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ABSTRACT

We propose a segmental neural language model that combines the representational
power of neural networks and the structure learning mechanism of Bayesian non-
parametrics, and show that it learns to discover semantically meaningful units
(e.g., morphemes and words) from unsegmented character sequences. The model
generates text as a sequence of segments, where each segment is generated either
character-by-character from a sequence model or as a single draw from a lexical
memory that stores multi-character units. Its parameters are fit to maximize the
marginal likelihood of the training data, summing over all segmentations of the
input, and its hyperparameters are likewise set to optimize held-out marginal like-
lihood. To prevent the model from overusing the lexical memory, which leads to
poor generalization and bad segmentation, we introduce a differentiable regularizer
that penalizes based on the expected length of each segment. To our knowledge,
this is the first demonstration of neural networks that have predictive distributions
better than LSTM language models and also infer a segmentation into word-like
units that are competitive with the best existing word discovery models.

1 INTRODUCTION

How infants discover the words of their native languages is a long-standing question in developmental
psychology (Saffran et al.| [1996). Machine learning has contributed much to this discussion by
showing that predictive models of language are capable of inferring the existence of word boundaries
solely based on statistical properties of the input (Elman} [1990; |Brent & Cartwright, 1996} Goldwater|
et al.|[2009). Unfortunately, the best language models, measured in terms of their ability to model
language, segment quite poorly (Chung et al.,[2017; Wang et al.,[2017), while the strongest models
in terms of word segmentation are far too weak to adequately predict language (Goldwater et al.|
2009} Berg-Kirkpatrick et al.,2010). Moreover, since language acquisition is ultimately a multimodal
process, neural models which simplify working with multimodal data offer opportunities for future
research. However, as|Kadar et al.| (2018) have argued, current neural models’ inability to discover
meaningful words is too far behind the current (non-neural) state-of-the-art to be a useful foundation.

In this paper, we close this gap by introducing a neural model (§2)) of natural language sentences
that explicitly discovers and models word-like units from completely unsegmented sequences of
characters. The model generates text as a sequence of segments, where each segment is generated
either character-by-character from a sequence model or as a single draw from a lexical memory of
multi-character units. The segmentation decisions and decisions about the generation mechanism
for each segment are latent. In order to efficiently deal with an exponential number of possible
segmentations, we use a conditional semi-Markov model. The the characters inside each segment
are generated using non-Markovian processes, conditional on the previously generated characters
(the previous segmentation decisions are forgotten). This conditional independence assumption—
forgetting previous segmenation decisions—enables us to calculate and differentiate exact marginal
likelihood over all possible discrete segmentation decisions with a dynamic programming algorithm,
while letting the model retain the most relevant information about the generation history.

There are two components to make the model work. One is a lexical memory. The memory stores
pairs of a vector (key) and a string (value) appearing in the training set and the vector representation
of each strings are randomly initialized and learned during training. The other is a regularizer (§3)
to prevent the model from overfitting to the training data. Since the lexical memory stores strings
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that appeared in the training data, each sentence could be generated as a single unit, thus the model
can fit to the training data perfectly while generalizing poorly. The regularizer penalizes based on
the expectation of the powered length of each segment. Although the length of each segment is not
differentiable, the expectation is differentiable and can be computed efficiently together with the
marginal likelihood for each sentence in a single forward pass.

Our evaluation (§4}-§6)), therefore, looks at both language modeling performance and the quality
of the induced segmentations. First, we look at the segmentations induced by our model. We find
that these correspond closely to human intuitions about word segments, competitive with the best
existing models. These segments are obtained in models whose hyperparameters are tuned to optimize
validation likelihood, whereas tuning the hyperparameters based on likelihood on our benchmark
models produces poor segmentations. Second, we confirm findings (Kawakami et al., 2017 Mielke &
Eisner, [2018)) that show that word segmentation information leads to better language models compared
to pure character models. However, in contrast to previous work, we do so without observing the
segment boundaries, including in Chinese, where word boundaries are not part of the orthography.
Finally, we find that both the lexicon and the regularizer are crucial for good performance, particularly
in word segmentation—removing either or both significantly harms performance.

