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ABSTRACT

Recent advances in machine learning have brought the field closer to computa-
tional creativity research. From a creativity research point of view, this offers the
potential to study creativity in relationship with knowledge acquisition. From a
machine learning perspective, however, several aspects of creativity need to be
better defined to allow the machine learning community to develop and test hy-
potheses in a systematic way. We propose an actionable definition of creativity as
the generation of out-of-distribution novelty. We assess several metrics designed
for evaluating the quality of generative models on this new task. We also propose
a new experimental setup. Inspired by the usual held-out validation, we hold out
entire classes for evaluating the generative potential of models. The goal of the
novelty generator is then to use training classes to build a model that can generate
objects from future (hold-out) classes, unknown at training time - and thus, are
novel with respect to the knowledge the model incorporates. Through extensive
experiments on various types of generative models, we are able to find architec-
tures and hyperparameter combinations which lead to out-of-distribution novelty.

1 INTRODUCTION

Recent advances in machine learning have renewed interest in artificial creativity. Studies such as
deep dream (Mordvintsev et al., 2015) and style transfer (Gatys et al., 2015) have aroused both
general public interest and have given strong impetus to use deep learning models in computational
creativity research (ICC, 2016). Although creativity has been a topic of interest on and off through-
out the years in machine learning (Schmidhuber, 2009), it has been slowly becoming a legitimate
sub-domain with the appearance of dedicated research groups such as Google’s Magenta and re-
search work on the topic (Nguyen et al., 2015; Lake et al., 2015).

Machine learning methods provide an important advantage for studying computational creativ-
ity: they enable the study of creativity in relation with knowledge (i.e., knowledge-driven creativ-
ity Kazakçı et al. (2016)). Within the scope of machine learning, generative modeling can provide a
way to study and answer questions about novelty generation. According to (Hatchuel & Weil, 2009;
Kazakçı, 2014), creativity is about generating previously unknown but meaningful (or valuable) new
types of objects using previously acquired knowledge. Under this perspective, the goal of novelty
generation is to sample objects from new types. This goal, which we shall call out-of-distribution
generation, is beyond what can be formalized within the framework of traditional learning theory.

Arguably, the most important problem is the evaluation of what constitutes a good model for gen-
erating out-of-distribution. Traditional metrics based on likelihood are of no use since novelty in
the out-of-distribution is unlikely by definition. Indeed, research in generative modeling usually
aims at eliminating this possibility as this is seen as a source of instability (Goodfellow et al., 2014;
Salimans et al., 2016) leading to spurious samples (Bengio et al., 2013).

This paper presents a new engineering principle that enables such evaluation, and consequently,
rigorous experimental research on the matter: we evaluate the generative potential of models by
holding out entire classes, simulating thus unknown but meaningful novelty. The goal of the novelty
generator is then to use training classes to build a model that can generate objects from future (hold-
out) classes, unknown at training time.
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We present three main contributions: First, we design an experimental framework based on hold-out
classes to develop and to analyze out-of-distribution generators. Second, we review and analyze the
most common evaluation techniques from the point of view of measuring out-of-distribution nov-
elty. We argue that likelihood-based techniques inherently limit exploration and novelty generation.
We carefully select a couple of measures and demonstrate their applicability for out-of-distribution
novelty detection in experiments. Third, we run a large-scale experimentation to study the ability
of novelty generation of a wide set of different autoencoders and generative adversarial networks
(GANs).

2 EVALUATION OF GENERATIVE MODELS

In our setup, we simulate existing knowledge and novelty by partitioning existing data sets holding
out entire classes. The goal of the novelty generator is then to use training classes to build a model
that can generate objects from future (hold-out) classes, unknown at training. The training classes are
digits classes from MNIST and the test classes are letters classes from a dataset we constructed from
google fonts (Google fonts). We pre-trained a digit discriminator (on MNIST), a letter discriminator
(on Google fonts) and a discriminator on a mixture of digits and letters. We used the discriminators
to evaluate novelty generators using different metrics.

