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ABSTRACT

Recent studies on knowledge base completion, the task of recovering missing
relationships based on recorded relations, demonstrate the importance of learning
embeddings from multi-step relations. However, due to the size of knowledge bases,
learning multi-step relations directly on top of observed instances could be costly.
In this paper, we propose Implicit ReasoNets (IRNs), which is designed to perform
large-scale inference implicitly through a search controller and shared memory.
Unlike previous work, IRNs use training data to learn to perform multi-step
inference through the shared memory, which is also jointly updated during training.
While the inference procedure is not operating on top of observed instances for
IRNs, our proposed model outperforms all previous approaches on the popular
FB15k benchmark by more than 5.7%.

1 INTRODUCTION

Knowledge bases such as WordNet (Fellbaum, 1998), Freebase (Bollacker et al., 2008), or
Yago (Suchanek et al., 2007) contain many real-world facts expressed as triples, e.g., (Bill Gates,
FounderOf, Microsoft). These knowledge bases are useful for many downstream applications
such as question answering (Berant et al., 2013; Yih et al., 2015) and information extraction (Mintz
et al., 2009). However, despite the formidable size of knowledge bases, many important facts are
still missing. For example, West et al. (2014) showed that 21% of the 100K most frequent PERSON
entities have no recorded nationality in a recent version of Freebase. We seek to infer unknown
relations based on the observed triples. Thus, the knowledge base completion (KBC) task has emerged
an important open research problem (Nickel et al., 2011).

Neural-network based methods have been very popular for solving the KBC task. Following Bordes
et al. (2013), one of the most popular approaches for KBC is to learn vector-space representations of
entities and relations during training, and then apply linear or bi-linear operations to infer the missing
relations at test time. However, several recent papers demonstrate limitations of prior approaches
relying upon vector-space models alone. By themselves, there is no straightforward way to capture
the structured relationships between multiple triples adequately (Guu et al., 2015; Toutanova et al.,
2016; Lin et al., 2015a). For example, assume that we want to fill in the missing relation for the
triple (Obama, NATIONALITY, ?), a multi-step search procedure might be needed to discover the
evidence in the observed triples such as (Obama, BORNIN, Hawaii) and (Hawaii, PARTOF,
U.S.A). To address this issue, Guu et al. (2015); Toutanova et al. (2016); Lin et al. (2015a) propose
different approaches of injecting structured information by directly operating on the observed triplets.
Unfortunately, due to the size of knowledge bases, these newly proposed approaches suffer from
some limitations, as most paths are not informative for inferring missing relations, and it is prohibitive
to consider all possible paths during the training time with expressive models.

In this paper, we take a different approach from prior work on KBC by addressing the challenges of
performing large-scale inference through the design of search controller and shared memory. Our
inference procedure centers around the search controller, which only operates on the shared memory
instead of directly manipulating the observed triples in knowledge base. IRNs use training data to
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Figure 1: An IRN Architecture.

learn to perform multi-step inference through the shared memory. First, input module generates a
representation of the query. Then, the search controller repeatedly interacts with the shared memory
and checks the termination gate. After each iteration, if the termination condition is met, the model
stops the search process and calls the output module to generate a prediction. The shared memory is
designed to store key information about the overall structures it learned during training, and hence
the search controller only needs to access the shared memory instead of operating on the observed
triples.

There are several advantages of using IRNs. First, the cost of inference can be controlled because
the search controller only needs to access the shared memory. Second, all the modules, including the
search controller and memory, are jointly trained, and hence alleviate the needs to inject structured
relationships between instances manually. Finally, we can easily extend IRNs to other tasks that
require modeling structured relationships between instances by switching the input and output
modules.

The main contributions of our paper are as follows:

• We propose Implicit ReasoNets (IRNs), which use a shared memory guided by a search
controller to model large-scale structured relationships implicitly.

• We evaluate IRNs and demonstrate that our proposed model achieves the state-of-the-art
results on the popular FB15k benchmark, surpassing prior approaches by more than 5.7%.