2 MODEL
1)1u(1()()k) look . S (]- = g)plear(look)
QSQQQSQQQ \°\°\°°\ O~ \06{.

Figure 1: Fragment of the segmental neural language model, as it is used to evaluate the marginal
likelihood of a sequence. At the indicated time, the model has previously generated the sequence
Canyou, and four possible continuations are shown.

We now describe the segmental neural language model (SNLM). Refer to Figure I] for an illustration.
The SNLM generates a character sequence * = z1,...,x,, where each z; is a character in a
finite character set 3. Each sequence x is the concatenation of a sequence of segments s =
81,...,8|s| Where |s| < n measures the length of the sequence in segments and each segment
s; € X7 is a sequence of characters, s;1,..., Si,|s;|- Intuitively, each s; corresponds to one
word. Let m(sy,...,s;) represent the concatenation of the characters of the segments s; to s;,
discarding segmentation information; thus & = 7 (s). For example if ¢ = anapple, the underlying
segmentation might be s = an apple (with s; = an and so = apple),ors = a nap ple,or
any of the 2/%1~1 segmentation possibilities for .

The SNLM defines the distribution over « as the marginal distribution over all segmentations that
give rise to x, i.e.,

pl@)= > ps). (1)
sim(s)=z

To define the probability of p(s), we use the chain rule, rewriting this in terms of a product of the
series of conditional probabilities, p(s; | s.,). The process stops when a special end-sequence
segment (/S) is generated. To ensure that the summation in Eq. I is tractable, we assume the
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following:

p(si | s<p) = p(se [ m(s<y)) = p(se [ 2<i), 2)
which amounts to a conditional semi-Markov assumption—i.e., non-Markovian generation happens
inside each segment, but the segment generation probability does not depend on memory of the
previous segmentation decisions, only upon the sequence of characters m(s_,) corresponding to the
prefix character sequence x ;. This assumption has been employed in a number of related models
to permit the use of LSTMs to represent rich history while retaining the convenience of dynamic
programming inference algorithms (Wang et al.| 2017; Ling et al.l 2017} |Graves| 2012).

2.1 SEGMENT GENERATION

We model p(s; | £<¢) as a mixture of two models, one that generates the segment using a sequence
model and the other that generates multi-character sequences as a single event. Both are conditional
on a common representation of the history, as is the mixture proportion.

Representing history To represent x4, we use an LSTM encoder to read the sequence of char-
acters, where each character type o € X has a learned vector embedding v,. Thus the history
representation at time ¢ is hy = LSTM,,,.(v4,, ..., Vs, ). This corresponds to the standard history
representation for a character-level language model, although in general we assume that our modeled
data is not delimitered by whitespace.

Character-by-character generation The first component model, p..-(s; | ht), generates s; by
sampling a sequence of characters from a LSTM language model over X and a two extra special
symbols, an end-of-word symbol (/W) ¢ ¥ and the end-of-sequence symbol (/S) discussed above.
The initial state of the LSTM is a learned transformation of h;, the initial cell is 0, and different
parameters than the history encoding LSTM are used. During generation, each letter that is sampled
(i.e., each s, ;) is fed back into the LSTM in the usual way and the probability of the character
sequence decomposes according to the chain rule. The end-of-sequence symbol can never be
generated in the initial position.

Lexical generation The second component model, pi.(s; | h;), samples full segments from
lexical memory. Lexical memory is a key-value memory containing M entries, where each key, k;, a
vector, is associated with a value v; € X7, The generation probability of s; is defined as

h, = MLP(h,)
m = softmax(Khj + b)

M
plex(st ‘ ht) = Zml[vl = St],
=1

where [v; = SEJ is 1 if the ith value in memory is s; and 0 otherwise, and K is a matrix obtained by
stacking the k; ’s. Note that this generation process will assign zero probability to most strings, but
the alternate character model can generate anything in X%,

In this work, we fix the v;’s to be subsequences of at least length 2, and up to a maximum length L
that are observed at least F’ times in the training data. These values are tuned as hyperparameters
(See Appendix [B|for details of the reported experiments).

