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ABSTRACT

The recently proposed information bottleneck (IB) theory of deep nets suggests
that during training, each layer attempts to maximize its mutual information (MI)
with the target labels (so as to allow good prediction accuracy), while minimizing
its MI with the input (leading to effective compression and thus good generaliza-
tion). To date, evidence of this phenomenon has been indirect and aroused con-
troversy due to theoretical and practical complications. In particular, it has been
pointed out that the MI with the input is theoretically infinite in many cases of in-
terest, and that the MI with the target is fundamentally difficult to estimate in high
dimensions. As a consequence, the validity of this theory has been questioned.
In this paper, we overcome these obstacles by two means. First, as previously
suggested, we replace the MI with the input by a noise-regularized version, which
ensures it is finite. As we show, this modified penalty in fact acts as a form of
weight-decay regularization. Second, to obtain accurate (noise regularized) MI
estimates between an intermediate representation and the input, we incorporate
the strong prior-knowledge we have about their relation, into the recently pro-
posed MI estimator of Belghazi et al. (2018). With this scheme, we are able to
stably train each layer independently to explicitly optimize the IB functional. Sur-
prisingly, this leads to enhanced prediction accuracy, thus directly validating the
IB theory of deep nets for the first time.

1 INTRODUCTION

Deep neural nets (DNN) have shown unparalleled success in many fields, yet the theoretical under-
standing of these models is lagging behind. Among the various attempts to shed light on this field,
Tishby & Zaslavsky (2015) have recently suggested a link between DNN training and the Informa-
tion Bottleneck (IB) principle of Tishby et al. (1999). Their theory claims that optimal performance
is attained if each layer simultaneously attempts to maximize its mutual information (MI) with the
target space, while minimizing its MI with the input space. The logic is that the DNN layers should
compress the latent representation so as to allow for good generalization, while retaining only the in-
formation essential for target prediction. Moreover, it was hypothesized that training DNNs through
minimization of the popular cross-entropy loss, implicitly achieves this goal. More formally, it was
suggested that during training, each DNN layer approaches the maximal value of the IB Langragian

LIB = I(Y ;Li)− βI(X;Li), (1)

where I denotes MI, X and Y are the input and target random variables, Li is the latent representa-
tion at the output of the ith hidden layer, and β is a trade-off parameter.

This elegant connection between DNN training and the IB principle was later supported by empirical
experiments conducted by Shwartz-Ziv & Tishby (2017), as well as by others (Alemi et al., 2018;
Belghazi et al., 2018; Kolchinsky et al., 2017; Saxe et al., 2018). These works either (i) showed the
effect of optimizing the IB functional in (1) for classification tasks, or (ii) analyzed the dynamics
of each layer in the information plane (defined by axes I(X;L), I(Y ;L)) during training with the
cross-entropy loss. And indeed, these works have shown such a scheme is beneficial in terms of
classification accuracy, and that the IB functional tends to increase during training with the cross-
entropy loss. Yet in all these demonstrations, nets were trained in an end-to-end fashion, where the
IB objective was either enforced only on a single layer Li, or not at all (trained only with a cross-
entropy loss). Therefore, it remains unclear whether directly optimizing the IB functional of each
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layer, as suggested by Tishby & Zaslavsky (2015), would indeed yield useful representations. The
goal of this paper is to experimentally examine this hypothesis.

In addition to the lack of explicit validation, criticism on the rationale behind the IB theory of
deep learning has surfaced lately. One major concern highlighted in the recent works of Saxe et al.
(2018) and Amjad & Geiger (2018), is that for deterministic DNNs with continuous inputs, the term
I(X;Li) is always infinite so that the IB principle is in fact meaningless. The authors suggest to
resolve this by resorting to stochastic DNNs via the introduction of noise after each layer, which
ensures that I(X;Li) is finite. And indeed, all attempts to train DNNs with the IB objective thus far
employed stochastic nets (Alemi et al., 2018; Belghazi et al., 2018; Kolchinsky et al., 2017). Yet,
deterministic DNNs are far more popular for most tasks, raising questions on the applicability of the
IB theory for these models.

