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Abstract

Statistical shape analysis can benefit from algorithms that are intrinsic to the shape;
multi-scale and hierarchical; robust to perturbations, yet sensitive to fine-grained
content. For this purpose we investigate Deep Spectral Kernels (DSKs), trainable
and hierarchical similarity functions based on spectral analysis. DSKs are shape
encoders. They are multi-layer and compositional architectures that map semi-
structured, high dimensional objects such as meshes to representations fit for
machine learning. The encoding generates a sequence of increasingly high-level
geometries, augmented with functional maps that summarize relevant details from
finer scales. At the core of the procedure, the Spectral Wavelet Transform allow
for the encoding of structural and functional data to be done in a shape-intrinsic
manner. We experiment with unsupervised clustering of subcortical structures.

1 Introduction

Most approaches to statistical shape analysis fundamentally rely on registration, from landmark
based representations and active shape models,to medial representations and Principal Geodesic
Analysis,to deformable registration and diffeomorphometry.In contrast, relevant information is often
invariant to the object pose. Enforcing such invariances within statistical representations should help
algorithms learn and generalise well from little data. Spectral shape descriptors (8; 7), built from the
spectrum and eigenfunctions of the Laplace(-Beltrami) operator, have achieved popularity in that
context.Still it remains an open question how to best structure the framework of spectral analysis
into powerful statistical learning tools. Truncating the spectrum (8) yields a finite-dimensional shape
descriptor, albeit with a loss of fine-grained information. Low-dimensional embeddings can be
derived instead from metrics based on the full spectrum (10; 5) or on histograms of local spectral
descriptors (1). As an alternative to finite-dimensional representations, (6) designs spectral kernels
(i.e. non-linear similarity metrics between shapes) that make generic kernel methods available for the
purpose of shape analysis. Several limitations remain to be addressed for spectral methods to be more
discriminative and interpretable, including the loss of fine-grained information in non-hierarchical
approaches; and the lack of specificity to the spatial configuration of salient features in bag-of-feature
based methods. This extended abstract discusses Deep Spectral Kernels (DSKs) as a family of
trainable, multi-scale, hierarchical shape kernels. DSKs process shapes sequentially in fine-to-coarse
manner, to derive a shape representation that is: (1) sensitive to both local fine-grained structure and
global characteristics; (2) invariant to pose (registration-free), robust to perturbations and smoothly
varying under smooth deformation of the shape; and (3) compositional: it uses learned template
“shape patches” and information about their joint spatial layout to describe the higher-level geometry.
DSKs can be interpreted as shape auto-encoders. This analogy suggests a simple scheme to learn
DSK parameters, similar to the pre-training proposed by Hinton et al. (4) for image auto-encoders.
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2 Method

The study of deep architectures on non-Euclidean geometries has recently emerged as Geometric Deep
Learning (2). Much of the literature has focused on extending the widely successful Convolutional
Neural Network architecture from regular grids (e.g. for time series and images) to general graphs. In
contrast to images, convolution on non-Euclidean meshes does not define a shift-invariant operation.
Thus one of the appeals of the CNN architecture is lost, namely its interpretation as compositional
template matching. How strongly the spectral filtering operation is tied to the underlying geometry
is an open problem. For this reason, we aim instead to extend template matching. A layer records
the similarity of each point’s local neighborhood on the mesh to a bank of learned prototypes, via an
intermediate shape-intrinsic representation described below.

Multiscale mesh representation. We consider the case of orientable surface meshes in 3D. Meshes
are smoothed and coarsened at multiple scales (the lth layer of the DSK operates on such a smoothed
mesh at scale σl). The mesh at scale σl is obtained by evolving the coordinates following an
incompressible mean curvature flow ∂tX = ∆X + 2havg/At ·~n(X), starting from the initial mesh,
from time 0 to T = σ2

l (with havg the average mean curvature over the surface, At the surface area,
~n(X) the surface normal).

