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Abstract

Universal information extraction (UIE) primar-001
ily employs an extractive generation approach002
with large language models (LLMs), typically003
outputting structured information based on pre-004
defined schemas such as JSON or tables. UIE005
suffers from a lack of adaptability when select-006
ing between predefined schemas and on-the-fly007
schema generation within the in-context learn-008
ing paradigm, especially when there are nu-009
merous schemas to choose from. In this paper,010
we propose a unified adaptive text-to-structure011
generation framework, called Schema as Pa-012
rameterized Tools (SPT), which reimagines013
the tool-calling capability of LLMs by treat-014
ing predefined schemas as parameterized tools015
for tool selection and parameter filling. Specifi-016
cally, our SPT method can be applied to unify017
closed, open, and on-demand IE tasks by adopt-018
ing Schema Retrieval by fetching the relevant019
schemas from a predefined pool, Schema Fill-020
ing by extracting information and filling slots021
as with tool parameters, or Schema Generation022
by synthesizing new schemas with uncovered023
cases. Experiments show that the SPT method024
can handle four distinct IE tasks adaptively, de-025
livering robust schema retrieval and selection026
performance. SPT also achieves comparable027
extraction performance to LoRA baselines and028
current leading UIE systems with significantly029
fewer trainable parameters.030

1 Introduction031

Universal information extraction (UIE) primarily032

employs a task-agnostic extractive generation ap-033

proach designed to handle various information ex-034

traction (IE) tasks in a unified and adaptable man-035

ner with large language models (LLMs). The036

UIE systems usually operate across three distinct037

paradigms: (1) Closed-schema IE for structured038

templates (Yadav and Bethard, 2018; Zhong and039

Chen, 2021; Han et al., 2020), (2) Open-schema040

IE to discover novel entities/relationships (Banko041

Figure 1: An overview of UIE.

et al., 2007; Fader et al., 2011; Stanovsky et al., 042

2018), and (3) On-demand IE where extraction 043

targets are dynamically specified through natural 044

language instructions (Jiao et al., 2023). UIE has 045

demonstrated superior schema adaptability com- 046

pared to traditional IE systems (Li et al., 2023) that 047

are tailored for specific tasks such as named entity 048

recognition (NER), relation extraction (RE), and 049

event extraction (EE). UIE can handle predefined 050

schemas (structured formats) while also adapting 051

to evolving schemas or generating new ones. 052

UIE typically achieves schema adaptability by 053

either fine-tuning large pre-trained models (LLMs) 054

with predefined schema demonstration data or 055

adopting the in-context learning paradigm. How- 056

ever, the former paradigm restricts the extraction 057

capability of large models to a predefined set of 058

schemas, while the latter is constrained by the lim- 059

ited context length, allowing only a few demon- 060

stration shots (such as through retrieval-augmented 061

generation (RAG)), which leads to suboptimal un- 062

derstanding of the extraction schemas. In addition, 063

UIE usually struggles with complex and unclear 064

IE instructions (Pang et al., 2023; Xu et al., 2024a; 065

Sainz et al., 2024), as schema-free generation leads 066

to unstable outputs and compromises consistency 067
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for downstream data governance, such as building068