In this paper, we focus on validating (a regularized version of) the IB theory to deterministic DNNs
trained on high-dimensional data. To alleviate the explosion of MI with the input space, we introduce
noise only for quantifying the MI between the input X and hidden layer Li (as also suggested
by Saxe et al. (2018)), and not into the DNN itself. Namely, we replace the first term in (1) by
I(X;Li + ε), where ε is noise. As we show, the resulting term can be interpreted as a weight
decay penalty, which aligns with common practice in DNN training. To estimate MI, we use an
auxiliary net, similarly to the suggestion by Belghazi et al. (2018), and in contrast to applying a
variational lower-bound as in (Alemi et al., 2018; Kolchinsky et al., 2017). However, as opposed
to the original mutual information neural estimator (MINE) of Belghazi et al. (2018), which fails
to accurately estimate I(X;Li + ε) in our setting1, we tailor the architecture of the auxiliary net
specifically for our case in which Li is a known deterministic function of X . This modification
results in significantly more accurate estimates, as we show in Section 4.

Equipped with this estimation strategy, we directly test the validity of the IB theory of deep learning
for deterministic models. This is accomplished by training a DNN while guaranteeing that each
layer optimizes the IB functional in (1). Starting from the first hidden layer, each layer is trained
independently, and frozen before moving on to the next layer. We find that such a training process
is not only useful, but surprisingly consistently leads to slightly better performance than end-to-
end training with the cross-entropy loss. This is thus the first explicit confirmation of the theory
suggested by Tishby & Zaslavsky (2015), subject to adapting the definition of I(X;L) so as to
make this quantity meaningful. Please note that whether layer-wise training with the IB principle
is generally beneficial over other layer-wise training schemes, or over other regularized end-to-end
schemes, is out of this paper’s scope.

Accompanying the original theory were several key observations, the most notable being the emer-
gence of two-phase training dynamics (Shwartz-Ziv & Tishby, 2017). It was hypothesized that the
second “compression” phase is responsible for enhancing the generalization capability. Yet Saxe
et al. (2018) contradict this claim, showing that this phase may not exist when training with a cross-
entropy loss. Our experiments align with those of Saxe et al. (2018), though we do observe these
two phases when training explicitly with the IB functional. Surprisingly, when training with cross-
entropy and weight decay regularization, the two-phase dynamics are also apparent. This suggests
that this two-phase pattern is induced by regularization, and is thus indeed linked to generalization.

2 RELATED WORK

Deep neural nets and The Information Bottleneck The Information Bottleneck (IB) technique
for summarizing a random variable X while maintaining maximal mutual information with a desir-
able output Y , was first introduced by Tishby et al. (1999). It is designed to find the optimal trade-off
between prediction accuracy and representation complexity, by compressing X while retaining the
essential information for predicting Y . The IB optimization problem can be directly solved in dis-
crete settings, as well as in certain simple families of continuous distributions, like jointly Gaussian
random variables (Chechik et al., 2005). However, in general high-dimensional continuous scenar-
ios, exact optimization becomes impractical due to the intractable continuous MI.

The IB principle was recently linked to DNNs by Tishby & Zaslavsky (2015), which hypothesized
that DNN layers converge to the optimal IB curve during training. The subsequent work by Shwartz-

1For example, it does not tend to infinity when the noise is taken to zero.
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Ziv & Tishby (2017) attempted to experimentally verify this by analyzing DNNs trained with the
cross-entropy loss (with no regularization). In this work, the MI estimation was made tractable
by binning (discretization) of the latent representations Li, which works for “toy” examples but
does not scale to real-world scenarios. Among several claims, the authors report that two training
phases emerge: a “fitting” phase followed by a “compression” phase, which to their understanding
is linked to increased generalization. Yet Saxe et al. (2018) contradict these claims, by linking the
compression phase to the activation type and discretization strategy, and questioning the connection
between this compression phase and generalization. Moreover, these authors as well as Amjad &
Geiger (2018), also recognize that the term I(X;L) in the IB functional is theoretically infinite for
deterministic DNNs with a continuous input X , and thus the attempt to measure it is meaningless.
Both works propose to remedy this by adding noise, which ensures this term is finite.

Despite these obstacles, DNNs were in fact trained on real high-dimensional data for classification
tasks with the IB functional. The difficulties arising from the intractable and infinite term I(X;L)
were overcome by (i) training stochastic DNNs which ensure it is finite, and (ii) using a variational
approximation of the MI which makes it tractable (Alemi et al., 2018; Kolchinsky et al., 2017; Chalk
et al., 2016; Achille & Soatto, 2018; Belghazi et al., 2018). These schemes all rely on some form
of injected stochasticity, and in fact, most enforce the IB objective only on a single “bottleneck
layer”. An attempt to optimize the IB functional for deterministic DNNs in a layer-wise fashion, as
in the original theory, has yet to appear due to these practical difficulties. Here, we report on such a
training scheme and present its results in the following sections.