Mixture proportion The mixture proportion, g;, determines how likely the character generator is
to be used at time ¢ (the lexicon is used with probability 1 — g;). It is defined by as g; = o(MLP(hy)).

Total segment probability The total generation probability of s; is thus:
p(st | T<t) = GiPenar(8t | Be) + (1 — gt )prex(st | hy).

2.2 INFERENCE

We are interested in two inference questions: first, given a sequence x, evaluate its (log) marginal
likelihood; second, given @, find the most likely decomposition into segments s*.
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Marginal likelihood To efficiently compute the marginal likelihood, we use a variant of the
forward algorithm for semi-Markov models (Yu, 2010), which incrementally computes a sequence of
probabilities, a;, where «; is the marginal likelihood of generating x <; and concluding a segment at
time . Although there are an exponential number of segmental decompositions of x, these values
can be computed using O(|z|) space and O(|z|?) time as:
t—1
ap = 1, oy = Z a;p(s =xjy | ;). 3)
j=t—L

By letting x441 = (/S), then p(x) = ayy1.

Most probable segmentation The most probable segmentation of a sequence x can be computed
by replacing the summation with a max operator in Eq. [3|and maintaining backpointers.

3 EXPECTED LENGTH REGULARIZATION

When the lexical memory contains all the substrings in the training data, the model easily overfits by
copying the longest continuation from the memory. To prevent overfitting, we introduce a regularizer
that penalizes based on the expectation of the exponentiated (by a hyperparameter 3) length of each

segment:
R(z,p)= > p(s|z)) |s|”.

sin(s)=a s€s

This can be understood as a regularizer based on the double exponential prior identified to be
effective in previous work (Liang & Klein, 2009; Berg-Kirkpatrick et al., 2010). This expectation
is a differentiable function of the model parameters. Because of the linearity of the penalty across
segments, it can be computed efficiently using the above dynamic programming algorithm under the
expectation semiring (Eisner,2002). This is particular efficient since the expectation semiring jointly
computes the expectation and marginal likelihood.

3.1 TRAINING OBJECTIVE

The model parameters are trained by minimizing the penalized log likelihood of a training corpus D
of unsegmented sentences,

L=""[-logp()+ AR(x, B)].

xeD
4 DATASETS

We evaluate our model on both English and Chinese segmentation. For both languages we used
standard datasets for word segmentation and language modeling. For all datasets, we used train,
validation and test splitsm Since our model assumes a closed character set, we removed validation
and test samples which contain characters that do not appear in the training set. In the English
corpora, whitespace characters are removed. In Chinese, they are not present to begin with. Refer to
Appendix [A] for dataset statistics.

4.1 ENGLISH

Brent Corpus The Brent corpus is a standard corpus used in statistical modeling of child language
acquisition (Brent, |1999; |Venkataraman) 2001 )E] The corpus contains transcriptions of utterances
directed at 13- to 23-month-old children. The corpus has two variants: an orthographic one (BR-text)
and a phonemic one (BR-phono), where each character corresponds to a single English phoneme.
As the Brent corpus does not have a standard train and test split, and we want to tune the parameters
by measuring the fit to held-out data, we used the first 80% of the utterances for training and the next
10% for validation and the rest for test.

'The data and splits used in these experiments are available from anonymous,
https://childes.talkbank.org/derived
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English Penn Treebank (PTB) We use the commonly used version of the PTB prepared by
Mikolov et al.[(2010). However, since we removed space symbols from the corpus, our cross entropy
results cannot be compared to those usually reported on this dataset.

4.2 CHINESE

Since Chinese orthography does not mark spaces between words, there have been a number of efforts
to annotate word boundaries. We evaluate against two corpora that have been manually segmented
according different segmentation standards.

Beijing University Corpus (PKU) The Beijing University Corpus was one of the corpora used for
the International Chinese Word Segmentation Bakeoff (Emerson, 2005).

Chinese Penn Treebank (CTB) We use the Penn Chinese Treebank Version 5.1 (Xue et al., 2005]).
It generally has a coarser segmentation than PKU (e.g., in CTB a full name, consisting of a given
name and family name, is a single token), and it is a larger corpus.