We used Parzen density estimators (Breuleux et al., 2009) and objectness (Salimans et al., 2016). We
also propose out-of-class count and out-of-class max metrics which use a classifier trained on union
of digits and letters where the count metric counts the frequency of confidently classified letters in
the generated set and the max metric is the mean of the probability of the most likely letter. More
details are given in the appendix.

3 EXPERIMENTS

3.1 HYPERPARAMETER SEARCH

We ran a large scale hyperparameter optimization search and evaluated the proposed metrics. All the
models were trained on MNIST training data. We obtained nearly 1000 models. We generated 1000
samples from each trained model. We then evaluated all the metrics proposed in section 2 on each
trained model by using the 1000 generated samples and the pre-trained discriminators (see section
2). Figure 1 shows samples obtained one of our best autoencoders (a sparse autoencoder trained as
in (Makhzani & Frey, 2013)) according to out-of-class count and out-of-class max. More details
about the experimental setup is given in the appendix.

Figure 1: A random selection of symbols generated by one of our best autoencoders, the same as
the one that generated the letters in Figure 2(b).

3.2 ANALYSIS

First, we found that tuning (selecting) generative models for in-distribution generation will make
them “memorize”. Second, we did succeed to find architectures and hyperparameter combinations
which lead to out-of-class novelty. Most of the generated objects, of course, were neither digits nor
letters (Figure 1), which is why we needed the “supervising” discriminators to find letter-like objects
among them. The point is not that all new symbols are letters, that would arguably be an impossible
task, but to demonstrate that by opening up the range of generated objects, we do not generate noise,
rather objects that can be forming new categories.
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The quantitative goal of this study was to assess the quality of the defined metrics in evaluating out-
of-distribution generators. We proceeded in the following way. We selected the top ten autoencoders
and GANs according to the five metrics of out-of-class (letters) count, out-of-class max, out-of-
class objectness, out-of-class Parzen, and in-class Parzen. We then annotated these models into one
of the three categories of “letter” (out), “digit” (in), and “bad” (noise or not-a-symbol). The last
three columns of Table 1 show that the out-of-class count and out-of-class max scores work well
in selecting good out-of-class generators, especially with respect to in-class generators. They are
relatively bad in selecting good generators overall. Symmetrically, out-of-class objectness and the
Parzen measures select, with high accuracy, good quality models, but they mix out-of-class and in-
class generators (digits and letters). Parzen scores are especially bad at picking good out-of-class
generators.

inter-score correlations human counts
oc om oo op ic im io ip out in bad

out count 1 -0.03 -0.13 0.04 -0.12 0.02 -0.07 -0.11 12 0 l 8
out max -0.03 1 -0.07 0.01 -0.16 -0.10 0.03 -0.09 15 0 5
out objectness -0.13 -0.07 1 0.21 -0.06 0.08 0.02 -0.08 9 10 1
out Parzen 0.04 0.01 0.21 1 -0.17 0.01 -0.19 -0.20 4 13 3
in count -0.12 -0.16 -0.06 -0.17 1 0.30 0.1 0.14 - - -
in max 0.02 -0.10 0.08 0.01 0.30 1 0.03 0.06 - - -
in objectness -0.07 0.03 0.02 -0.19 0.1 0.03 1 0.00 - - -
in Parzen -0.11 -0.09 -0.08 -0.20 0.14 0.06 0.00 1 0 17 3

Table 1: Inter-score correlations among top 10% models per score and human annotation counts
among top twenty models per score. out=letters; in=digits.

We also computed the inter-score correlations in the following way. We first selected the top 10%
models for each score because we were after the correlation of the best-performing models . Then
we computed the Spearman rank correlation of the scores (so we did not have to deal with different
scales and distributions). The first eight columns of Table 1 show that i) in-class and out-of-class
measures are anti-correlated, ii) out-of-class count and max are uncorrelated, and are somewhat
anti-correlated with out-of-class objectness.

These results suggest that the best strategy is to use out-of-class objectness for selecting good quality
models and out-of-class count and max to select models which generate letters. Figure 2 illustrates
the results by pangrams (sentences containing all letters) written using the generated symbols. The
models (a)-(d) were selected automatically: these were the four models that appeared in the top ten
both according to out-of-class objectness and out-of-class counts. Letters of the last sentence (e)
were hand-picked by us from letters generated by several top models.