We note that layer-wise training with a related information-theoretic objective has been studied
by Ver Steeg & Galstyan (2015) and Gao et al. (2018), which have shown an effective and practical
method to compose and analyze hierarchical representations. These works consider an unsupervised
setting, whereas we analyze supervised DNN training (specifically) with the IB functional.

Estimating mutual information Quantifying the MI between distributions is inherently difficult
(Paninski, 2003), and is tractable only in discrete settings or for a limited family of problems. In
other more general settings the exact computation is impossible, and known approximations do
not scale well with dimension and sample size (Gao et al., 2015). Most recently, Belghazi et al.
(2018) proposed the MI Neural Estimator (MINE) for approximating the MI between continuous
high-dimensional random variables via back-prop over a DNN. The core idea is to estimate the
Kullback-Leibler (KL) divergence that is used to define MI, through the maximization of the dual
representation of Donsker & Varadhan (1983).

Minimizing the MI between the input X and hidden layer Li of a DNN using this neural MI esti-
mator can be efficiently accomplished, by formulating a minmax objective between the examined
DNN and the estimator (an auxiliary net), similar to adversarial training (Goodfellow et al., 2014)
(see Belghazi et al. (2018)). We use this strategy to enforce the IB objective on DNN layers during
training. Note that the original authors also demonstrate the IB principle with this estimator, however
they only do so on a single “bottleneck layer”, by using the cross-entropy loss as an approximation
for the MI with the desired output Y , and in an end-to-end manner (as described above).

3 THE NOISE-REGULARIZED MUTUAL INFORMATION PENALTY AND ITS
RELATION TO WEIGHT DECAY

The intuitive goal of the penalty I(X;Li) in the IB principle, is to induce a “compressed” latent
representation which does not contain information irrelevant for predicting the labels Y . However,
for deterministic DNNs, ifX is continuous, then the MI betweenX and any DNN layer Li is infinite
and therefore meaningless. We seek a related measure of representation compactness which is more
effective. One such alternative is to penalize for the MI between the layers up to an additive Gaussian
noise ε, i.e. I(X;Li + ε). Note that noise is added only for the sake of quantifying complexity, and
is not part of the net. Regularization by injection of noise is common practice in neural net training
(Srivastava et al., 2014; Kingma et al., 2015; Wan et al., 2013; Poole et al., 2014), and was also
analytically studied for the Gaussian IB case (Chechik et al., 2005).

To understand the effect of replacing the penalty I(X;Li) by I(X;Li + ε), we can write

I(X;Li(X) + ε) = h(Li(X) + ε)− h(Li(X) + ε|X), (2)
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where h denotes differential entropy, and we wroteLi(X) to emphasize that the latent representation
is a deterministic function ofX . First, notice that at zero noise level the second term becomes minus
infinity (since pLi(X)|X becomes a delta function), which highlights again the inadequacy of the
penalty I(X;Li) for deterministic DNNs. Second, notice that the second term in (2) can be further
simplified (for Gaussian noise) as

h(Li(X) + ε|X) = 1
2 log (det(2πeΣ)) , (3)

where Σ is the noise covariance matrix. This term is independent of the DNN parameters. This
shows that the MI penalty I(X;Li(X) + ε) is in fact a penalty only on the entropy h(Li(X) + ε)
of the representation Li (up to additive noise), which is a typical measure of compactness.

To develop further intuition, it is instructive to examine the simple case in which both the input X
and the additive noise ε are scalar (independent) Gaussian variables and the transformation is linear,
i.e. Li(X) = aX + b. In this setting, simple calculation shows that

I(X;Li + ε) =
1

2
log

(
1 +

σ2
X

σ2
ε

a2
)
, (4)

where σ2
X and σ2

ε are the variances of the input and noise, respectively. This function is mono-
tonically increasing in |a| and attains its minimum at a = 0, in which case X and Li become
independent. This highlights the fact that this term, in essence, induces a type of weight decay
regularization, as popularly employed in deep net training. Clearly, the same intuition is valid also
for non-linear high-dimensional settings, since weight decay (at the extreme) drives X and Li to be-
come independent and thus to have zero MI. Yet the precise form of the penalty is generally different
between the MI regularizer and hand-crafted ones. Also notice that in our case, the noise level σε
controls the strength of the regularizer, as we experimentally validate in Section 4.