Spectral Wavelet Transform (SWT). The SWT is a (multidimensional) signature for functions over
shapes, obtained by recording the response with a bank of spectral filters. We restrict ourselves to
filters for which 〈h|φn〉 := h̄(λn) is a function of the spectrum only. These filters can be defined
independently of the object geometry by how they modulate the signal in various spectral bands
(e.g., low- or band-pass filters), and by abuse of notation we write h(λn). We define it analogously
to (3), but with spatial pooling. Given h = (h1 · · ·hK) a bank of spectral filters and f : Ω → R
a function on a shape Ω, let Sh[f ] , (〈f ∗hi〉Ω)i=1···K ∈ RK+ . It is defined entirely in terms of
statistics of f within various spectral bands. Hence it is suitable for similarities between functions
on distinct shapes. Sh offers frequency (spectral) localisation. Spatial localisation is recovered by
pooling over a local neighborhood instead of the whole shape. Shape signature. The SWT is a
(local) signature for a function over a shape. It can also be used to encode the characteristics of the
shape itself with suitable choices of function. Letting f := δx, the delta Dirac centered at point x,
and hi = Kti the heat (“Gaussian”) kernel for some diffusion time ti relates to the Heat Kernel
Signature (9) via HKSti(x, x),(Kti∗δx)(x). The HKS is invariant w.r.t. isometric transformations of
Ω. To recover additional geometric information, the signed arc-length MCFSti ,

∫ ti
0
〈∂tX|~n(X)〉dt

traveled over the mean curvature flow is readily available. Together they capture much of the intrinsic
and extrinsic local geometrical information (for ti → 0, the former relates up to first order to the
Gaussian curvature and the later to the mean curvature at x).

Deep Spectral Kernels (DSKs). Deep Spectral Kernels (DSKs) are trainable, hierarchical constructs
formed by stacking SWT and kernel non-linearities at multiple scales. DSKs are built in fine-to-coarse
fashion. Each layer outputs a set of activation maps that record the response to (learned) templates.
The activation maps output by layer l − 1 are transported to the subsequent, coarser geometry (scale
σl) to form the input of the lth layer. The SWT of these input maps over σl-neighborhoods is
computed, densely at every point x on the mesh. This functional signature summarizes information
about joint/co-occurrence of finer-grained structures within the σl-neighborhood. This signature is
concatenated with the structural signature (HKSσl

(x),MCFSσl
(x)) at scale σl, and together form a

multiscale representation of the neighborhood of x at all scales below σl. Layer l outputs activation
maps that capture the similarity between a given σl-neighborhood and a bank of learned templates.
The similarity between a given signature and a prototype signature is given by a (learned) multivariate
Gaussian RBF (the mean is interpreted as the prototype/template, the covariance parameters account
for suitable combinations and weighting of various features). Subsequent layers operate in the same
fashion. The parameters in the deep kernel construction are the templates at each scale and their
number, and the covariance matrices in the Gaussian RBFs. The hyperparameters are the filterbanks
as well as the number and choice of layers/scales.

Learning DSKs. The parameters of the DSK can be trained layer-wise in an unsupervised manner,
by k-Means or Variational Bayes EM approaches. The procedure is maybe best understood by
analogy to unsupervised learning of a stack of RBMs (4), an effective early strategy for pre-training
of auto-encoder networks.
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Figure 1: (Left) Hierarchical shape coarsening, at three different scales (a. σ = 0.5mm, b. σ = 3mm,
c. σ = 6mm). From top to bottom and left to right, the subcortical structures are: caudate, putamen,
accumbens, pallidum, thalamus, amygdala, hippocampus, brain stem. (Right) Spectral Signature for
the first layer of the Deep Kernel, displayed for the caudate and stem. The local geometry around
each point is summarised via 2 scalar values: (d) Heat Kernel Signature, (e) Mean Curvature Flow
Signature. The behaviour especially differs along geometric ridges and at saddle points.

3 Experiments & Discussion

We experimented with a dataset of 100 training/test subjects from the Brain Biobank dataset, contain-
ing 15 subcortical structures (Fig 1). We trained a DSK of 3 layers (a. σ = 0.5mm, b. σ = 3mm,
c. σ = 6mm) with 8 learned prototypes at each level. The output of the last two layers (normalised
to discard surface/volume information) forms the shape signature. The mean signature per class is
computed, and test points are assigned to the closest signature. We achieved class-wise accuracies of
0.73 (stem), 0.99 (accu), 0.46 (amyg), 0.55 (caud), 0.87 (hipp), 0.67 (pall), 0.45 (puta), 0.74 (thal).

Future work will investigate end-to-end training strategies, and strategies to decode the shape signature
to reconstruct the mesh.
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