hidden state, cj is the memory cell state, and � is element-wise
multiplication. The embedding of word sequence is fed into LSTM layers, and the output of the last
LSTM layer is used in predicting the probabilities distribution.

The Softmax layer calculates the probabilities of each word in the word sequence:

yj =
eWs·xj

1T · eWs·xj
(7)

Where [Ws] is weight matrix, xj is the output of the last LSTM layer corresponding to jthword,
1T = (1, ..., 1).

3.2 MAJOR-MINOR LSTMS FOR LANGUAGE MODEL

Major

LSTM

Minor

LSTM

  

 

 

Figure 1: The architecture of MMLSTMs layer. (v1, ..., vn) and (e1, ..., en) denote the output of the
previous layer and the word embedding of the original word sequence respectively. (a1, ..., an) and
(c1, ..., cn) represent the output of the Major LSTM and the Minor LSTM.

As we discussed before, the size of LSTMs should be large enough so that the language model
has sufficient learning capability. However, the promotion of the model performance will become
unnoticeable when the parameter count reachs a certain level. For this reason, instead of keeping
increasing the parameters of each layer of Major LSTM for a slight performance improvement, it is
better to build a Minor LSTM with a low cost to generate an auxiliary feature vector, which assists
the next layer in handling the output of the Major LSTM.

The architecture of a Major-Minor LSTMs layer is shown as Figure 1. The inputs of the Major and
Minor LSTMs are the output of the previous layer (v1, ..., vn) and the original embedding of word
sequence (e1, ..., en), respectively. And the size of the Major LSTM output vector (a1, ..., an) is
much larger than Minor LSTM (c1, ..., cn). For facilitating adjustment, we only set the size of entire
Major-Minor LSTMs layer, and adjust the proportions of the Major and Minor LSTMs.
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The reason why we do not use the same input of the Major LSTM as the input of the Minor LSTM
is three-fold. First, according to our hypothesis, the Major LSTM has enough capability to process
the output of the previous layer, so that there is no need to process it with the Minor LSTM. Second,
if we consider the layers before the current layer as a whole, the output of the current layer can be
written as the function of the original embedding of the word sequence. So the output of the previous
layer is only an intermediate result for generating the current layer output. The original embeddings,
by contrast, can generate the auxiliary features needed by the current layer more directly. Third, as
in Merity et al. (2017), the size of embedding is smaller than that size of hidden state, so that
ease the issue of overfitting of the word embeddings. Therefore, compared with the output of the
previous LSTM layer, using the original embedding as the input of the Minor LSTM can save more
parameters.

3.3 THE RATIONALITY OF THE MINOR LSTM

In MMLM, the output of Major-Minor LSTMs layers will flow into the next MMLSTM layer or the
last Softmax layer. But from the Formula (1-7) we can infer that whether the next layer is LSTM or
Softmax layer, it can be simplified to the combination of different components in a form of nonlinear
affine transformation:

yt = f
(
W1 · xMajor

t + U1 · st−1 + b1 +W2 · xMinor
t

)
(8)

where xMajor
t

(
xMinor
t

)
denotes the tth output of the Major (Minor) LSTM in the previous layer,

st−1 denotes the (t− 1)th hidden state in LSTM or 0 in the Softmax layer, [W1,W2, U1, b1] are
parameters of the component. f denotes the nonlinear function of the component, which is sigmoid
or tanh function in LSTM and softmax function in Softmax layer. The Formula (8) indicates that we
can understand W2 · xMinor

t as an adaptive bias vector, which adjusts the values of the component
yt for different input word sequence. As a result, the auxiliary feature vector

(
xMinor
t

)
has the

capability to assist the next layer in processing the output of the current Major LSTM.

But for general LSTM-based language models (only have Major LSTMs), we can expand the vector
xMajor
t to

(
xMajor
t , xMajor′

t

)
by increasing the dimension of the Major LSTM. In this way, the

W2 · xMinor
t in Formula (8) is replaced by W2 · xMajor′

t , and the form of the Formula (8) does not
have obvious changes. But since the xMajor

t and the xMajor′

t are generated by the same LSTM,
xMajor′

t cannot be freely and independently transformed into an auxiliary feature vector for xMajor
t

like xMinor
t generated by another LSTM. Concretely, if we simplify the Major LSTM to a vanilla

RNN, the xMajor
t and the xMajor′

t can be calculated as:

xMajor
t = f

(
W · zt + U ·

(
xMajor
t , xMajor′

t

)
+ b
)

(9)

xMajor′

t = f
(
W ′ · zt + U ′ ·

(
xMajor
t , xMajor′

t

)
+ b′

)
(10)

Where f is the nonlinear function, zt is the input corresponding to the tth word. [W, b] and
[W ′, b′] are parameters corresponding to xMajor

t and xMajor′

t respectively, and they do not in-
terfere with each other. But because of the appearance of

(
xMajor
t , xMajor′

t

)
, the generation

of xMajor
t

(
xMajor′

t

)
becomes a recursive procedure, which is controlled by both [W,U, b] and

[W ′, U ′, b′]. Any change in each parameter will affect every output dimension of the LSTM, so it is
difficult to split an independent portion of its output which can be freely transformed as the auxiliary
feature vector of the other part.