In light of the above discussion, our goal is to explore the validity of the noise-regularized version
of the IB Langragian,

LIB = I(Y ;Li)− βI(X;Li + ε), (5)
where ε is white Gaussian noise.

4 ACCURATE ESTIMATION OF MUTUAL INFORMATION

Given a DNN, to estimate the two MI terms in (5), we rely on the recently proposed MI neu-
ral estimator (MINE) of Belghazi et al. (2018). This method uses the fact that I(U ;V ) =
KL(PU,V ||PU ⊗ PV ) and exploits the dual representation of Donsker & Varadhan (1983),

I(U ;V ) = sup
D

E
(S,T )∼PU,V

[D(S, T )]− log

(
E

(S,T )∼PU⊗PV
[eD(S,T )]

)
, (6)

where the supremum is over all functions D : U × V → R for which the second expectation is
finite. To approximate this value, the expectations are replaced by sample means over a training
set, and the optimization is performed over a smaller family of functions - those implementable by
a deep net of predefined architecture. That is, D is taken to be a DNN by itself, whose parameters
are optimized via back-propagation with stochastic gradient descent. Note that to optimize Eq. (6),
D must learn to discriminate between (i) pairs (u, v) drawn from the joint distribution PU,V , and
(ii) pairs (u, v) drawn independently from the marginal distributions PU ,PV . This is similar to the
principle underlying adversarial training (Goodfellow et al., 2014), where to estimate the Jenson-
Shannon divergence between “real” and “fake” distributions, a critic DNN must learn to discriminate
between “real” and “fake” data instances.

In our setting, we estimate the term I(Y ;Li) with a MINE, as described above. However, estimat-
ing the term I(X;Li + ε) is typically far more demanding, due to its higher dimensionality and the
continuous nature of both arguments. Experimentally, we observed inconsistent and non-convergent
behaviors for this estimate. In particular, as illustrated in Fig. 2, the estimate does not grow indef-
initely as the noise variance is taken to 0, despite the fact that the true MI becomes infinite in this
case (see Sec. 3). To improve the estimation accuracy, we exploit the strong prior knowledge we
have in our setting, which is that the latent representation Li is a known deterministic function of the
input X . Specifically, Li = Fi(X), where Fi is the function implemented by the first i layers of the
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Figure 1: To measure the MI between the features at layer i and the target labels Y , we use the MINE
estimator of (Belghazi et al., 2018). To measure the MI between a noisy version of the features at
layer i and the input X , we use our AA-MINE, which contains an internal copy of layers 1, . . . , i
(see zoom-in on the right).

net. This implies that D is actually trying to discriminate between (i) pairs (x1, Fi(x1) + ε) where
x1 is drawn from PX , and (ii) pairs (x1, Fi(x2) + ε) where x1, x2 are independently drawn from
PX . Intuitively, the easiest way to achieve this is by applying the function Fi on the first argument,
and checking whether the result is close to the second argument, up to noise. However, unless the
discriminator has the capacity to implement the function Fi internally, it will fail to converge to such
a rule. And even if its capacity suffices, convergence may be very difficult. Nevertheless, we can
make the discriminator’s task far easier, simply by informing it of the function Fi. We do this by
implementing a copy of the sub-net Fi within the discriminator and allowing it to pass its first input
through this net (see Fig. 1). Since now the task becomes much simpler, we follow this by only a few
fully-connected layers (see Appendix C), which suffice for obtaining accurate MI estimates and fast
convergence, as can be seen in Fig. 2. Appendix A provides a detailed description of our AA-MINE
training. Notice that for the limit case of zero noise level, the discriminator need only check whether
the two inputs are identical, which can be perfectly accomplished with a very simple architecture.
This drives the optimization of the objective in (6) to infinity, which aligns with the theory. We coin
this MI estimator an architecture aware MINE (AA-MINE).