a database or knowledge graph. To the best of our069

knowledge, no IE system can dynamically select070

from numerous predefined schemas and generate071

schemas on the fly while ensuring governance.072

Recently, tool calling has become a popular073

paradigm for enhancing the capabilities of LLMs,074

assisting in the completion of complex tasks by075

invoking external tools. In particular, tool calling076

consists of three complementary and compatible077

stages: Tool Retrieval, which recalls tools rele-078

vant to the current query; Tool Creation, which079

generates new tools; and Tool Execution, which080

executes and utilizes tools to complete tasks. For081

instance, ToolKenGPT (Hao et al., 2023)treats each082

tool as a token ("toolken") with a learned embed-083

ding, enabling tool calls like regular word tokens,084

and once triggered, prompts the LLM to complete085

its execution arguments. ToolKenGPT combines086

the benefits of both supervised fine-tuning and in-087

context learning while addressing the limitations088

of the restricted predefined tools and limited con-089

text length. Handling universal information extrac-090

tion dynamically can be transformed into a tool-091

calling paradigm, offering the flexibility to inte-092

grate an arbitrary number of schemas by expanding093

the schema set on the fly.094

In this paper, we propose a unified adaptive text-095

to-structure generation framework, called Schema096

as Parameterized Tools (SPT), which reimag-097

ines UIE through the LLM’s tool-calling capac-098

ity (Schick et al., 2023), where predefined schemas099

act as parameterized tools, and extraction mirrors100

the capabilities of tool selection and parameter fill-101

ing. Additionally, inspired by the token generation102

style tool calling paradigm (Hao et al., 2023), we103

embed schemas as tokens to enable efficient re-104

trieval and generation with fewer hallucinations.105

Our key insight is that the parameterized tool-106

calling mechanism enabling LLMs to dynamically107

retrieve, select, and invoke tools can be applied to108

unify closed, open, and on-demand IE tasks. When109

processing a query, like a tool retrieval, Schema110

Retrieval fetches the top-k relevant schemas from111

a predefined pool. For uncovered cases, the LLM112

triggers Schema Generation to synthesize new113

schemas, effectively creating new "tools." The114

LLM then performs Argument Infilling by ex-115

tracting information and filling slots as with tool116

parameters. Our approach demonstrates strong per-117

formance across four tasks, such as Named Entity118

Recognition (NER), Event Extraction (EE), Rela-119

tion Extraction (RE), and On-demand IE (ODIE), 120

on four well-known IE datasets. 121

The main contributions of this paper are: 122

• We propose a unified and effective UIE frame- 123

work, Schema as Parameterized Tools (SPT), 124

which mirrors schemas as callable tools to han- 125

dle all IE paradigms through a single adaptive 126

architecture. 127

• We treat schemas as trainable token embed- 128

dings and perform efficient fine-tuning to 129

learn the capabilities for schema retrieval, se- 130

lection, and filling. 131

• We perform extensive experiments on four 132

well-known IE datasets that show the SPT 133

method can handle four distinct IE tasks adap- 134

tively, delivering robust schema retrieval and 135

selection performance. 136

2 Related Work 137

LLM-based UIE: Flexibility at a Cost In the 138

pre-LLM era, information extraction systems fo- 139

cused on tasks like Named Entity Recognition 140

(NER) (Sang and Meulder, 2003), Relation Extrac- 141

tion (RE) (Mintz et al., 2009), and Event Extraction 142

(EE) (Ahn, 2006). These methods usually rely on 143

sequence-tagging architectures (McClosky et al., 144

2011; Li et al., 2013; Nguyen et al., 2016), while 145

achieving strong performance, they require labo- 146

rious schema-specific word-level annotation and 147

suffered catastrophic performance drops when the 148

schemas evolved. With the rise of large language 149

models (LLMs), IE has seen significant advances, 150

especially in tasks that require greater flexibility 151

and adaptation, by either fine-tuning LLMs with 152

predefined schema or adopting the in-context learn- 153

ing paradigm. 154

The fine-tuning approaches, like UIE (Lu et al., 155

2022), YAYI-UIE (Xiao et al., 2023), Know- 156

Coder (Li et al., 2024), and IEPile (Gui et al., 2024), 157

fine-tune LLMs on large-scale IE corpus with in- 158

structions, achieving generalization capabilities on 159

various IE scenarios. ADELIE (Qi et al., 2024) fur- 160

ther involves reinforcement learning to improve ex- 161

traction quality. Although these methods uniformly 162

model different information extraction tasks, their 163

heavy architectures suffer from computational ef- 164

ficiency and lack a flexible framework to tackle 165

extraction with unclear or no instructions. 166

The in-context learning paradigm allows for 167

a few-shot approach, where schema demonstra- 168
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tions are provided in the prompt to instruct how169