• We analyze the behavior of IRNs for shortest path synthesis. We show that IRNs outper-
form a standard sequence-to-sequence model and execute meaningful multi-step inference.

2 REASONET FOR IMPLICIT INFERENCE

In this section, we describe the general architecture of IRNs in a way that is agnostic to KBC. IRNs
are composed of four main components: an input component, an output component, a shared memory,
and a search controller, as shown in Figure 1. In this section, we briefly describe each component.

Input/Output Modules: These two modules are task-dependent. The input module takes a query and
converts the query into a vector representation q. The output module is a function fo, which converts
the hidden state received from the search controller (s) into an output O. We optimize the whole
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model using the output prediction O with respect to a ground-truth target using a task-specified loss
function.

Shared Memory: The shared memory is denoted as M . It consists of a list of memory vectors,
M = {mi}i=1...I , where mi is a fixed dimensional vector. The memory vectors are randomly
initialized and automatically updated through back-propagation. The shared memory component is
shared across all instances.

Search Controller: The search controller is a recurrent neural network and controls the search process
by keeping internal state sequences to track the current search process and history. The search
controller uses an attention mechanism to fetch information from relevant memory vectors in M , and
decides if the model should output the prediction or continue to generate the next possible output.

• Internal State: The internal state of the search controller is denoted as S, which is a vector
representation of the search process. The initial state s1 is usually the vector representation
of the input vector q. The internal state at t-th time step is represented by st. The sequence
of internal states is modeled by an RNN: st+1 = RNN(st, xt; θs).

• Attention to memory: The attention vector xt at t-th time step is generated based on the
current internal state st and the shared memory M : xt = fatt(st,M ; θx). Specifically,
the attention score at,i on a memory vector mi given a state st is computed as at,i =
softmaxi=1,...,|M |λ cos(W1mi,W2st), where λ is set to 10 in our experiments and the
weight matrices W1 and W2 are learned during training. The attention vector xt can be
written as xt = fatt(st,M ; θx) =

∑|M |
i at,imi.

• Termination Control: The terminate gate produces a stochastic random variable according
to the current internal state, tt ∼ p(·|ftc(st; θtc))). tt is a binary random variable. If tt is
true, the IRN will finish the search process, and the output module will execute at time step
t; otherwise the IRN will generate the next attention vector xt+1 and feed into the state
network to update the next internal state st+1. In our experiments, the termination variable is
modeled by a logistical regression: ftc(st; θtc) = sigmoid(Wtcst + btc), where the weight
matrix Wtc and bias vector btc are learned during training.

Compared IRNs to Memory Networks (MemNN) (Weston et al., 2014; Sukhbaatar et al., 2015; ?)
and Neural Turing Machines (NTM) (Graves et al., 2014; 2016), the biggest difference between our
model and the existing frameworks is the search controller and the use of the shared memory. We
build upon our previous work (Shen et al., 2016) for using a search controller module to dynamically
perform a multi-step inference depending on the complexity of the instance. MemNN and NTM
explicitly store inputs (such as graph definition, supporting facts) in the memory. In contrast, in IRNs,
we do not explicitly store all the observed inputs in the shared memory. Instead, we directly operate
on the shared memory, which modeling the structured relationships implicitly. We randomly initialize
the memory and update the memory with respect to task-specific objectives. The idea of exploiting
shared memory is proposed by Munkhdalai & Yu (2016) independently. Despite of using the same
term, the goal and the operations used by IRNs are different from the one used in Munkhdalai & Yu
(2016), as IRNs allow the model to perform multi-step for each instance dynamically.

2.1 STOCHASTIC INFERENCE PROCESS

The inference process of an IRN is as follows. First, the model converts a task-dependent input to
a vector representation through the input module. Then, the model uses the input representation
to initialize the search controller. In every time step, the search controller determines whether the
process is finished by sampling from the distribution according to the terminate gate. If the outcome is
termination, the output module will generate a task-dependent prediction given the search controller
states. If the outcome is continuation, the search controller will move on to the next time step,
and create an attention vector based on the current search controller state and the shared memory.
Intuitively, we design whole process by mimicking a search procedure that iteratively finds its target
through a structure and output its prediction when a satisfying answer is found. The detailed inference
process is described in Algorithm 1.