Before moving on to our primary goal, which is to train DNNs according to the IB objective, we can
use our approach for the simpler task of just measuring the MI of each layer with the input/output
while training with the common cross-entropy loss. To illustrate this, we trained a three-layer MLP
with dimensions 784 − 512 − 512 − 10 and ReLU activations on the (unmodified) MNIST dataset
(LeCun et al., 1998) using the cross entropy loss, and measured the two MI terms in (5) for each
layer during training (see Appendix C for details). As can be seen in Fig. 3(a), both terms tend to
increase throughout the optimization process, and there is no apparent compression phase, in which
the MI with the input suddenly begins to decrease. This phenomenon has also been observed by
Saxe et al. (2018), and is in contradiction with the observations in (Shwartz-Ziv & Tishby, 2017),
which seem to be associated with the binning they used to measure MI (Saxe et al., 2018). However,
interestingly, when we add weight decay as a regularizer, the two-phase dynamics emerge (see
Fig. 3(b)). As discussed in Sec. 3, weight decay induces a penalty on the MI with the input, and
our experiments suggest that this penalty induces a compression phase which begins only after the
MI with the output has reached high values. As weight decay is known to increase generalization
(Krogh & Hertz, 1992), we conclude that the compression phase is indeed linked to generalization.

5 LAYER-BY-LAYER TRAINING WITH THE IB LOSS

The stage is now set for training a DNN layer-by-layer with the IB functional. Starting with the first
hidden layer, our goal is to train each layer independently until convergence, freeze its weights, and
then move on th the next layer. As our MI estimators are based on DNNs, we can achieve this goal
by training them simultaneously with the layer of interest, by using back-propagation. Specifically,
as in adversarial training and in the original MINE work (Goodfellow et al., 2014; Belghazi et al.,
2018), to update the ith layer, we alternate between updating the discriminators Dx, Dy according
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Figure 2: Estimating the (noise-regularized) MI between the input and last layer of a MLP (784 −
512 − 512− 10) with random weights using a standard MINE (Belghazi et al., 2018) and our AA-
MINE (see Sec. 4). For zero noise level (σ2 = 0), the MI is theoretically infinite, which is captured
by our AA-MINE but not by the standard MINE. This demonstrates the advantage of incorporating
prior-knowledge into the MI estimation scheme. When enforcing stronger regularization (increasing
noise level), our AA-MINE is stable and estimates decreasing values of MI, as expected.

(a) Cross-entropy (b) Cross-entropy + Weight decay

Figure 3: Information plane dynamics with conventional training. In this experiment, a 3-layer
MLP with ReLU activations was trained to classify MNIST digits and MI with input/target were
measured with AA/standard MINE. (a) When using only the cross-entropy loss, both the MI with
the input and the MI with the output tend to increase throughout the entire training process, aligning
with the observations of Saxe et al. (2018). (b) When adding weight regularization, a compression
phase emerges for the first two layers, where their MI with the input begins to decrease after their
MI with the target reaches high values. Note that, as observed by Saxe et al. (2018), the noise-
regularized complexity term does not satisfy the data-processing inequality, so that I(X,Li + ε)
need not necessarily be larger than I(X,Lj + ε) for j > i.

to (6) and updating the layer’s parameters θi according to the noise-regularized IB objective (5) with
the information terms replaced by the dual representation with the discriminator nets, namely

max
θi

(
E[Dy(Y,Li)]− log(E[eDy(Y,Li)])

)
−β

(
E[Dx(X,Li + ε)]− log(E[eDx(X,Li+ε)])

)
. (7)

Note that mutual information is invariant to (smooth) invertible transformations. Thus applying
any invertible transformation on the net’s output Ŷ , will not change its MI with Y . To simplify
the classification task, it is convenient to seek an invertible transformation that brings Ŷ closest
to (the 1-hot representation of) Y . To achieve this, we freeze the DNN parameters after training
is concluded, and post-train one additional fully-connected linear layer using a cross entropy loss.
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Figure 4: Information plane dynamics for layer-by-layer training explicitly with the IB functional.
Two-phase training dynamics are apparent, and we observe a succeeding “compression” phase. Note
that the data-processing inequality does not apply when estimating the noise-regularized MI (Saxe
et al., 2018, App. C).

Table 1: Test-set accuracy on the (unmodified) MNIST dataset of a 3-layer MLP (784-512-512-10)
trained layer-by-layer with the IB functional. Pushing each layer towards the optimal IB curve re-
sults in comparable performance to baselines, demonstrating the effectiveness of the IB principle.
Notice that maximizing only the information with the output I(Y ;Li) leads to inferior generaliza-
tion, showing the importance of the regularization terms I(X;Li + ε).