to use the schemas. In particular, the retrieval-170

augmented generation (RAG) approaches (Efeoglu171

and Paschke, 2024; Guo et al., 2023; Shiri et al.,172

2024; Gao et al., 2023) enhance the ability of LLMs173

to retrieve relevant few-shot examples from a large174

pool of query-schema-result pairs. By searching175

for semantically similar queries to the input, the176

system can leverage these retrieved examples in177

a few-shot setting to improve extraction accuracy.178

However, they inherit the limitations of their exam-179

ple pools and do not scale well to unseen schema180

types. Moreover, none dynamically select between181

predefined schemas and on-demand schema gener-182

ation — a capability our work introduces through183

tool-calling mechanisms.184

Tool Calling: A Missing Link for Adaptive IE185

The concept of tool-calling with LLMs has gained186

traction, where LLMs invoke external tools (or187

schemas) to assist with tasks. These architectures188

introduce a novel way to handle information extrac-189

tion dynamically.190

Tool Retrieval acts as the pre-stage of tool call-191

ing, utilizing dense retrieval models to recall the192

most relevant tools from the rich tool library based193

on semantic similarity to the query (Zheng et al.,194

2024; Xu et al., 2024b). This preliminary screen-195

ing reduces the difficulty of tool selection for LLM,196

analogous to our schema retrieval phase but limited197

to predefined tools.198

Tool Creation (Cai et al., 2024; Qian et al., 2024;199

Yuan et al., 2024) aims to call tools that are not200

predefined, by generating new tools for unseen201

tasks. While focusing on API generation rather202

than structured data extraction, this approach in-203

spires our schema generation process. Tool cre-204

ation mirrors the need for adaptive schema genera-205

tion in dynamic environments, providing a robust206

solution when predefined schemas are insufficient.207

Tool Execution (Schick et al., 2023; Hao et al.,208

2023; Liu et al., 2025) is a key step in tool calling,209

as it executes and utilizes tools to complete tasks.210

Specifically, parameter filling for predefined tools211

in tool execution closely aligns with the informa-212

tion extraction task based on predefined schemas.213

The accuracy of tool parameter filling determines214

the effectiveness of tool execution. Unlike tool215

calling, the information extraction task is consid-216

ered complete once the parameter filling is done,217

without requiring the full execution result of the218

tool.219

Tool calling is an emerging paradigm where 220

LLMs invoke external tools to assist in vari- 221

ous tasks. Frameworks like ToolFormer (Schick 222

et al., 2023), ToolKenGPT (Hao et al., 2023), and 223

ToolACE (Liu et al., 2025) train an LLM to call 224

external tools, demonstrate LLMs’ ability to in- 225

voke tools with parameter filling, mirroring our slot- 226

filling mechanism. ToolKenPlus (Yakovlev et al., 227

2024) further enables LLMs to dynamically select 228

tools with a reject option, the two-stage framework 229

allows handling evolving tool APIs. Our key inno- 230

vation lies in reconceptualizing schemas as tools, 231

bridging the tool-calling paradigm with IE needs. 232

We introduce schema-token alignment for efficient 233

retrieval and extraction, maintaining data gover- 234

nance compliance through adaptive schema selec- 235

tion and generation. 236

PEFT: Parameter-Efficient Fine-Tuning 237

of LLMs PEFT (Parameter-Efficient Fine- 238

Tuning) (Xu et al., 2023; Ding et al., 2023; Han 239

et al., 2024) optimizes large language models 240

(LLMs) by updating only a small subset of 241

parameters, enabling efficient adaptation to new 242

tasks with minimal computational resources, 243

which is suitable for our IE schema token 244

embedding method. PEFT (Parameter-Efficient 245

Fine-Tuning) methods primarily include LoRA 246

(Low-Rank Adaptation) (Hu et al., 2021), which 247

adjusts specific weight matrices through low-rank 248

decomposition to reduce parameter updates and 249

computational cost; Adapter Layers (Pfeiffer et al., 250

2020), which insert small trainable adaptation 251

layers between pretrained model layers to enable 252

task adaptation without major parameter mod- 253

ifications; Prefix-Tuning (Li and Liang, 2021), 254

which prepends trainable prompt embeddings 255

to input data, allowing the model to adjust its 256

behavior during inference without altering core 257

parameters; Prompt-Tuning (Lester et al., 2021), 258

which optimizes a set of trainable soft prompts 259

(embedding vectors) to guide pretrained models 260

in task execution, particularly for large language 261

models (LLMs); BitFit (Zaken et al., 2021), which 262

fine-tunes only bias terms in Transformer layers 263

for highly efficient parameter tuning. To the best of 264

our knowledge, we are the first to explore efficient 265

tuning methods for predicting schemas as tokens 266

for schema learning of massive schemas. 267
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Figure 2: Overview of our proposed Schema as Parameterized Tools (SPT) framework. Schema-token embeddings
are appended to the language model head as regular word tokens. The inference procedure consists of Schema
Retrieval, Schema Generation, and Schema Infilling, which demonstrates a dual-mode extraction with Retrieval
Mode and Generation Mode.