For MMLSTMs, the auxiliary feature vector from the Minor LSTM can generate an adaptive bias
vector to adjust the calculation of current Major LSTM output. By contrast, splitting a part of output
in a single LSTM as the auxiliary feature vector will bring a heavier parameter burden to the LSTM.
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Hyper-parameter PTB WT2
Learning rate 20 20

MMLSTMs layer size [1080, 1080, 620] [1200, 1200, 650]
Ratio of Major LSTM [90%, 90%, 60%] [90%, 90%, 60%]
Embedding V-dropout 0.5 0.55
Hidden state V-dropout 0.25 0.2
Non-monotone interval 10 10

Table 1: Hyper-parameters used for AWD-MMLSTMs-MoS. V-dropout abbreviates variational
dropout (Gal & Ghahramani, 2016). See Merity et al. (2017)for more detailed descriptions.

Hyper-parameter PTB WT2
Batch size 150 130

Learning rate(η) 0.0024 0.00198
ε 0.0025 0.0023
λ 0.07 0.0245

bptt 7 7

Table 2: Hyper-parameters used for dynamic evaluation of AWD-MMLSTMs-MoS. See Krause
et al. (2017) for more detailed descriptions.

4 EXPERIMENT

4.1 EXPERIMENT DETAILS

We evaluate our MMLM on a preprocessed version of the Penn Treebank (PTB) (Marcus et al.,
1993) and the WikiText-2 (WT2) dataset (Merity et al., 2016), and use perplexity as the primary
metric. In order to directly verify that our method can further heighten the effect of LSTM-based lan-
guage model on the basis of some existing techniques, we apply MMLSTMs in AWD-LSTM–MoS
architecture proposed by Yang et al. (2017), named AWD-MMLSTMs-MoS. We finetune the hyper-
parameters in Yang et al. (2017) based on the validation performance while controlling the model
size, and list the hyper-parameters we modified in Table 1. For facilitating the adjustment of the
regularization methods on Major and Minor LSTMs, we tie up their embedding and hidden state
Variational dropout values. Regarding the dimensional proportion of the Major and Minor LSTMs,
we divide each layer into 10 parts, and search various combinations heuristically and manually. It
was found that the dimensions of the Major LSTMs on three layers accounted for [90%, 90%, 60%]
respectively, and this model can achieve the best results on both datasets. We also apply dynamic
evaluation Krause et al. (2017) to further improve our model performance, whose hyper-parameters
are listed in Table 2.

4.2 MAIN RESULTS

We present the perplexity results from both our models (AWD-MMLSTMs-MoS) and other compet-
itive models in Table 3 and 4 for PTB and WT2 respectively. We improve the state-of-the-art results
on both datasets, 46.81 on PTB and 40.15 on WT2. In conclusion, obtaining our model requires three
stages: training, fine-tuning, and dynamic estimation. Our model surpasses AWD-LSTM-MoS in
all stages, which fully proves the effectiveness of our method.

4.3 STUDY OF DIMENSIONAL CHANGES ON DIFFERENT LSTM LAYERS

The idea of Major-Minor LSTMs layer is based on our observation that reducing the dimensions
of Major LSTMs in each layer properly does not significantly affect the performance of the Major
LSTMs. So we build a small-scale Minor LSTM to extract a set of auxiliary features to assist the
next layer in processing the output of the current Major LSTM. In this subsection, we study the
influence of dimensional changes in different LSTM layers on the vanilla LSTM-based language

5



Under review as a conference paper at ICLR 2019

Model #Param Validation Test
Mikolov & Zweig (2012) – RNN-LDA + KN-5 + cache 9M - 92.0

Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal & Ghahramani (2016) – Variational LSTM (MC) 66M - 73.4

Kim et al. (2016) - CharCNN 19M - 78.9
Merity et al. (2016) – Pointer Sentinel-LSTM 21M 72.4 70.9

Grave et al. (2016) - LSTM + continuous cache pointer - - 72.1
Inan et al. (2016) – Tied Variational LSTM + augmented loss 51M 71.1 68.5

Zilly et al. (2016)– Variational RHN 23M 67.9 65.4
Zoph & Le (2016) – NAS Cell 54M - 62.4

Melis et al. (2017) – 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) – AWD-LSTM w/o finetune 24M 60.7 58.8