Train Set (%) Training method Test acc. (%)
Cross-entropy loss (baseline) 86.48

1 IB functional, only first term (L = I(Y ;Li)) 85.12
IB functional (L = I(Y ;Li)− βI(X;Li + ε)) 86.57
Cross-entropy loss (baseline) 97.73

100 IB functional, only first term (L = I(Y ;Li)) 97.77
IB functional (L = I(Y ;Li)− βI(X;Li + ε)) 98.09

This determines the best linear transformation to bring Ŷ closest to Y , without changing the MI.
Note that this does not expand the net capacity, since we use no non-linear activation between the
last layer of the net and the post-trained fully-connected layer, so that they can be combined into a
single linear layer after this post-training step.

Figure 4 depicts the information plane dynamics for IB-based layer-by-layer training of the same net
of Fig. 3. Interestingly, in this experiment, we observe very different dynamics. First, the MI with
the input does not increase at any stage during training. Second, here we have a clear two-phase
process. Namely, each layer starts by moving upwards in the information plane to increase its MI
with the desired output Y , and then turns to compress its latent representation by decreasing its MI
with X , i.e. by moving leftwards. The resulting classification accuracies are reported in Table 1.
Both when using 100% of the training set and when using only 1%, the performance of this training
scheme is comparable to the baseline of training with the cross-entropy loss, and even slightly better.
Also, notice that the penalty I(X;Li+ ε) is essential for generalization, especially when using only
1% of the training set, and without out it, there is a drop in test accuracy. This is thus the first
experiment to fully directly validate the effectiveness of the IB principle for DNNs.

We also test the IB principle with a conv-net for classifying the higher-dimensional CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Here we train layer-by-layer with the IB functional a net
with three conv-layers (16 filters, ReLU activations, max-pooling after each), which are followed
by three fully-connected layers (512-512-10, ReLU activations; see Appendix C for full details).
The resulting classification accuracies are reported in Table 2. In this more challenging scenario,
the effectiveness of the IB principle is more pronounced. Training with the full IB functional leads
to better accuracy compared to the cross-entropy baseline, and again, the regularization term which
promotes a “compressed” latent representation proves quite advantageous.
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Table 2: Test-set accuracy on the CIFAR-10 dataset for a conv-net (CONV16-CONV16-CONV16-
FC512-FC512-FC10) trained layer-by-layer with the IB functional.

Train Set (%) Training method Test acc. (%)
Cross-entropy loss (baseline) 58.23

100 IB functional, only first term (L = I(Y ;Li)) 60.59
IB functional (L = I(Y ;Li)− βI(X;Li + ε)) 61.75

Figure 5: Visualizing the effect of training using the IB principle with t-SNE embeddings. Left: The
embedding of L1 when setting the trade-off coefficient to (a) β = 102, and (b) β = 10−3. When
increasing β, the training procedure attempts to discretize the latent representation, which indeed
acts as a form of compression. Right: The embedding of L3 when (c) training end-to-end with a
cross-entropy loss, and (d) training layer-by-layer with the IB functional. With the IB functional,
we obtain better separated and concentrated clusters.

It is interesting to try to decipher how layer-by-layer training with the IB loss affects the internal
representations. In Fig. 5, we plot the t-SNE embeddings (Maaten & Hinton, 2008) of the latent
representations Li of the MLP trained layer-by-layer on MNIST (Fig. 5(a),(b) with 100% of the
train set, Fig. 5(c),(d) with 1%). Recall that the regularization term I(X;Li + ε) enforces reduced
entropy of the latent representation Li (see Section 3). The left side of Fig. 5 shows the effect of
increasing/decreasing the influence of this term on the first hidden representation, L1. As can be
seen, for large β values, the representation becomes quantized, which is a form of compression
and indeed reduces the differential entropy by decreasing the effective support of the representation
(differential entropy tends to −∞ as the support of the distribution grows smaller). On the right
side of Fig. 5, we show the difference between the representation L3 at the output of the third layer
when (c) training end-to-end with a cross-entropy loss and (d) training layer-by-layer with the IB
principle. In the latter, we obtain better separated and concentrated clusters, which illustrates the
advantage of directly enforcing the IB on each layer. To test this quantitatively, we compute the
mean distance between clusters divided by the mean standard deviation of clusters, where higher
values indicate better separation and concentration. The obtained value for (c) is 3.9, and for (d) is
5.2, confirming the advantageous outcome.