5 EXPERIMENTS

We compare our model to benchmark Bayesian models, which are currently the best known unsu-
pervised word discovery models, as well as to a simple deterministic segmentation criterion based
on surprisal peaks (Elman,|{1990) on language modeling and segmentation performance. Although
the Bayeisan models are shown to able to discover plausible word-like units, we found that a set
of hyper-parameters that provides best performance with such model on language modeling does
not produce good structures as reported in previous works. This is problematic since there is no
objective criteria to find hyper-parameters in fully unsupervised manner when the model is applied
to completely unknown languages or domains. Thus, our experiments are designed to assess how
well the models infers word segmentations of unsegmented inputs when they are trained and tuned to
maximize the likelihood of the held-out text.

DP/HDP Benchmarks Among the most effective existing word segmentation models are those
based on hierarchical Dirichlet process (HDP) models (Goldwater et al., 2009; [Teh et al., [2006).
These generate a corpus of utterances segment by segment using the following process:

0. ~ DP(Oé(hp())
0.;s ~ DP(a1,0.) Vs € ¥
St41 | 8¢ ~ Categorical(f.s, ).

The base distribution, py, is defined over strings in X*U{{(/s) } by deciding with a specified probability
to end the utterance, a geometric length model, and a uniform probability over X at a each position.
Intuitively, it captures the preference for having short words in the lexicon. In addition to the HDP
model, we also evaluate a simpler single Dirichlet process (DP) version of the model, in which the
s¢’s are generated directly as draws from Categorical(6.).

By integrating out the draws from the DP’s, it is possible to do inference using Gibbs sampling
directly in the space of segmentation decisions. We use 1,000 iterations with annealing to find an
approximation of the MAP segmentation and then use the corresponding posterior predictive distribu-
tion to estimate the held-out likelihood assigned by the model, marginalizing the segmentations using
appropriate dynamic programs. The evaluated segmentation was the most probable segmentation
according to the posterior predictive distribution.

In the original Bayesian segmentation work, the hyperparameters (i.e., ag, o1, and the components
of po) were selected subjectively. To make comparison with our neural models fairer, we instead
used an empirical approach and set them using the held-out likelihood of the validation set. However,
since this disadvantages the DP/HDP models in terms of segmentation, we also report the original
results on the BR corpora.

Deterministic Baselines Incremental word segmentation is inherently ambiguous (e.g., the letters
the might be a single word, or they might be the beginning of the longer word theater). Nevertheless,
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several deterministic functions of prefixes have been proposed in the literature as strategies for
discovering rudimentary word-like units hypothesized for being useful for bootstrapping the lexical
acquisition process or for improving a model’s predictive accuracy. These range from surprisal
criteria (Elman| [1990) to sophisticated language models that switch between models that capture
intra- and inter-word dynamics based on deterministic functions of prefixes of characters (Chung
et al.L[2017;Shen et al., 2018)).

In our experiments, we also include such deterministic segmentation results using (1) the surprisal
criterion of [Elman| (1990) and (2) a two level hierarchical multiscale LSTM (Chung et al., [2017),
which has been shown to predict boundaries in whitespace-containing character sequences at positions
corresponding to word boundaries. As with all experiments in this paper, the BR-corpora for this
experiment do not contain spaces.

SNLM Model configurations and Evaluation LSTMs had 512 hidden units with parameters
learned using the Adam update rule (Kingma & Ba, [2015)). We evaluated our models with bits-
per-character (bpc) and segmentation accuracy (Brent, 1999} [Venkataraman, 20015 |Goldwater et al.|
2009). Refer to Appendices[BHD] for details of model configurations and evaluation metrics.

