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ABSTRACT

Effective clustering can be achieved by mapping the input to an embedded space
rather than clustering on the raw data itself. However, there is limited focus on
unsupervised transformation methods that improve clustering and classification
accuracies. In this paper, we introduce Neural Clustering1, a simple yet effective
unsupervised model to project data onto an embedded space where intermediate
layers of a deep autoencoder are concatenated to generate high-dimensional rep-
resentations. Optimization of the autoencoder via reconstruction error allows the
layers in the network to learn semantic representations of different classes of data.
We then use the k-NN algorithm to classify the projected points. Our experimen-
tal results yield significant improvements on other models and a robustness across
different kinds of datasets.

1 INTRODUCTION

Clustering is a fundamental approach to unsupervised learning and is also used extensively for data
visualization and analysis (Aggarwal and Reddy (2013)). In many cases, a given input domain is
projected onto some embedded space for more accurate classification. It is an extensively studied
field, with various methods for grouping data points. The k-NN algorithm, for example, takes the
k nearest neighbors of a query node based on Euclidean distance to assign a classification. Many
of these methods depend on the ”quality” of the embedded space; that is, the input domain must
be transformed to a target space that provides greater separation of different classes and closer
projection of similar data. Clustering on the pixels themselves is naive and hence an effective trans-
formation is necessary. Hence the question arises: what kind of transformations achieve this? What
kind of models can learn complex representations of the data? Unfortunately, research that address
these questions are limited.

Recent work in this field involves deep embedded clustering (DEC) which uses autoencoders as
non-linear mappings to the embedded domain (Xie et al. (2016)). This clustering method minimizes
Kullback-Leibler (KL) divergence and uses the k-means algorithm to approximate k centroids gen-
erated by the encoded layer of the autoencoder, where k is the number of categories. However, this
model requires the end-user to specify the number of centroids, k, and the target distribution p(x)
that is used to calculate KL divergence. This constitutes a naive approach, for it is possible for the
optimal embedded distribution of a dataset to exceed k clusters. Moreover, the ideal target distribu-
tion is likely to differ depending on the data and hence is difficult to be determined heuristically.

In this paper, we introduce Neural Clustering, a simple unsupervised method that yields better clas-
sification results. Rather than using just the central encoded layer of an autoencoder to generate
embeddings, we concatenate the learned representations of all intermediate layers. The training of
our model only consists of one stage - the optimization of the autoencoder itself. We then classify
the embedded points using the k-NN algorithm. The main idea is to use the features learned by each
neural network layer to generate a combined representation which can be used for effective cluster
analysis and classification.

1Implementation will be made publicly available at https://github.com/seansaito
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2 NEURAL CLUSTERING

Our clustering model consists of two stages: the training stage, which involves optimizing an au-
toencoder, and the representation stage, whereby we extract the features learned by layers of the
network to generate a descriptor.

2.1 AUTOENCODER

An autoencoder is a type of deep neural network which task is to find mappings for reconstructing
the input domain. It is extensively studied in the unsupervised learning domain and has a variety of
applications, such as denoising images (Vincent et al. (2010)). The architecture consists of two main
components, the encoder and the decoder. The encoder learns a deterministic non-linear mapping
that transforms the input to some lower dimensional representation. The decoder aims to find the
inverse mapping. The autoencoder is trained with backpropagation to minimize the distance between
the input and the decoder output:

E(x, θ) =
1

n

∑
n

(xn − gθ(fθ(xn)))2

where fθ and gθ are the encoder and decoder transformations with learnable parameters θ. Moreover,
for 2-dimensional data such as images, we employ convolutional filters rather than vanilla deep
neural networks. This is inspired by recent work that have significantly improved the benchmark
for various image classification tasks using convolutional neural networks (LeCun et al. (1998);
Krizhevsky et al. (2012); Girshick et al. (2014)). Using convolutional filters allows the autoencoder
to identify local patches of spatial features. Certain visual features produce different outputs through
a convolutional filter; this allows us to construct combined representations that act as discriminating
descriptors.