6 SUMMARY AND DISCUSSION

Our experiments demonstrate that training DNNs explicitly with the IB functional (and without a
cross-entropy loss) leads to competitive and even enhanced prediction performance. This provides,
for the first time, strong and direct empirical evidence for the validity of the IB theory of deep learn-
ing. Our training scheme was made possible by two key changes to prior attempts for training with
the IB principle. First, as previously commented by Saxe et al. (2018), we used a noise-regularized
version of the IB functional, which removes the theoretical difficulty of the MI between layers being
infinite, while still being consistent with the intuition of a “complexity” penalty. As we showed, the
resulting term acts as a form of weight-decay regularization. Second, we derived an MI estimation
scheme specifically tailored for MI estimation between deterministic DNN layers. Our scheme is
capable of accurate estimation in a scenario where this estimation has been shown to be generally
difficult and usually intractable. We note that while the IB principle proved beneficial for layer-by-
layer training, our alternating optimization procedure is computationally intensive. However, as we
show in Appendix B, end-to-end training by enforcing the IB objective only on the last layer of the
DNN, also leads to improved results, and is significantly more efficient.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research (JMLR), 9(Nov):2579–2605, 2008.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–
1253, 2003.

9



Under review as a conference paper at ICLR 2019

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in autoencoders and deep
networks. arXiv preprint arXiv:1406.1831, 2014.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning.
In International Conference on Learning Representations (ICLR), 2018.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research (JMLR), 15(1):1929–1958, 2014.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
IEEE Information Theory Workshop (ITW), pp. 1–5, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. In
The 37th annual Allerton Conference on Communication, Control, and Computing, pp. 268–377,
1999.

Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representations of high-
dimensional data. In Artificial Intelligence and Statistics, pp. 1004–1012, 2015.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning (ICML), pp.
1058–1066, 2013.

10



Under review as a conference paper at ICLR 2019

A ALGORITHM FOR ESTIMATING NOISE-REGULARIZED MI

Algorithm 1: Estimating noise-regularized MI I(X,Li + ε)

b - batch size ; σ - noise std ; µ - learning rate

Input: X - input distribution ; Fi - network up to layer i
Output: I(X,Li + ε)

θ0 ← Initialize the discriminator;
for k = 1 to N do

1. Draw b samples of X : XJ = { x(1)J , x
(2)
J , ..., x

(b)
J };

2. Draw b samples of X : XM = { x(1)M , x
(2)
M , ..., x

(b)
M };

3. Feed XJ and XM through the network (Fi), getting
LJi ={ l(1)J , l

(2)
J , ..., l

(b)
J } and LJi ={ l(1)M , l

(2)
M , ..., l

(b)
M };

4. Generate noise samples εJ , εM ∼ N (0, σ2I) ;
5. Evaluate:

I(θk) = 1
b

∑b
i=1Dθk−1

(x
(i)
J , l

(i)
J + εJ)− log( 1

b

∑b
i=1 e

Dθk−1
(x

(i)
J ,l

(i)
M +εM ));

6. θk ← θk−1 + µ · ∇I(θk);
end

B TRAINING END-TO-END

Despite originally using the IB functional to train layer-by-layer, we can also use it to train the
whole network end-to-end by taking into account only the MI of the classification layer with the
target and input space. Adding the IB functional as a regularizer to the standard cross-entropy (CE)
loss, we can perhaps prevent over-fitting in large scale DNNs. We therefore propose to minimize the
objective

L = α CE(Y, Ŷ )− β I(Y, Ŷ ) + γ I(X, Ŷ + ε), (8)

where CE is the standard cross-entropy loss.

Training DNNs end-to-end with the IB functional as regularizer has been proposed in several varia-
tions before (Belghazi et al., 2018; Alemi et al., 2018). Both of these works train stochastic encoder-
decoder like networks to maximize cross entropy of decodings Ŷ with the labels Y , which is a lower
bound on MI I(Ŷ , Y ), while minimizing MI of stochastic encoding Z with input space X . Alemi
et al. (2018) estimate I(Z,X) by using a Gaussian encoder and approximating X by a Spherical
Gaussian distribution of the same dimension as Z, while Belghazi et al. (2018) use a standard MINE
and do not assume Gaussian distribution of neither Z nor X . For deterministic DNNs, I(Z,X) is
infinite, making both techniques untranslatable to this more popular setting. Moreover, neither of
these works is capable of dealing with high dimensional data for classification without pre-trained
models, and so far have only shown results on MNIST.