The inference process of an IRN is considered as a Partially Observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998) in the reinforcement learning (RL) literature. The IRN produces
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Algorithm 1: Stochastic Inference Process in an IRN
Input :Randomly initialized shared memory M ; Input vector q; Maximum step Tmax
Output :Output vector o

1 Define s1 = q; t = 1;
2 Sample tt from the distribution p(·|ftc(st; θtc));
3 if tt is false, go to Step 4; otherwise Step 7;
4 Generate an attention vector xt = fatt(st,M ; θx);
5 Update the internal state st+1 = RNN(st, xt; θs);
6 Set t = t+ 1; if t < Tmax go to Step 2; otherwise Step 7;
7 Generate output ot = fo(st; θo);
8 Return o = ot;

the output vector oT at the T -th step, which implies termination gate variables t1:T = (t1 = 0, t2 =
0, ..., tT−1 = 0, tT = 1), and then takes prediction action pT according to the probability distribution
given oT . Therefore, the IRN learns a stochastic policy π((t1:T , pT )|q; θ) with parameters θ to get a
distribution over termination actions, and over prediction actions. The termination step T varies from
instance to instance. The parameters of the IRN θ are given by the parameters of the embedding
matrices W for the input/output module, the shared memory M , the attention network θx, the search
controller RNN network θs, the output generation network θo, and the termination gate network θtc.
The parameters θ = {W,M, θx, θs, θo, θtc} are trained to maximize the total expected reward that
the IRN when interacting with the environment. The expected reward for an instance is defined as:

J(θ) = Eπ(t1:T ,pT ;θ)

[
T∑
t=1

rt

]

The reward can only be received at the final termination step when a prediction action pT is performed.
The rewards on intermediate steps are zeros, {rt = 0}t=1...T−1.

We employ the approach from our previous work (Shen et al., 2016), REINFORCE (Williams, 1992)
based Contrastive Reward method, to maximize the expected reward. The gradient of J can be
written as:

∇θJ(θ) =
∑

(t1:T ,pT )∈A†

π(t1:T , pT ; θ)
[
∇θlogπ(t1:T , pT ; θ)(

rT
bi
− 1)

]

where A† is all the possible episodes, the baseline bi =
∑

(t1:T ,pT )∈A† π(t1:T , pT ; θ)rT is the
expected reward on the |A†| episodes for the i-th training instance.

3 APPLYING IRNS TO KNOWLEDGE BASE COMPLETION

The goal of KBC tasks (Bordes et al., 2013) is to predict a head or a tail entity given the relation type
and the other entity, i.e. predicting h given (?, r, t) or predicting t given (h, r, ?), where ? denotes
the missing entity. For a KBC task, the input to our model is a subject entity (a head or tail entity)
and a relation. The task-dependent input module first extracts the embedding vectors for the entity
and relation from an embedding matrix. We then represent the query vector q for an IRN as the
concatenation of the two vectors. We randomly initialize the shared memory component. At each step,
a training triplet is processed through the model by Algorithm 1, where no explicit path information
is given. The IRN updates the shared memory implicitly with respect to the objective function. For
the task dependent output module, we use a nonlinear projection to project the search controller state
into an output vector o: fo(st; θo) = tanh(Wost + bo), where the Wo and bo are the weight matrix
and bias vector, respectively. We define the ground truth target (object) entity embedding as y, and
use the L1 distance measure between the output o and target entity y, namely d(o, y) = |o− y|1. We
sample a set of incorrect entity embeddings N = {y−i }

|N |
i=1 as negative examples. The probability of
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selecting a prediction ŷ ∈ D can be approximated as

p(ŷ|o) = exp(−γd(o, ŷ))∑
yk∈D exp(−γd(o, yk))