(a)
(b)
(c)
(d)
(e)

Figure 2: Pangrams created (a-d) using top models selected automatically, and (e) using letters
selected from several models by a human. We note that (b) corresponds to letters selected from the
autoencoder in figure 1.

4 SUMMARY AND PERSPECTIVES

The main focus of this paper was setting up the experimental pipeline and to analyze various quality
metrics, designed to measure out-of-distribution novelty of samples and generative models. The
immediate next goal is to analyze the models in a systematic way, to understand what makes them
“memorizing” classes and what makes them opening up to generate valuable out-of-distribution
samples.
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A DETAILS ON THE METRICS

Parzen density estimator Parzen density estimators are regularly used for estimating the log-
likelihood of a model (Breuleux et al., 2009) when the log-likelihood is not tractable. A kernel
density estimator is fit to generated points, and the model is scored by log-likelihood of a hold-out
test set under the kernel density. The metrics can be easily fooled (Theis et al., 2015), nevertheless,
we adopted it in this paper for measuring both the in-distribution and out-of-distributions quality of
our generators.

Objectness In Salimans et al. (2016), they proposed an entropy-based score to measure the “ob-
jectness” of the generated set of objects. This score uses a pre-trained classifier to compute, for
each generated object, the confidence of the classifier on each category, then the score is high if the
classifier has a highly confident prediction on a category (hence the name objectness), also, the score
encourages sets of generated objects which have a diverse set of categories.

Formally, objectness is defined as

1

N

n∑
i=1

K∑
`=1

pi,` log
pi,`
p`
,

where K is the number of classes,
pi,` = P(`|xi)

is the posterior probability of category ` given the generated object xi, under the discriminator P
trained on a set with known labels, and

p` =
1

n

n∑
i=1

pi,`,

are the class marginals.

Out-of-class count and out-of-class max Naturally, letter discriminators see letters everywhere.
Since letters are all they know, they classify everything into one of the letter classes, quite confidently
(this “blind spot” phenomenon is exploited by Nguyen et al. (2015) for generating “synthetic” nov-
elty), the letter objectness of an in-distribution digit generator can sometimes be high. For example,
a lot of 6s were classified as bs. To avoid this “bias”, we also trained a discriminator on the union
of digits and letters, allowing it to choose digits when it felt that the generated object looked more
like a digit. We designed two metrics using this discriminator: out-of-class count measures the fre-
quency of confidently classified letters in a generated set, and out-of-class max is the mean (over the
set) of the probability of the most likely letter. None of these metrics penalize “fixated” generators,
outputting the same few letters all the time, so we combine both metrics with a diversity term based
on the entropy of the letter posterior (conditioned on being a letter).

Formally, let pi,1, . . . , pi,Kin be the in-class posteriors and pi,Kin+1, . . . , pi,Kin+Kout be the out-of-
class posteriors, where Kin = 10 is the number of in-class classes (digits), and Kout = 26 is the
number of out-of-class classes (letters). Let

`∗i = argmax
`

pi,`

and
`∗outi = argmax

Kin<`≤Kin+Kout

pi,`

be the most likely category overall and most likely out-of-class category, respectively. Let

p̃` =

∑n
i=1 I {` = `∗outi}∑n

i=1 I {`∗outi > Kin}
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be the normalized empirical frequency of the out-of-class category `. We measure the diversity of
the generated sample by the normalized entropy of the empirical frequencies

diversity = − 1

logKout

Kin+Kout∑
`=Kin

p̃` log p̃`,

and define

out-of-class count = (1− λ)× 1

n

n∑
i=1

I
{
`∗i > Kin ∧ pi,`∗i > θ

}
+ λ× diversity,

and

out-of-class max = (1− λ)× 1

n

n∑
i=1

pi,`∗outi
+ λ× diversity.

In our experiments we set the confidence level θ = 0.95 and the mixture coefficient λ = 0.5.

B DETAILED EXPERIMENTAL SETUP

We used two families of deep learning based generative models, autoencoders and GANs. The
architectures and the optional features are described in the next sections. All hyperparameters were
selected randomly using reasonable priors. All the ∼1000 autoencoders were trained on MNIST
training data.