2.2 COMBINED REPRESENTATION

Suppose an autoencoder with n layers of neurons between the input and the encoded layer. After
the training phase of the autoencoder described above, we generate a descriptor for each input by
concatenating the intermediate outputs of each layer in the network. Hence d(x), the function for
generating the descriptor, can be defined as:

d(x) = (l1(x), l2(x), . . . , ln(x))

where lk is the transformation applied at encoder layer k:

lk(x) = σk(Wklk−1(x) + bk)

Using all intermediate layers rather than the encoding alone allows the embedded space to represent
more complex semantic representations. For convolutional autoencoders, we exclude subsampling
layers to avoid coarse representation of specific visual features. This idea is borrowed from work
on fully convolutional networks that have produced promising results in semantic segmentation
(Long et al. (2015)). Thus the intuitive idea behind the combined representation is to generate high-
dimensional representations of the data that increases separates data of different classes and hence
increases clustering accuracy.

As shown in Figure 1 in the Appendix, the Euclidean distance of the combined representations is
lower on average for data of the same class (the diagonals). This helps a distance-based classification
algorithm such as k-NN make better classifications. We also observe that certain digits that look
alike, such as 4’s and 9’s, have relatively lower distances, while those that are clearly dissimilar have
higher distances. Figure 2 shows examples of how layers in the network react to different classes of
data.

2



Workshop track - ICLR 2017

3 EXPERIMENTS

In the testing stage, we use the k-NN algorithm to evaluate the classification accuracy of our model.
We conduct experiments on three datasets, namely MNIST, CIFAR-10, and 20newsgroups (14
classes). For MNIST and CIFAR-10, we use deep convolutional autoencoders, while for 20news-
groups we use vanilla deep neural networks and vectorize the input using the TF-IDF transforma-
tion. We compare our model performance with those of recent state-of-the-art techniques and other
standard models. For the k-means algorithm, we set k as the number of classes.

3.1 RESULTS

In Table 1, we report the best performance of each algorithm. Note our method outperforms all other
models and produces state-of-the-art results. We observe significant differences for more complex
datasets with higher dimensions; this indicates a robustness to varying levels of complexity. Table 2
compares variations to our model. Given the descriptors generated from the autoencoder, we apply
t-SNE to reduce the dimension to either 2 or 3. This transformation yields faster inference, yet
results show that classifying the raw combined representations produces the best results.

Table 1: Comparison of classification accuracies

Model MNIST CIFAR-10 20newsgroups

Deep Embedded Clustering 84.7% 18.6% 11.5%

t-SNE-2 + k-NN (k = 3) 92.4% 36.6% 36.6%

k-means (k = #classes) 53.5% 20.6% 19.4%

k-NN (k = 3) 95.8% 50.5% 37.2%

neural-clustering (ours) 96.6% 61.1% 82.8%

Table 2: Comparison of variations to our model

Model MNIST

neural-clustering-tsne-2 92.4%

neural-clustering-tsne-3 95.4%

neural-clustering 96.6%

4 CONCLUSION AND DISCUSSION

This paper proposes Neural Clustering, an unsupervised method for generating embedded represen-
tations of data that enable effective distance-based classification. Our method does not depend on
heuristics such as the number of desired centroids or the target distribution of the embedded space.
Rather, optimization of an autoencoder allows each layer to learn a semantic representation of the
data. Combining these representations can generate descriptors which can help distinguish certain
categories from another.

Our results strongly support the effectiveness of this method. Not only does it produce state-of-the-
art performances, it also demonstrates robustness across different types of datasets.

We also would like to raise certain questions regarding this model. There lacks firm theoretical
grounding on why it outperforms others; there remains the question of how an autoencoder is able
to learn features that help with clustering even if it does not directly optimize clustering error. Future
endeavors would attempt to address these issues as well as observe its performance across different
tasks and datasets.
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5 APPENDIX

Figure 1: Heatmap representing the average Euclidean distances of the combined representations by
class using MNIST data.

Figure 2: Example outputs of different filters from a particular layer in the autoencoder.
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Figure 3: Projection of MNIST points to 2-D and 3-D spaces. These embeddings are generated
by transforming the combined representations using the t-SNE algorithm. As discussed earlier, the
embedding produces more than 10 clusters.
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