where D = N ∪ {y}. We set |N | and γ to 20 and 5, respectively, for the experiments on FB15k and
WN18 datasets. The IRN performs a prediction action pT on selecting ŷ with probability p(ŷ|o) .
We define the reward of the prediction action as one if the ground truth entity is selected, and zero
otherwise.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our model on the benchmark FB15k and WN18
datasets for KBC tasks (Bordes et al., 2013). These datasets contain multi-relations between head
and tail entities. Given a head entity and a relation, the model produces a ranked list of the entities
according to the score of the entity being the tail entity of this triple. To evaluate the ranking, we
report mean rank (MR), the mean of rank of the correct entity across the test examples, and hits@10,
the proportion of correct entities ranked in the top-10 predictions. Lower MR or higher hits@10
indicates a better prediction performance. We follow the evaluation protocol in Bordes et al. (2013)
to report filtered results, where negative examples N are removed from the dataset. In this case, we
can avoid some negative examples being valid and ranked above the target triplet.

We use the same hyper-parameters of our model for both FB15k and WN18 datasets. Entity embed-
dings (which are not shared between input and output modules) and relation embedding are both
100-dimensions. We use the input module and output module to encode subject and object entities,
respectively. There are 64 memory vectors with 200 dimensions each, initialized by random vectors
with unit L2-norm. We use single-layer GRU with 200 cells as the search controller. We set the
maximum inference step of the IRN to 5. We randomly initialize all model parameters, and use SGD
as the training algorithm with mini-batch size of 64. We set the learning rate to a constant number,
0.01. To prevent the model from learning a trivial solution by increasing entity embeddings norms,
we follow Bordes et al. (2013) to enforce the L2-norm of the entity embeddings as 1. We use hits@10
as the validation metric for the IRN. Following the work (Lin et al., 2015a), we add reverse relations
into the training triplet set to increase the training data.

Following Nguyen et al. (2016), we divide the results of previous work into two groups. The first
group contains the models that directly optimize a scoring function for the triples in a knowledge base
without using extra information. The second group of models make uses of additional information
from multi-step relations. For example, RTransE (García-Durán et al., 2015) and PTransE (Lin et al.,
2015a) models are extensions of the TransE (Bordes et al., 2013) model by explicitly exploring
multi-step relations in the knowledge base to regularize the trained embeddings. The NLFeat model
(Toutanova et al., 2015) is a log-linear model that makes use of simple node and link features.

Table 1 presents the experimental results. According to the table, our model significantly outperforms
previous baselines, regardless of whether previous approaches use additional information or not.
Specifically, on FB15k, the MR of our model surpasses all previous results by 12, and our hit@10
outperforms others by 5.7%. On WN18, the IRN obtains the highest hit@10 while maintaining
similar MR results compared to previous work.1

To better understand the behavior of IRNs, we report the results of IRNs with different memory sizes
and different Tmax on FB15K in Table 2. We find the performance of IRNs increases significantly
if the number of inference step increases. Note that an IRN with Tmax = 1 is the case that an IRN
without the shared memory. Interestingly, given Tmax = 5, IRNs are not sensitive to memory sizes.
In particular, larger memory always improves the MR score, but the best hit@10 is obtained by
|M | = 64 memory vectors. A possible reason is that the best memory size is determined by the
complexity of the tasks.

We analyze hits@10 results on FB15k with respect to the relation categories. Following the evaluation
in Bordes et al. (2013), we evaluate the performance in four types of relation: 1-1 if a head entity

1Nguyen et al. (2016) reported two results on WN18, where the first one is obtained by choosing to optimize
hits@10 on the validation set, and second one is obtained by choosing to optimize MR on the validation set. We
list both of them in Table 1.
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Table 1: The knowledge base completion (link prediction) results on WN18 and FB15k.