3 Methodology268

In this section, we present Schema as Parameter-269

ized Tools (SPT), which enable LLMs to learn270

and use massive schemas for universal informa-271

tion extraction (UIE) with flexibility and schema272

adaptability. We begin by introducing our nota-273

tions and formulating the problem of universal in-274

formation extraction (UIE) via tool use with LLMs.275

Typically, the next token probability distribution276

of the LLM is P (X) =
∑|X|

i=1 P (xi|x<i), where277

X = (x1, x2, ..., x|X|) is a sequence of word to-278

kens, each word token xi ∈ V is from the vocab-279

ulary V of the LLM, and x<i denotes the partial280

word token sequence before i-th step. Given a set of281

IE schemas (schema-tokens) S = {s1, s2, ..., s|s|},282

our goal is to enable LLMs to call a subset of these283

IE schemas for completing the universal informa-284

tion extraction tasks. Each schema-token is param-285

eterized as a token embedding vector, we denote286

a set of schema-token embeddings as a matrix, i.e.287

WS ∈ R|S|×d. In addition, we also define two288

additional word tokens, namely <Rej> and <Gen>,289

for determining whether a suitable schema exists290

in the defined set of IE schemas S and guiding291

the generation of a new schema to complete in-292

formation extraction, respectively. To perform a293

schema-based information extraction during gen-294

eration, the LLM first needs to select/generate a295

schema and then fill in the arguments.296

3.1 Framework Overview297

The core idea of Schema as Parameterized298

Tools (SPT) is explicitly formulating IE299

schemas as tokens (called schema-tokens),300

inspired by Toolken (Hao et al., 2023) and301

Toolken+ (Yakovlev et al., 2024). Fig. 2 illustrates302

the overview of our proposed SPT framework that 303

retrieves, selects, and invokes schema-tokens for 304

adaptive and universal IE. We assume we have 305

trained schema-token embeddings (to be described 306

in Section 3.4), and the overview framework 307

demonstrates how it works in inference. The 308

inference procedure can be roughly divided into 309

three steps: Schema Retrieval to fetch the top-K 310

relevant schemas from a predefined schema pool, 311

Schema Generation to synthesize new schemas 312

for uncovered cases, and Schema Infilling to 313

extract information by filling the schema slots. 314

In particular, our SPT framework adapts the 315

tool-calling paradigm for adaptive IE through three 316

key innovations: (1) Schema-token Embeddings 317

(Section 3.2): Treat predefined schemas as tokens 318

in the extended LLM vocabulary. (2) Dual-Mode 319

Execution (Section 3.3): Dynamic switching 320

between predefined schema retrieval and on-the-fly 321

schema creation via learned <Rej> and <Gen> 322

tokens. (3) Compositional Training (Section 3.4): 323

Joint optimization of schema retrieval, rejection, 324

and generation in a unified token space. 325

3.2 Schema-Token Embeddings 326

Inspired by Hao et al. (2023); Yakovlev et al.
(2024), but tailored for IE, we extend the LLM’s vo-
cabulary with schema tokens S = {s1, ...s|S|} for
predefined schemas and rejection token <Rej> for
schema selection. The embedding matrix becomes

W = [WV |WS |w<Rej>] ∈ R(|V |+|S|+1)×d

where WV ∈ R|V |×d is the original embedding
metrix, WS ∈ R|S|×d is the extended schema em-
beddings, w<Rej> ∈ Rd, and d is the embedding
dimension. Therefore, the next token probability
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distribution of LLM is

P (xi|x<i) = softmax(W · hi−1)