Merity et al. (2017) – AWD-LSTM 24M 60.0 57.3
Yang et al. (2017) – AWD-LSTM-MoS w/o finetune 21.5M 58.08 55.97

Yang et al. (2017) – AWD-LSTM-MoS 21.5M 56.54 54.44
Ours-AWD-MMLSTMs-MoS w/o finetune 21.3M 56.52 54.51

Ours-AWD-MMLSTMs-MoS 21.3M 55.42 53.46
Merity et al. (2017) – AWD-LSTM + continuous cache pointer* 24M 53.9 52.8

Krause et al. (2017) – AWD-LSTM + dynamic evaluation* 24M 51.6 51.1
Yang et al. (2017) – AWD-LSTM-MoS + dynamic evaluation* 21.5M 48.33 47.69

Ours-AWD-MMLSTMs-MoS + dynamic evaluation* 21.3M 47.31 46.81

Table 3: Single model perplexity on validation and test sets on Penn Treebank. Baseline results are
obtained from Merity et al. (2017) and Yang et al. (2017). * indicates using dynamic evaluation.

Model #Param Validation Test
Inan et al. (2016) - Variational LSTM (tied) + augmented loss 28M 91.5 87.0

Grave et al. (2016) - LSTM + continuous cache pointer - - 68.9
Melis et al. (2017) - 2-layer skip connection LSTM (tied) 24M 69.1 65.9

Merity et al. (2017) – AWD-LSTM w/o finetune 33M 69.1 66.0
Merity et al. (2017) – AWD-LSTM 33M 68.6 65.8

Yang et al. (2017) – AWD-LSTM-MoS w/o finetune 35M 66.01 63.33
Yang et al. (2017) – AWD-LSTM-MoS 35M 63.88 61.45

Ours-AWD-MMLSTM-MoS w/o finetune 32.3M 64.3 61.77
Ours-AWD-MMLSTM-MoS 32.3M 63.11 60.51

Merity et al. (2017) – AWD-LSTM + continuous cache pointer* 33M 53.8 52.0
Krause et al. (2017) – AWD-LSTM + dynamic evaluation* 33M 46.4 44.3

Yang et al. (2017) – AWD-LSTM-MoS + dynamical evaluation* 35M 42.41 40.68
Ours-AWD-MMLSTMs-MoS + dynamical evaluation* 32.3M 41.91 40.15

Table 4: Single model perplexity over WikiText-2. Baseline results are obtained from Merity et al.
(2017) and Yang et al. (2017). * indicates using dynamic evaluation.

model orderly. We use AWD-LSTM 1 and AWD-LSTM-MoS as experimental objects, and change
the LSTM dimension of different layers, then record the perplexities of the language model on
PTB and WT2 datasets. Except for the dimensions of the LSTM layer, the other hyper-parameters
are the same as in Merity et al. (2017) and Yang et al. (2017). Moreover, we exclude the fine-
tuning and dynamic evaluation steps and the experiments of AWD-LSTM-MoS on WT2 for saving
computational resources and avoiding distractive factors. The results are reported on both Figure 2
and Figure 3.

1The third LSTM layer of AWD-LSTM is connected to the Softmax layer, whose input size is fixed after
tying the word vectors and word classifier. So we only experiment over the first two LSTM layers.
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(a) AWD-LSTM on PTB (b) AWD-LSTM on WT2 (c) MoS on PTB

Figure 2: The line graphs of models with changed LSTM layers dimensions perplexities on PTB
and WT2. The solid line and the dotted line denote the perplexity variation trend of the first LSTM
and the second LSTM layer respectively. And the dimensional interval of these three line graphs is
200.

(a) AWD-LSTM on PTB (b) AWD-LSTM on WT2 (c) MoS on PTB

Figure 3: The perplexity bands of models with changed LSTM layers dimensions on PTB and WT2.
The standard dimension is denoted as c, and the dimension range of perplexity bands in (a) (b) and
(c) is from 0.6c to 1.2c. In every perplexity band, the red box is used to mark the region within the
range of [-0.25, 0.25] compared with the perplexity at dimension c (standard perplexity).

In order to obtain the overall trend of perplexities with dimensional changes in each LSTM layer,
we firstly use three line graphs2 to observe in a large dimension range from 200 to 1200 at intervals
of 200. From these line graphs we can clearly see that with the increase of the dimension, the
perplexity keeps decreasing, but the rate of decline is getting slower and slower. This means that the
contribution of newly added parameters to the improvement of model performance decreases, so it is
not worthwhile to strengthen the final effect by setting larger dimensions of LSTM layers. Moreover,
we can also find that the dimensional change of the second LSTM layer has more influence than the
first LSTM layer on the total model performance.