Model Additional Information WN18 FB15k

Hits@10 (%) MR Hits@10 (%) MR
SE (Bordes et al., 2011) NO 80.5 985 39.8 162
Unstructured (Bordes et al., 2014) NO 38.2 304 6.3 979
TransE (Bordes et al., 2013) NO 89.2 251 47.1 125
TransH (Wang et al., 2014) NO 86.7 303 64.4 87
TransR (Lin et al., 2015b) NO 92.0 225 68.7 77
CTransR (Lin et al., 2015b) NO 92.3 218 70.2 75
KG2E (He et al., 2015) NO 93.2 348 74.0 59
TransD (Ji et al., 2015) NO 92.2 212 77.3 91
TATEC (García-Durán et al., 2015) NO - - 76.7 58
NTN (Socher et al., 2013) NO 66.1 - 41.4 -
DISTMULT (Yang et al., 2014) NO 94.2 - 57.7 -
STransE (Nguyen et al., 2016) NO 94.7 (93) 244 (206) 79.7 69

RTransE (García-Durán et al., 2015) Path - - 76.2 50
PTransE (Lin et al., 2015a) Path - - 84.6 58
NLFeat (Toutanova et al., 2015) Node + Link Features 94.3 - 87.0 -
Random Walk (Wei et al., 2016) Path 94.8 - 74.7 -

IRN NO 95.3 249 92.7 38

Table 2: The performance of IRNs with different memory sizes and inference steps on FB15K.

Number of memory vectors Maximum inference step FB15k
Hits@10 (%) MR

|M | = 64 Tmax = 1 80.7 55.7
|M | = 64 Tmax = 2 87.4 49.2
|M | = 64 Tmax = 5 92.7 38.0
|M | = 64 Tmax = 8 88.8 32.9

|M | = 32 Tmax = 5 90.1 38.7
|M | = 64 Tmax = 5 92.7 38.0
|M | = 128 Tmax = 5 92.2 36.1
|M | = 512 Tmax = 5 90.0 35.3
|M | = 4096 Tmax = 5 88.7 34.7

can appear with at most one tail entity, 1-Many if a head entity can appear with many tail entities,
Many-1 if multiple heads can appear with the same tail entity, and Many-Many if multiple head
entities can appear with multiple tail entities. The detailed results are shown in Table 3. The IRN
significantly improves the hits@10 results in the Many-1 category on predicting the head entity
(18.8%), the 1-Many category on predicting the tail entity (16.5%), and the Many-Many category
(over 8% in average).

To analyze the behavior of IRNs, we pick some examples for the tail entity prediction in Table 4.
Interestingly, we observed that the model can gradually increase the ranking score of the correct tail
entity during the inference process.

5 ANALYSIS: APPLYING IRNS TO A SHORTEST PATH SYNTHESIS TASK

We construct a synthetic task, shortest path synthesis, to evaluate the inference capability over a
shared memory. The motivations of applying our model to this task are as follows. First, we want
to evaluate IRNs on another task requiring multi-step inference. Second, we select the sequence
generation task so that we are able to analyze the inference capability of IRNs in details.

In the shortest path synthesis task, as illustrated in Figure 2, a training instance consists of a start
node and an end node (e.g., 215 493) of an underlying weighted directed graph that is unknown to
models. The output of each instance is the shortest path between the given start and end nodes of the
underlying graph (e.g., 215→ 101→ 493). Specifically, models can only observe the start-end node
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Table 3: Hits@10 (%) in the relation category on FB15k. (M stands for Many)

Model Predicting head h Predicting tail t
1-1 1-M M-1 M-M 1-1 1-M M-1 M-M

SE (Bordes et al., 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
Unstructured (Bordes et al., 2014) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
TransE (Bordes et al., 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (Wang et al., 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR (Lin et al., 2015b) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
CTransR (Lin et al., 2015b) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8
KG2E (He et al., 2015) 92.3 94.6 66.0 69.6 92.6 67.9 94.4 73.4
TransD (Ji et al., 2015) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2
TATEC (García-Durán et al., 2015) 79.3 93.2 42.3 77.2 78.5 51.5 92.7 80.7
STransE (Nguyen et al., 2016) 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1
PTransE (Lin et al., 2015a) 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4
IRN 87.2 96.1 84.8 92.9 86.9 90.5 95.3 94.1

Table 4: Test examples in FB15k dataset, given a head entity and a relation, the IRN predicts the tail
entity with multiple search steps.