Recent work (Wang et al., 2024) has demonstrated
that this inference process does not alter the rea-
soning capabilities of the LLM. The LLM model
only switches to schema prediction mode when pro-
vided with a prompt containing schemas, triggering
the infilling of arguments. We optimize only new
embedding parameters via

min
WS ,w<Rej>

∑
X∈D

∑|X|

i=1
logP (xi|x<i)

where D is the dataset and X represents a sequence327

of tokens.328

3.3 Dual-Mode Execution329

To handle uncovered schemas and enable dynamic330

schema adaptation during inference, the model pre-331

dicts the next token based on the current state.332

When the <Rej> is predicted, it signals that no333

predefined schema should be selected and trig-334

gers schema generation. We further introduce a335

pseudo schema token <Gen> for new schema cre-336

ation, to handle uncovered schemas and enable337

dynamic schema adaptation. By introducing <Rej>338

and <Gen> tokens, the UIE inference process can339

act in a dual-mode execution: Retrieval Mode and340

Generation Mode.341

If a token from V ∪ S is predicted, the sequence342

continues as expected (either as part of the CoT343

or by infilling arguments during tool calling). The344

dual-mode extraction process follows:345

Retrieval Mode The Retrieval Model consists
of schema retrieval and infilling. In particular, the
LLM predicts the next token

xi =

{
argmaxxi P (xi|x<i)) if xi ∈ V ∪ S
<Rej> otherwise

Generation Mode The Generation Mode in-
cludes schema creation and infilling. If the <Rej>
token is predicted, the process stops, signaling
that no relevant predefined schema is available. If
x = <Rej>, the model switches to a generation
mode to generate a CoT-style output

Ouptut = LLM(X, <Gen>)

which generates the arguments for the newly cre-346

ated schema <Gen> and continues to infill the argu-347

ments as tool-calling process, effectively complet-348

ing the extraction.349

3.4 Compositional Training Strategy 350

To jointly optimize the schema retrieval, extraction, 351

rejection, and generation in a unified token space, 352

we introduce a compositional training strategy. In 353

particular, the training process is divided into three 354

phases: 355

Phase 1 We first optimize WS on hybrid data, 356

where 70% of the samples involve closed-schema 357

extraction and 30% require schema rejection. This 358

phase ensures that the model learns both schema 359

retrieval, extraction, and rejection mechanisms. 360

Phase 2 After freezing WS and W<Rej>, we 361

train w<Gen> as a continuous prompt vector for 362

on-the-fly schema creation and extraction. This 363

phase focuses on allowing the model to dynami- 364

cally create new schemas when necessary. 365

Phase 3 We jointly fine-tune WS , w<Rej>, and 366

w<Gen> with a reduced learning rate (by a factor 367

of 10) to allow the model to optimize these compo- 368

nents together, ensuring the effective use of prede- 369

fined and generated schemas in dynamic extraction 370

tasks. 371

This adaptive training strategy enables the 372

model to flexibly perform information extraction 373

with both predefined and dynamically generated 374

schemas, offering robust adaptability to various 375

extraction tasks. 376

4 Experiment 377

In this section, we evaluate the effectiveness of 378

our proposed SPT approach for universal informa- 379

tion extraction (UIE) in comparison to the existing 380

approaches from the literature. 381

4.1 Datasets 382

We perform extensive experiments on four distinct 383

datasets tailored to different IE tasks: CrudeOil- 384

News (Lee et al., 2022) for Event Extraction (EE), 385

SciERC (Luan et al., 2018) for Relation Extraction 386

(RE), AnatEM (Pyysalo and Ananiadou, 2014) for 387

Name Entity Recognition (NER) and ODIE (Jiao 388

et al., 2023) for on-demand IE. 389

CrudeOilNews Oil market event dataset with 8 390

schemas (e.g., "Production Cut"). Test set contains 391

around 65% samples without relevant predefined 392

schemas, and each document averages 3.1 event 393

instances, making it ideal for testing multi-schema 394

retrieval and adaptive extraction. 395
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SciERC Cross-domain scientific relation dataset396