6 RESULTS

In this section, we first do a careful comparison of segmentation performance on the phonemic
Brent corpus (BR-phono) across several different segmentation baselines, and we find that our model
obtains competitive segmentation performance. Additionally, ablation experiments demonstrate that
both lexical memory and the proposed expected length regularization are necessary for inferring good
segmentations. We then show that also on other corpora, we likewise obtain segmentations better than
baseline models. Finally, we also show that our model has superior performance, in terms of held-out
perplexity, compared to a character-level LSTM language model. Thus, overall, our results show
that we can obtain good segmentations on a variety of tasks, while still having very good language
modeling performance.

Word Segmentation (BR-phono) Table [1| summarizes the segmentation results on the widely
used BR-phono corpus, comparing it to a variety of baselines. Unigram DP, Bigram HDP, LSTM
suprisal and HMLSTM refer to the benchmark models explained in The ablated versions of
our model show that without the lexicon (—memory), without the expected length penalty (—length),
and without either, our model fails to discover good segmentations. Furthermore, we draw attention
to the difference in performance of the HDP and DP models when using subjective settings of the
hyperparameters and the empirical settings (likelihood). Finally, the deterministic baselines are
interesting in two ways. First, LSTM surprisal is a remarkably good heuristic for segmenting text
(although we will see below that its performance is much less good on other datasets). Second,
despite careful tuning, the HMLSTM of |Chung et al.| (2017)) fails to discover good segments, although
in their paper they show that when spaces are present between, HMLSTMs learn to switch between
their internal models in response to them.

Furthermore, the priors used in the DP/HDP models were tuned to maximize the likelihood assigned
to the validation set by the inferred posterior predictive distribution, in contrast to previous papers
which either set them subjectively or inferred them |[Johnson & Goldwater| (2009). For example, the
DP and HDP model with subjective priors obtained 53.8 and 72.3 F1 scores, respectively (Goldwater,
et al.| |2009). However, when the hyperaparameters are set to maximize held-out likelihood, this
drops obtained 56.1 and 56.9. Another result on this dataset is the feature unigram model of Berg-
Kirkpatrick et al.|(2010), which obtains an 88.0 F1 score with hand-crafted features and by selecting
the regularization strength to optimize segmentation performance. Once the features are removed, the
model achieved a 71.5 F1 score when it is tuned on segmentation performance and only 11.5 when it
is tuned on held-out likelihood.

Word Segmentation (other corpora) Table [2| summarizes results on the BR-text (orthographic
Brent corpus) and Chinese corpora. As in the previous section, all the models were trained to
maximize held-out likelihood. Here we observe a similar pattern, with the SNLM outperforming the
baseline models, despite the tasks being quite different from each other and from the BR-phono task.
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Precision Recall Fl1

LSTM surprisal (Elman,|{1990) 54.5 55.5 55.0
HMLSTM (Chung et al.,[2017) 8.1 13.3 10.1

Unigram DP 63.3 504 56.1
Bigram HDP 53.0 61.4 569
SNLM (—memory, —length) 54.3 349 425
SNLM (4+memory, —length) 52.4 36.8 433
SNLM (—memory, +length) 57.6 43.4 495
SNLM (4memory, +length) 81.3 775 793

Table 1: Summary of segmentation performance on phoneme version of the Brent Corpus (BR-
phono).

Precision  Recall F1

LSTM surprisal 36.4 49.0 417

Unigram DP 64.9 55.7  60.0

BR-text  Bigram HDP 525 63.1 573
SNLM 68.7 789 735

LSTM surprisal 273 36.5 31.2

PTB Unigram DP 51.0 49.1 50.0
Bigram HDP 34.8 473  40.1

SNLM 54.1 60.1  56.9

LSTM surprisal 41.6 25.6 31.7

CTB Unigram DP 61.8 496 550
Bigram HDP 67.3 67.7 675

SNLM 78.1 81.5 798

LSTM surprisal 38.1 23.0 287

PKU Unigram DP 60.2 482 536
Bigram HDP 66.8 67.1 66.9

SNLM 75.0 712 731

Table 2: Summary of segmentation performance on other corpora.