Input: (Dean Koontz, /PEOPLE/PERSON/PROFESSION)
Target: Film Producer
Step Termination Prob. Rank Predict top-3 entities

1 0.018 9 Author TV. Director Songwriter
2 0.052 7 Actor Singer Songwriter
3 0.095 4 Actor Singer Songwriter
4 0.132 4 Actor Singer Songwriter
5 0.702 3 Actor Singer Film Producer

Input: (War and Peace, /FILM/FILM/PRODUCED_BY)
Target: Carlo Ponti
Step Termination Prob. Rank Predict top-3 entities

1 0.001 13 Scott Rudin Stephen Woolley Hal B. Wallis
2 5.8E-13 7 Billy Wilder William Wyler Elia Kazan
3 0.997 1 Carlo Ponti King Vidor Hal B. Wallis

pairs as input and their shortest path as output. The whole graph is unknown to the models and the
edge weights are not revealed in the training data. At test time, a path sequence is considered correct
if it connects the start node and the end node of the underlying graph, and the cost of the predicted
path is the same as the optimal path.

Note that the task is very difficult and cannot be solved by dynamic programming algorithms since the
weights on the edges are not revealed to the algorithms or the models. To recover some of the shortest
paths at the test time, the model needs to infer the correct path from the observed instances. For
example, assume that we observe two instances in the training data, “A D: A→ B → G→ D”
and “B  E: B → C → E”. In order to answer the shortest path between A and E, the model
needs to infer that “A→ B → C → E” is a possible path between A and E. If there are multiple
possible paths, the model has to decide which one is the shortest one using statistical information.

In the experiments, we construct a graph with 500 nodes and we randomly assign two nodes to form
an edge. We split 20,000 instances for training, 10,000 instances for validation, and 10,000 instances
for testing. We create the training and testing instances carefully so that the model needs to perform
inference to recover the correct path. We describe the details of the graph and data construction parts
in the appendix section. A sub-graph of the data is shown in Figure 2.

For the settings of the IRN, we switch the output module to a GRU decoder for a sequence generation
task. We assign reward rT = 1 if all the prediction symbols are correct and 0 otherwise. We use a
64-dimensional embedding vector for input symbols, a GRU controller with 128 cells, and a GRU
decoder with 128 cells. We set the maximum inference step Tmax to 5.

7



Under review as a conference paper at ICLR 2017

Step Termination Distance Predictions
Probability

1 0.001 N/A 215→ 158→ 89→ 458→ 493
2 ∼0 N/A 215→ 479→ 277→ 353→ 493
3 ∼0 N/A 215→ 49→ 493
4 ∼0 0.77 215→ 140→ 493
5 0.999 0.70 215→ 101→ 493

Figure 2: An example of the shortest path synthesis dataset, given an input “215  493” (Answer: 215 →
101 → 493). Note that we only show the nodes that are related to this example here. The corresponding
termination probability and prediction results are shown in the table. The model terminates at step 5.

We compare the IRN with two baseline approaches: dynamic programming without edge-weight
information and a standard sequence-to-sequence model (Sutskever et al., 2014) using a similar
parameter size to our model. Without knowing the edge weights, dynamic programming only recovers
589 correct paths at test time. The sequence-to-sequence model recovers 904 correct paths. The IRN
outperforms both baselines, recovering 1,319 paths. Furthermore, 76.9% of the predicted paths from
IRN are valid paths, where a path is valid if the path connects the start and end node nodes of the
underlying graph. In contrast, only 69.1% of the predicted paths from the sequence-to-sequence
model are valid.

To further understand the inference process of the IRN, Figure 2 shows the inference process of a test
instance. Interestingly, to make the correct prediction on this instance, the model has to perform a
fairly complicated inference.2 We observe that the model cannot find a connected path in the first
three steps. Finally, the model finds a valid path at the forth step and predict the correct shortest path
sequence at the fifth step.

6 RELATED WORK

Link Prediction and Knowledge Base Completion Given that r is a relation, h is the head entity,
and t is the tail entity, most of the embedding models for link prediction focus on finding the scoring
function fr(h, t) that represents the implausibility of a triple. (Bordes et al., 2011; 2014; 2013; Wang
et al., 2014; Ji et al., 2015; Nguyen et al., 2016). In many studies, the scoring function fr(h, t) is
linear or bi-linear. For example, in TransE (Bordes et al., 2013), the function is implemented as
fr(h, t) = ‖h+ r− t‖, where h, r and t are the corresponding vector representations.