with 15% no-schema samples in the test set. Each397

sample averages 2.2 event instances.398

AnatEM AnatEM is a biomedical corpus specif-399

ically designed for Named Entity Recognition400

(NER), focusing on anatomical entity mentions in401

medical and scientific texts.402

ODIE Instruction-based dataset specifically403

crafted for on-demand information extraction tasks,404

where extraction targets are dynamically specified405

through natural language instructions, making it406

ideal for testing adaptive schema generation and407

extraction.408

4.2 Baseline409

We compare our proposed SPT approach to the410

existing state-of-the-art methods in terms of the411

Schema Retrieval and Extraction stages, respec-412

tively.413

Schema Retrieval Methods For schema re-414

trieval, we employed several baseline models to415

evaluate the effectiveness of our proposed approach.416

For retrieval models, we calculate the similarity417

score between the query and schema descriptions418

written by OpenAI o3-mini-high.419

BM25 (Robertson and Zaragoza, 2009) is a420

sparse retrieval algorithm that computes document-421

query relevance by considering three main factors:422

term frequency (TF), inverse document frequency423

(IDF), and document length.424

BGE-M3 (Chen et al., 2024) is a dense embed-425

ding model that supports multiple functionalities,426

including multi-lingual and multi-granular retrieval.427

BGE-M3 generates dense vector representations of428

both queries and schemas.429

BGE-Reranker-Large (Chen et al., 2024) fur-430

ther enhances the schema retrieval process by ap-431

plying a reranking strategy on BGE-M3’s top-50432

results.433

LoRA (Hu et al., 2022) is a technique used to434

fine-tune a large language model (LLM) for spe-435

cific tasks. In our setup, we train a LoRA module to436

specialize in generating schema name sequences.437

We evaluate our approach on three benchmark438

datasets for information extraction: CrudeOil-439

News, SciERC, and a "Unified" dataset that merges440

CrudeOilNews, SciERC, and AnatEM. AnatEM441

has only one schema hence we do not evaluate re-442

trieval on AnatEM individually but rather on the443

Unified dataset with enhanced difficulty, which444

comprises a total of 26 schemas. For the re- 445

trieval task, traditional models (BM25, BGE-M3, 446

and BGE-Reranker) use Recall@5 as the evalu- 447

ation metric. In contrast, sequence generation- 448

based methods (LoRA and our approach) gener- 449

ate schemas directly, where k corresponds to the 450

number of schemas produced by the LLM. This 451

setup enables a comprehensive assessment of both 452

retrieval accuracy and the adaptive capability of 453

our method across varying schema complexities 454

and information extraction scenarios. 455

Extraction Methods To compare the perfor- 456

mance of our framework in close and on-demand 457

extraction tasks, we implement several baseline 458

extraction strategies. 459

Zero-shot Generation involves providing the 460

LLM with a query without any task-specific exam- 461

ples. The model is expected to extract the relevant 462

information based on its pre-existing knowledge, 463

offering a baseline for how well the LLM performs 464

with minimal guidance. 465

Few-shot RAG provides the LLM with three 466

query-schema-result examples, retrieved by BGE- 467

M3, to guide the extraction process. This approach 468

leverages the LLM’s ability to generalize from 469

few examples and is particularly useful when the 470

schema is predefined. 471

LoRA The LoRA module is fine-tuned to adapt 472

the LLM to the extraction tasks, generating outputs 473

that are tailored to the given schemas. 474

We evaluate our extraction approach on 475

three datasets—AnatEM, SciERC, and CrudeOil- 476

News—by training all methods on a Unified dataset 477

that merges these resources. Baselines w Gold 478

Schemas means that we feed the LLM ith gold 479

schemas and the Reject option and performs extrac- 480

tion in a similar way to tool calling. The perfor- 481

mance is measured using Macro F1 scores. 482

4.3 Setup 483

In our main experiment, we adopt the Qwen2.5- 484

1.5B-Instruct language model as the backbone. The 485

SPT method augments this model with 28 train- 486

able tokens (26 schema tokens plus the <Rej> and 487

<Gen> tokens). Given the model’s hidden dimen- 488

sion of 1536, the total number of trainable parame- 489

ters in SPT amounts to approximately 28×1536 ≈ 490

43K, which is significantly fewer than a typical 491

LoRA with alpha=8 approach that requires tuning 492

on the order of 1.2M parameters. Training is per- 493

formed on 64 Ascend 910B4 NPUs over 3 epochs 494
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with a learning rate of 5×10−4. This setup enables495

efficient and scalable training across our diverse496

datasets.497

5 Results498

5.1 Retrieval499

Models CrudeOilNews SciERC Unified

bm25 0.42 0.79 0.25
bge-m3 0.52 0.77 0.65
bge-reranker 0.38 0.72 0.42
LoRA 0.46 0.83 0.61
Ours 0.76 0.87 0.82

Table 1: Schema retrieval performance on CrudeOil-
News, SciERC, and the "Unified" dataset.