Word Segmentation Qualitative Analysis We show some representative examples of segmenta-
tions inferred by various models on the BR-text and PKU corpora in Table[3] As reported in/Goldwater]
et al.| (2009), we observe that the DP models tend to undersegment, keep long frequent sequences
together (e.g., they failed to separate articles). HDPs do successfully prevent oversegmentation; how-
ever, we find that when trained optimize held-out likelihood, they often insert unnecessary boundaries
between words, such as yo u. Our model’s performance is better, but it likewise shows a tendency to
oversegment. Interestingly, we can observe a tendency tends to put boundaries between morphemes
in morphologically complex lexical items such as dumpty ’s, and go ing. Since morphemes are the
minimal units that carry meaning in language, this segmentation, while incorrect, is at least plasuble.
Turning to the Chinese examples, we see that both baseline models fail to discover basic words such
as LL/[A] (mountain) and Af] (human).

Finally, we observe that none of the models successfully segment dates or numbers containing
multiple digits (all oversegment). Since number types tend to be rare, they are usually not in the
lexicon, meaning our model (and the H/DP baselines) must generate them as character sequences.

Language Modeling The above results show that the SNLM infers good word segmentations. We
now turn to the question of how well it predicts held-out data. Table[d] summarizes the results of the
language modeling experiments. Again, we see that SNLM outperforms the Bayesian models and a
character LSTM. Although there are numerous extensions to LSTMs to improve language modeling
performance, LSTMs remain a strong baseline (Melis et al., 2018)).

One might object that because of the lexicon, the SNLM has many more parameters than the character-
level LSTM baseline model. However, unlike parameters in LSTM recurrence which are used every
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Examples

Reference are you going to make him pretty this morning
Unigram DP areyou goingto makehim pretty this morning
Bigram HDP  areyou go ingto make him p retty this mo rn ing

BRutext SNLM are you go ing to make him pretty this morning
-texi
Reference would you like to do humpty dumpty’s button
Unigram DP wouldyoul iketo do humpty dumpty ’s button
Bigram HDP  would youlike to do humptyd umpty ’s butt on
SNLM would you like to do humpty dumpty ’s button
Reference S HEFE O WEE L WE Y, A R T AT X EE W Ei -
Unigram DP %fﬂ - EE LOWREE R A EE O, A BT AT EE R EZ -
Bigram HDP 5% 7. @ . W WEE | FE Wl |/ |, A & T A A EF K | .
pku  SNLM SR OEE . OKME R WA EE AR T AT R AE g E
Reference B TR DA RS RIPIX N BB -~ dERE . fEm . B0
Unigram DP  § 7E VT[R40 ORI XOUMOES - HBEE - JEf . 20 .
Bigram HDP 5§ 7E VL ] FB4L (RI° XN 4 5 46 8 - JEf. 20 .
SNLM P A L [ A S P 1 R 11 AN - N ot/

Table 3: Examples of predicted segmentations on English and Chinese.

timestep, our memory parameters are accessed very sparsely. Furthermore, we observed that an
LSTM with twice the hidden units did not improve the baseline with 512 hidden units on both
phonemic and orthographic versions of Brent corpus but the lexicon could. This result suggests more
hidden units are useful if the model does not have enough capacity to fit larger datasets, but that the
memory structure adds other dynamics which are not captured by large recurrent networks.

BR-text BR-phono PTB CTB PKU

DP 2.328 2.933 2245 6.162 6.879
HDP 1.963 2.553 1.798 5.399 6.424
LSTM 2.026 2.621 1.653 4.944 6.203

SNLM  1.943 2.536 1.560 4.836 5.883

Table 4: Test set language modeling performance (bpc).

7 RELATED WORK

Learning to discover and represent temporally extended structures in a sequence is a fundamental
problem in many fields. For example in language processing, unsupervised learning of multiple
levels of linguistic structures such as morphemes (Snyder & Barzilayl 2008)), words (Goldwater et al.}
2009) and phrases (Klein & Manning}, 2001) have been investigated. Recently, speech recognition
have benefited from techniques that enable the discovery of subword units (Chan et al.| [2017; Wang
et al.,|2017); however, in this work the optimally discovered substrings look very unlike orthographic
words. The model proposed by [Wang et al.|(2017)) is essentially our model without a lexicon or the
expected length regularization, i.e., (—memory, —length). Beyond language, temporal abstraction in
sequential decision making processes has been investigated for a long time in reinforcement learning.
Option discovery in hierarchical reinforcement learning is formalized similarly to the approach we
take (using semi-Markov decision processes where we use semi-Markov generative models), and the
motivation is the same: high level options/words have very different relationships to each other than
primitive actions/characters (Sutton et al., [1999; Precup, 2000; Kulkarni et al., 2016).