B.1 AUTOENCODER ARCHITECTURES AND GENERATION PROCEDURE

We used three regularization strategies for autoencoders: sparse autoencoders (Makhzani & Frey,
2013; 2015), denoising autoencoders (Bengio et al., 2013) and contractive autoencoders (Rifai et al.,
2011).

Sparse autoencoders can either be fully connected or convolutional. For fully connected sparse
autoencoders, we use the k-sparse formulation from Makhzani & Frey (2013), a simple way of
obtaining a sparse representation by sorting hidden units and keeping only the top k%, zeroing out
the others, and then backpropagating only through non-zero hidden units.

For convolutional sparse architectures, we use the “winner take all” (WTA) formulation from
Makhzani & Frey (2015) which obtains spatial sparsity in convolutional feature maps by keeping
only the maximum activation of each feature map, zeroing out the others. We optionally combine
it with channel sparsity which, for each position in the feature maps, keeps only the maximum
activation across the channels and zero out the others.

For contractive autoencoders, we use the fully connected version with a single hidden layer from
Rifai et al. (2011).

We also explore mixtures between the different autoencoder variants in the hyperparameter search.
For each model we choose to enable or disable independently the denoising training procedure, the
contractive criterion (parametrized by the contractive coefficient, see (Rifai et al., 2011)) and the
sparsity rate k (only for fully connected architectures). Table 2 shows the hyperparameters and their
priors.

The generation procedure we use for autoencoders is based on Bengio et al. (2013), who proposed
a probabilistic interpretation of denoising autoencoders and a way to sample from them using a
Markov chain. To have a convergent procedure and to obtain fixed points, we chose to use a de-
terministic generation procedure instead of a Markov chain (Bahdanau & Jaeger, 2014). As in
Bahdanau & Jaeger (2014), we found that the procedure converged quickly.

In initial experiments we found that 100 iterations were sufficient for the majority of models to have
convergence so we chose to fix the maximum number of iterations to 100. We also chose to extend
the procedure of Bahdanau & Jaeger (2014) by binarizing (using a threshold) the images after each
reconstruction step, as we found that it improved the speed of the convergence and could lead to
final samples with an exact zero reconstruction error.
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For stochastic gradient optimization of the autoencoder models, we used adadelta (Zeiler, 2012)
with a learning rate of 0.1 and a batch size of 128. We used rectified linear units as an activation
function for hidden layers in all models. We use the sigmoid activation function for output layers.

Table 2: Autoencoder hyperparameter priors.
Name Prior Type
nb layers 1, 2, 3, 4, 5 choice
nb fully connected hidden units 100,200,300,...1000 choice
nb conv layers 1, 2, 3, 4, 5 choice
nb conv filters 8, 16, 32, 64, 128, 256, 512 choice
conv layers filter size 3 or 5 choice
noise corruption [0, 0.5] uniform
k sparsity rate [0, 1] uniform
contraction coefficient [0, 100] uniform

B.2 GENERATIVE ADVERSARIAL NETWORKS (GANS)

For GANs, we built upon Radford et al. (2015) and used their architecture as a basis for hyperparam-
eter search. We modified the code proposed here to sample new combinations of hyperparameters.
Table 3 shows the hyperparameters and their priors.

Name Prior Type
nb discr. updates 1, 2, 3 choice
l2 coeficient [10−6, 10−1] logspace
gen. input dim. 10, 20, 50, 70, 100, 150, 200, 300 choice
nb fully connected gen. units 8, 16, 32, 64, 128, 256, 1024, 2048 choice
nb fully connected discr. units 8, 16, 32, 64, 128, 256, 1024, 2048 choice
nb filters gen. 8, 16, 32, 64, 128, 256, 512 choice
nb filters discr. 8, 16, 32, 64, 128, 256, 512 choice
nb iterations 50, 100, 150, 200, 250, 300 choice
learning rate [10−6, 10−1] on logspace, or 0.0002 logspace
weight initialization Normal(0, std) where std is from [10−3, 10−1] logspace

Table 3: GAN hyperparameter priors.
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