Our approach consistently outperforms the base-500

line methods on all datasets (as shown in Table 1).501

Notably, on CrudeOilNews and "Unified", our502

method achieves Recall@5 scores of 0.76 and 0.82,503

respectively, compared to 0.46 and 0.61 for LoRA.504

Even on SciERC, our approach obtains a score of505

0.87 versus 0.83 for LoRA. Tese results demon-506

strate that our token-based schema retrieval ap-507

proach is more effective than both traditional re-508

trieval models and standard sequence generation509

methods for schema retrieval.510

We attribute these improvements to our strat-511

egy of generating compact schema tokens rather512

than the full schema names. While LoRA gen-513

erates complete schema names—which are longer514

and carry rich semantic information—our approach515

leverages short, dedicated tokens that reduce gen-516

eration difficulty and mitigate errors. This design517

choice simplifies the retrieval process, leading to518

higher quality matches between the query and the519

target schema.520

5.2 Selection Extraction521

As shown in Table 2, both Zero-shot and RAG522

methods perform pooly on AnatEM and SciERC,523

and tend to overfit on the rejection component524

in CrudeOilNews, achieving high rejection scores525

(0.74 and 0.82, respectively) but low performance526

in trigger and argument extraction. In contrast,527

while LoRA w/ Gold Schemas achieves the best528

scores on entity extraction (0.83) and on trig-529

ger/argument extraction (0.53 and 0.52, respec-530

tively), its rejection performance is notably lower531

(0.56 on AnatEM and 0.38 on CrudeOilNews).532

Our approach, however, yields a more balanced533

performance: it obtains competitive extraction534

scores (e.g., 0.75 for entity extraction on AnatEM 535

and 0.46/0.51 for trigger/argument extraction on 536

CrudeOilNews) while substantially improving re- 537

jection (0.81 on AnatEM and 0.47 on CrudeOil- 538

News). On SciERC, our method also achieves 539

the highest relation extraction score (0.64). Our 540

method demonstrates robust and balanced perfor- 541

mance on adaptive IE scenarios. 542

5.3 Schema Creation 543

Results and Analysis for ODIE Evaluation Ta- 544

ble 3 reports our combined ODIE evaluation results, 545

which include both header evaluation (soft match- 546

ing F1) and content evaluation (ROUGE-L F1) met- 547

rics. The header evaluation is split into two cate- 548

gories—Fixed and Open—with an overall F1 score, 549

while the content evaluation is further decomposed 550

into metrics for Difficulty (Easy, Medium, Hard), 551

Category (Fixed, Open), and Source (Generate, Re- 552

trieve), along with an overall ROUGE-L score. 553

Table 3 reports our combined ODIE evaluation 554

results. e donot report a zeroshot baseline because 555

the difficulty of the task is too high for a 1.5B 556

pretraind model. For header evaluation, our method 557

achieves an overall F1 of 0.69, which is competitive 558

with the LoRA baseline (0.71) and TÜLU∗ (0.69). 559

Regarding content evaluation, our method yields 560

an overall ROUGE-L score of 0.39, with break- 561

downs of 0.43 (Easy), 0.36 (Medium), and 0.34 562

(Hard). These scores are slightly lower than those 563

of LoRA (overall 0.42) across the same metrics. 564

Moreover, when examining the category and source 565

components, our method achieves balanced per- 566

formance (Category: 0.39 Fixed and 0.33 Open; 567

Source: 0.41 Generate and 0.38 Retrieve) com- 568

pared to LoRA’s corresponding scores. 569

It is noteworthy that our method has a ex- 570

treamly low parameter size, the only trainable pa- 571

rameter <Gen> token embedding is trained on a 572

1.5B model to facilitate on-the-fly schema genera- 573

tion—whereas the all the other baseline, especially 574

from the ODIE paper which leverages LoRA on a 575

larger 7B model. Despite the smaller model size, 576

our approach attains competitive header evaluation 577

and demonstrates balanced performance across all 578

content evaluation metrics. This suggests that em- 579

bedding a dedicated <Gen> token can effectively 580

reduce the difficulty of schema generation, yielding 581

robust performance even with fewer parameters. 582

5.4 Ablation Studies 583
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Models AnatEM SciERC CrudeOilNews
Entity Reject Relation Trigger Arguments Reject

Zero-shot w/ Gold Schemas 0.44 0.58 0.23 0.16 0.15 0.74
RAG w/ Gold Schemas 0.71 0.60 0.35 0.33 0.27 0.82
LoRA w/ Gold Schemas 0.83 0.56 0.62 0.53 0.52 0.38
Ours 0.75 0.71 0.64 0.40 0.32 0.47