Recently, different studies (Guu et al., 2015; Lin et al., 2015a; Toutanova et al., 2016) demonstrate
the importance for models to also learn from multi-step relations. Learning from multi-step relations
injects the structured relationships between triples into the model. However, this also poses a technical
challenge of considering exponential numbers of multi-step relationships. Prior approaches address
this issue by designing path-mining algorithms (Lin et al., 2015a) or considering all possible paths
using a dynamic programming algorithm with the restriction of using linear or bi-linear models
only (Toutanova et al., 2016). Toutanova & Chen (2015) shows the effectiveness of using simple node
and link features that encode structured information on FB15k and WN18. In our work, the IRN
outperforms prior results and shows that similar information can be captured by the model without
explicitly designing features.

2 In the example, to find the right path, the model needs to search over observed instances “215  448:
215→ 101→ 448” and “76 493: 76→ 308→ 101→ 493”, and to figure out the distance of “140→ 493”
is longer than “101→ 493” (there are four shortest paths between 101→ 493 and three shortest paths between
140→ 493 in the training set).
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Studies such as (Riedel et al., 2013) show that incorporating textual information can further improve
the knowledge base completion tasks. It would be interesting to incorporate the information outside
the knowledge bases in our model in the future.

Neural Frameworks Sequence-to-sequence models (Sutskever et al., 2014; Cho et al., 2014) have
shown to be successful in many applications such as machine translation and conversation model-
ing (Sordoni et al., 2015). While sequence-to-sequence models are powerful, recent work has shown
that the necessity of incorporating an external memory to perform inference in simple algorithmic
tasks (Graves et al., 2014; 2016).

7 CONCLUSION

In this paper, we propose Implicit ReasoNets (IRNs), which perform inference over a shared memory
that models large-scale structured relationships implicitly. The inference process is guided by a search
controller to access the memory that is shared across instances. We demonstrate and analyze the
multi-step inference capability of IRNs in the knowledge base completion tasks and a shortest path
synthesis task. Our model, without using any explicit knowledge base information in the inference
procedure, outperforms all prior approaches on the popular FB15k benchmark by more than 5.7%.

For future work, we aim to further extend IRNs in two ways. First, inspired from Ribeiro et al. (2016),
we would like to develop techniques to exploit ways to generate human understandable reasoning
interpretation from the shared memory. Second, we plan to apply IRNs to infer the relationships
in unstructured data such as natural language. For example, given a natural language query such
as “are rabbits animals?”, the model can infer a natural language answer implicitly in the shared
memory without performing inference directly on top of huge amount of observed sentences such as
“all mammals are animals” and “rabbits are animals”. We believe the ability to perform inference
implicitly is crucial for modeling large-scale structured relationships.
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A DETAILS OF THE GRAPH CONSTRUCTION FOR THE SHORTEST PATH
SYNTHESIS TASK

We construct the underlying graph as follows: on a three-dimensional unit-sphere, we randomly
generate a set of nodes. For each node, we connect its K-nearest neighbors and use the euclidean
distance between two nodes to construct a graph. We randomly sample two nodes and compute its
shortest path if it is connected between these two nodes. Given the fact that all the sub-paths within a
shortest path are shortest paths, we incrementally create the dataset and remove the instances which
are a sub-path of previously selected paths or are super-set of previous selected paths. In this case, all
the shortest paths can not be answered through directly copying from another instance. In addition, all
the weights in the graph are hidden and not shown in the training data, which increases the difficulty
of the tasks. We set k = 50 as a default value.

11


	Introduction
	ReasoNet for Implicit Inference
	Stochastic Inference Process

	Applying IRNs to Knowledge Base Completion
	Experimental Results
	Analysis: Applying IRNs to a Shortest Path Synthesis Task
	Related Work
	Conclusion
	Details of the graph construction for the shortest path synthesis task