On the other hand, for intuitively verifying that the dimensional changes in a certain range for each
LSTM layer will not cause obvious fluctuation in perplexity, we take the dimensions of each LSTM
layer in Merity et al. (2017) and Yang et al. (2017) as standard, then draw the perplexity bands
of models with dimensions from 0.6c to 1.2c in each layers at intervals of 0.1c(≈ 100). In each
perplexity band, we mark the part whose perplexity differs from the standard perplexity within the
range of [-0.25, 0.25] with a red box. We find the dimensions of 0.9c in the most layers are included
in red boxes, and the red box of the third LSTM layer in AWD-LSTM-MoS includes the dimension
of 0.6c. This demonstrates that we can greatly reduce the useless parameters and maintain the model
performance by setting the dimension ratio of the Major LSTMs to 90% and 60% in the first two
and the last MMLSTMs layers.

4.4 STUDY OF MINOR LSTM INPUT

In Section 3.2 we explained the reason why we use the original embeddings as the input of the
Minor LSTMs instead of the output of the previous layer. To compare the influence of the two
types inputs on the final results, we conduct experiments on PTB and WT2, while limiting the
amount of parameters. We construct two AWD-MMLSTMs-MoS with the two types input of Minor
LSTMs, and denote them as MMLM-1 (embedding input) and MMLM-2. The dimension of the
first two LSTM layers are set to 1150 for MMLM-2, so that the total parameters of the two models

2Since the dimension of the third LSTM of AWD-LSTM-MoS is much smaller than the first two layers, it is
not suitable to draw their dimensional changes in the same coordinate system, so we only plot the dimensional
changes of the first two LSTM layers in the line graph.
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Model PTB WT2
#Param Val Test #Param Val Test

MMLM-1 21.3M 56.52 54.51 32.3M 64.30 61.77
MMLM-2 21.7M 57.95 55.93 32.5M 65.43 62.76

Table 5: The perplexities of MMLM-1 and MMLM-2 over PTB and WT2 datasets.

are roughly equal. The other hyper-parameters of MMLM-1 and MMLM-2 are the same, and we
still remove the fine-tuning and dynamic evaluation steps. The results are shown in Table 5. The
MMLM-1 surpasses MMLM-2 on both datasets steadily, which demonstrates using the embedding
of input word sequence can better generate auxiliary features for Major-LSTM.

Model PTB WT2
AD #Param Val Test AD #Param Val Test

MMLM-w/o-Minor-1 1030 21.5M 57.3 55.10 1150 32.5M 65.34 62.73
MMLM-w/o-Minor-2 1030 21.5M 57.14 54.93 1130 32.6M 65.07 62.43
MMLM-w/o-Minor-3 520 21.5M 57.84 55.74 550 32.6M 65.66 63.02

MMLM - 21.3M 56.52 54.51 - 32.3M 64.3 61.77

Table 6: Ablation study on PTB and WT2 datasets without fine-tuning or dynamical evaluation.
AD ( Adjusted Dimension) means adjusted dimension of MMLSTM layer whose Minor LSTM is
removed, and the columns with the title Val and Test denote the perplexities on the validation sets
and test sets respectively.

4.5 ABLATION STUDY

Through the above experiments, we can reach the conclusion that using MMLSTMs layers can
control the amount of parameters effectively and improve the model performance. To further study
the contribution of the Minor LSTM in each MMLSTMs layer, we conduct an ablation study on both
PTB and WT2. We remove the Minor LSTM from each MMLSTMs layer by layer, and denote the
model with removed layer as MMLM-w/o-Minor-i (i = 1, 2, 3). The dimension of the layer removed
the Minor LSTM will be adjusted to keep total parameters consistent, and the other hyper-parameters
are the same to ensure a single variable contrast experiment. We also exclude the fine-tuning and
dynamic evaluation steps, and the results are reported in Table 6.

Comparing with our original three-layer MMLM, we can conclude that the Minor LSTM of the third
layer has the greatest effect on the final performance of the model, followed by the first Minor LSTM
and finally the second. In addition, this experiment demonstrates once again that MMLSTMs layer
can not only reduce the amount of parameters in each layer, but also benefit the model performance.

5 CONCLUSIONS

We observed that when the scale of LSTM is large enough, the benefits to the vanilla LSTM-based
language model of increasing the dimension of LSTM are very limited, while leading to a lot of
parameter waste. In this paper, we studied the phenomenon systematically, then proposed to reduce
the dimension of the Major LSTM in the original LSTM layer appropriately, and construct a small-
scale Minor LSTM to extract a set of auxiliary features, so that the next layer can process the
output of the Major LSTM better. In experiments, we verified the MMLM can control the total
parameter counts effectively, and further improve the performance of the language model based on
the existing methods such as regularization, optimization and Mixture of Softmax. Moreover, our
method improved the current state-of-the-art results on standard benchmarks with less amount of
parameters.
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