Table 2: Extraction performance on different datasets

Header (F1) Content (ROUGE-L)
Category Overall Difficulty Category Source Overall

Fixed Open Easy Medium Hard Fixed Open Generate Retrieve

ALPACA∗ 0.65 0.45 0.59 0.26 0.20 0.22 0.25 0.16 0.30 0.21 0.23
TÜLU∗ 0.77 0.49 0.69 0.43 0.39 0.38 0.42 0.34 0.45 0.39 0.40
ODIE∗ 0.83 0.51 0.73 0.48 0.45 0.43 0.47 0.41 0.49 0.45 0.45
GPT-4∗ 0.82 0.57 0.74 0.60 0.55 0.61 0.61 0.51 0.65 0.57 0.59

RAG 0.32 0.24 0.28 0.15 0.10 0.12 0.14 0.13 0.16 0.11 0.14
LoRA 0.76 0.53 0.71 0.47 0.38 0.39 0.43 0.37 0.45 0.41 0.42
Ours 0.74 0.52 0.69 0.43 0.36 0.34 0.39 0.33 0.41 0.38 0.39

Table 3: Results on ODIE: Soft matching scores (F1) for header evaluation and ROUGE-L F1 scores for content
evaluation. Results with ∗ are from the ODIE paper.

Models Retrieval Trigger Arguments Reject

Qwen1.5B 0.76 0.39 0.34 0.42
Qwen7B 0.84 0.49 0.45 0.47
Llama3.2 0.79 0.46 0.41 0.44
Phi3.5 0.81 0.48 0.45 0.48

Table 4: LLMs performance on CrudeOilNews dataset.

Different LLMs Table 4 shows the performance584

of various LLMs on the CrudeOilNews dataset.585

We compare two variants of the Qwen2.5 series586

(1.5B and 7B), Llama3.2-3B, and Phi3.5-mini, all587

with Instruct version. As expected, larger mod-588

els yield improved performance: Qwen7B outper-589

forms Qwen1.5B in all metrics, demonstrating that590

stronger LLM capability benefits our extraction591

task. Notably, Phi3.5-mini, which employs untied592

input/output embeddings, achieves competitive re-593

sults compared to tied-embedding model with big-594

ger size i.e. Qwen7B, suggesting that disentan-595

gling the input and output embeddings can ease596

the optimization challenge when tuning only token597

embeddings—which is crucial for our approach.598

6 Conclusion599

In this paper, we introduced Schema as Param-600

eterized Tools (SPT), which mirrors schemas as601

callable tools to handle universal IE paradigms602

through a single adaptive architecture. By reimag-603

ining predefined schemas as parameterized tools,604

SPT enables flexible schema retrieval, filling, and605

on-the-fly generation, thereby bridging the gap be- 606

tween closed, open, and on-demand IE tasks. Our 607

experiments across four distinct IE tasks demon- 608

strate that SPT delivers robust schema retrieval and 609

selection performance while achieving extraction 610

accuracy comparable to LoRA baselines and cur- 611

rent leading UIE systems with significantly fewer 612

trainable parameters. The results highlight the po- 613

tential of SPT as an efficient and adaptable solution 614

for UIE, particularly in resource-constrained set- 615

tings. 616

7 Limitations 617

While our proposed framework shows promising 618

results across various IE tasks, it has several limita- 619

tions that warrant further investigation. First, due to 620

computational resource constraints, our main exper- 621

iments were primarily conducted on 1.5B models. 622

Although we include preliminary evaluations on 623

larger models (e.g., Qwen7B), a more comprehen- 624

sive analysis on larger-scale LLMs is needed to as- 625

sess the scalability and potential performance gains 626

of our approach. Second, our evaluation has been 627

restricted to specific datasets such as CrudeOil- 628

News, SciERC, and AnatEM. Additional experi- 629

ments on more diverse datasets and in different 630

domains are necessary to validate the generaliz- 631

ability of our method. Finally, while our results 632

indicate that models with untied embeddings (e.g., 633

Phi3.5-mini) may offer advantages in optimizing 634

our objective, further exploration is required to un- 635
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derstand how different embedding configurations636

affect performance across various LLM architec-637

tures.638
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