8 CONCLUSION

We introduced the segmental neural language model which combines a lexicon and a character-level
word generator to produce a model that both improves language modeling performance over word-
agnostic character LSTMs, and it discovers latent words as well as the best existing approaches for
unsupervised word discovering. This constellation of results suggests that structure discovery and
predictive modeling need not be at odds with one another: the structures we observe in nature are
worth modeling, even with powerful learners.
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A DATASET STATISTICS

Table[3] summarize dataset statistics.

Sentence Char. Types ‘Word Types Characters Average Word Length

Train Valid Test Train Valid Test Train Valid Test Train Valid Test Train Valid Test

BR-text 7832 979 979 30 30 29 1237 473 475 129k 16k 16k 3.82 4.06 3.83
BR-phono 7832 978 978 51 51 50 1183 457 462 104k 13k 13k 286 297 2.83

PTB 42068 3370 3761 50 50 48 10000 6022 6049 5.1M 400k 450k 444 437 4.41
CTB 50734 349 345 160 76 76 60095 1769 1810 3.1M 18k 22k 4.84 507 5.14
PKU 17149 1841 1790 90 84 87 52539 13103 11665 2.6M 247k 241k 493 494 4.85

Table 5: Summary of Dataset Statistics.

B SNLM MODEL CONFIGURATION

For each RNN based model we used 512 dimensions for the character embeddings and the LSTMs
have 512 hidden units. All the parameters, including character projection parameters, are randomly
sampled from uniform distribution from —0.08 to 0.08. The initial hidden and memory state of the
LSTMs are initialized with zero. A dropout rate of 0.5 was used for all but the recurrent connections.

To restrict the size of memory, we stored substrings which appeared F'-times in the training corpora
and tuned F' with grid search. The maximum length of subsequences L was tuned on the held-out
likelihood using a grid search. Tab. [6|summarizes the parameters for each dataset. Note that we did
not tune the hyperparameters on segmentation quality to ensure that the models are trained in a purely
unsupervised manner assuming no reference segmentations are available.

max len (L) min freq (F) A

BR-text 10 10 7.5e-4
BR-phono 10 10 9.5e-4
PTB 10 100 5.0e-5
CTB 5 25 1.0e-2
PKU 5 25 9.0e-3

Table 6: Hyperparameter values used.

C LEARNING

The models were trained with the Adam update rule (Kingma & Bal [2015)) with a learning rate of 0.01.
The learning rate is divided by 4 if there is no improvement on development data. The maximum
norm of the gradients was clipped at 1.0.

D EVALUATION METRICS

Language Modeling We evaluated our models with bits-per-character (bpc), a standard evaluation
metric for character-level language models. Following the definition in |Graves| (2013), bits-per-
character is the average value of — log, p(z; | <) over the whole test set,
b, 1 1 (x)
c=——lo T
P |x| g2 p 9

where |x| is the length of the corpus in characters. The bpc is reported on the test set.

Segmentation We also evaluated segmentation quality in terms of precision, recall, and F1 of word
tokens (Brent, 1999} Venkataraman, 2001} |Goldwater et al., [2009). To get credit for a word, the
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models must correctly identify both the left and right boundaries. For example, if there is a pair of a
reference segmentation and a prediction,

Reference: do you see a boy
Prediction: doyou see a boy

then 4 words are discovered in the prediction where the reference has 5 words. 3 words in the
prediction match with the reference. In this case, we report scores as precision = 75.0 (3/4), recall =
60.0 (3/5), and F1, the harmonic mean of precision and recall, 66.7 (2/3). To facilitate comparison
with previous work, segmentation results are reported on the union of the training, validation, and
test sets.
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