Diverging from these works, we used our AA-MINE to estimate the MI I(X, Ŷ + ε) and a standard
MINE to estimate the I(Y, Ŷ ), in addition to the standard cross-entropy loss. Since stochasticity is
used only for measuring MI, and the AA-MINE needs only the classification layers representation
of X , we can regularize deterministic DNNs trained on complex data and show the importance of
explicitly measuring MI with target space, rather the only using a lower bound such as cross-entropy.
Furthermore, this method can also be used with with stochastic methods to regularize DNNs, such
as DropOut (Srivastava et al., 2014) or DropConnect (Wan et al., 2013). The results for MNIST and
CIFAR-10 classification are reported in Table 3, and convergence curves are plotted in Fig. 6. See
Appendix C for training details.
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Figure 6: CIFAR-10 test accuracy as function of training steps for for various combinations of
loss terms. Here we used a CNN with 6 convolutional layers and 3 fully connected layers (see
Appendix C for details). In all cases, faster convergence to a superior result is obtained when
using IB regularization relative to using only the cross-entropy loss. In particular, note that this
demonstrates the superiority of explicitly enforcing high values of I(Ŷ , Y ) in conjunction with low
cross-entropy values, over using cross-entropy alone.

Table 3: MNIST and CIFAR-10 end-to-end classification accuracy. Here we used 5000/20000 train-
ing steps for MNIST/CIFAR-10, respectively, and in each step we used 10 update steps for each of
the two MINE discriminators. The variance of the regularization noise is σ2

ε = 2.

Data Set Architecture Train Set (%) Loss (for minimization) Test Acc. (%)

MNIST MLP 100 CE(Y, Ŷ ) 97.73
784-600-400-10 −I(Y ; Ŷ ) + 10−3 · I(X; Ŷ + ε) 97.87

CE(Y, Ŷ )− I(Y ; Ŷ ) + 10−3 · I(X; Ŷ + ε) 98.4

1 CE(Y, Ŷ ) 86.48
−I(Y ; Ŷ ) + 10−3 · I(X; Ŷ + ε) 87.49
CE(Y, Ŷ )− I(Y ; Ŷ ) + 10−3 · I(X; Ŷ + ε) 88.11

CIFAR-10 Conv-NN 100 CE(Y, Ŷ ) 83.90
with DropOut CE(Y, Ŷ )− 0.5 · I(Y ; Ŷ ) 84.6

CE(Y, Ŷ ) + 10−3 · I(X; Ŷ + ε) 85.75

As can be seen, while the IB loss alone already leads to slight improvement, its combination with
the CE loss provides a substantial boost. This is especially evident in cases where the training set is
small w.r.t. the complexity of the problem.

C TRAINING DETAILS FOR THE MNIST AND CIFAR-10 EXPERIMENTS IN
SECTIONS 4, 5, APPENDIX. B

In these experiments, we started by training both MINE discriminators Dx, DY separately until
convergence. Then, layer-by-layer training was performed with a total of 5000 iterations for each
layer. In each of these iterations, we alternate between 1 step for updating the trained layer, and 10
steps for updating each of the MINE discriminators. For both MNIST and CIFAR-10, the variance
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of the Gaussian noise ε was σ2
ε = 2, and the learning rate was 10−4 for the MINE discriminators

and 10−3 for the the DNN, respectively. For MNIST, the bottleneck parameter was β = 10−3 for
all the layers (Table 1). For CIFAR-10, the bottleneck parameter was β = 0 for the convolutional
layers and β = 10−3 for the fully-connected layers (Table 2).

For the end-to-end training experiment (Table 3), the MNIST architecture was a MLP (784− 600−
400− 10) with ReLU activations, and the CIFAR-10 architecture was a CNN (CONV48-CONV48-
CONV96-CONV96-CONV192-CONV192-FC512-FC512-FC10) with 2×2 max-pooling every sec-
ond convolutional layer with 0.25/0.5 drop-out probability on convolutional/fully-connected layers,
respectively.

The architecture of the MINE discriminator was an MLP with two hidden layers of 1500 neurons
and Leaky-ReLU activations, and a final linear layer to a single neuron. The input was always
taken to be a concatenation of the two variables between which MI is measured. For AA-MINE, we
used the same architecture, only after passing the first input through a copy of layers 1 . . . i of the
primary DNN. Therefore, this architecture was always applied to Fi(X) and Fi(X) + ε in the case
of AA-MINE.

In all experiments, training was performed with the Adam optimizer (Kingma & Ba, 2015) via
python-TensorFlow (Abadi et al., 2015).
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