
Workshop track - ICLR 2018

RESILIENT BACKPROPAGATION (RPROP) FOR BATCH-
LEARNING IN TENSORFLOW

Ciprian Florescu & Christian Igel
Department of Computer Science
University of Copenhagen
2100 Copenhagen Ø, Denmark
ciprianliis@gmail.com, igel@diku.dk

ABSTRACT

The resilient backpropagation (Rprop) algorithms are fast and accurate batch
learning methods for neural networks. We describe their implementation in the
popular machine learning framework TensorFlow. We present the first empir-
ical evaluation of Rprop for training recurrent neural networks with gated re-
current units. In our experiments, Rprop with default hyperparameters outper-
formed vanilla steepest descent as well as the optimization algorithms RMSprop
and Adam even if their hyperparameters were tuned.

1 INTRODUCTION

Algorithm 1: iRprop+ algorithm

initialize x(0) ∈ Rn;
∀i ∈ {1, . . . , n} : ∆

(0)
i = ∆0 > 0, g(0)i = 0,

η+ > 1, η− ∈ [0, 1]
t← 1
while stopping criterion not met do

g
(t)
i ← ∂f(x(t))/∂x

(t)
i foreach xi do

if g(t−1)
i · g(t)i > 0 then
∆

(t)
i ← min

(
∆

(t−1)
i · η+,∆max

)
x
(t+1)
i ← x

(t)
i − sign

(
g
(t)
i

)
·∆(t)

i

else if g(t−1)
i · g(t)i < 0 then

∆
(t)
i ←

max
(

∆
(t−1)
i · η−,∆min

)
if f(x(t)) > f(x(t−1)) then
x
(t+1)
i ← x

(t−1)
i

g
(t)
i ← 0

else
x
(t+1)
i ← x

(t)
i − sign

(
g
(t)
i

)
·∆(t)

i

t← t+ 1

You can safely set the hyperparameters to their de-
fault values, η− = 0.5, η+ = 1.2, ∆min = 0,
∆max = large = 50, ∆0 = 0.0125, as done in all
all experiments in this study.

Wouldn’t it be great if neural network training
would not require adjusting the hyperparame-
ters of the learning algorithm? For batch learn-
ing, this problem is almost fully eliminated
by the resilient backpropagation (Rprop) algo-
rithms, which are iterative gradient-based opti-
mization methods with adaptive individual step
sizes (Riedmiller & Braun, 1993; Riedmiller,
1994; Igel & Hüsken, 2000; Igel & Hüsken,
2003). They are very fast and accurate and their
memory requirements scale only linearly with
the number of parameters to be optimized. In
this paper, we will describe the implementation
of Rprop in TensorFlow (Abadi et al., 2015),
the most popular software framework for deep
learning. The implementation is not straight-
forward, because some Rprop variants, includ-
ing our method of choice, require not only in-
formation about the current and past gradient,
but also about the error on the current and past
training batch. Thus, an extension of the stan-
dard optimizer interface in TensorFlow is re-
quired.

The catch is that the Rprop algorithms excel for
batch learning, while many current deep learn-
ing applications rely on mini-batch learning. If
your data set is large, mini-batch learning of-
fers a much more healthy balance between the
time needed for computing an update step and
its accuracy. Furthermore, it allows to tailor the
learning to the memory constraints of the sys-
tem, for example, of GPUs. While an Rprop
variant for mini-batch learning has already been proposed by Braun (1997) and good results for

1



Workshop track - ICLR 2018

mini-batch learning have been reported elsewhere (e.g., Mosca & Magoulas, 2015; Schuster, 1999),
in our experience Rprop – even with slight adaptations – does not perform particularly well in
mini-batch scenarios. Still, there are many use cases for batch learning in TensorFlow. Often the
number of data points is indeed small or a subset of the available training data is considered for
prototyping. We have often been facing this situation when working with recurrent neural networks
(RNNs). Furthermore, RNN training is known to be more brittle than training feed-forward archi-
tectures. Therefore, we evaluated our Rprop TensorFlow implementation on RNNs for classification
and regression. We compared Rprop with default parameters with steepest descent as well as Adam
(Kinga & Ba, 2015) and RMSProp (Tieleman & Hinton, 2012), learning methods typically used in
TensorFlow.

2 RESILIENT BACKPROPAGATION

The Rprop algorithms consider only the signs of the partial derivatives of the function f to be
optimized and not their absolute values. In each iteration t, every component x(t)i (e.g., weight)
is increased or decreased if the sign of the partial derivative g(t)i = ∂f(x(t))/∂x

(t)
i is positive or

negative, respectively. The amount of the update is equal to the individual step size ∆
(t)
i , that is,

we have x(t+1)
i = x

(t)
i − sign(g

(t)
i ) · ∆(t)

i . Before this update, the step size is adapted based on
changes of sign of the partial derivative in consecutive iterations. If the partial derivative changes
its sign, indicating that a local minimum has been overstepped, then the step size is multiplicatively
decreased; otherwise, it is increased. More formally, if g(t−1)

i ·g(t)i is positive then ∆
(t)
i = η+∆

(t−1)
i ,

if the expression is negative then ∆
(t)
i = η−∆

(t−1)
i , where η+ > 1 and η− ∈ [0, 1]. This procedure

is robust w.r.t. the choice of η+ and η−, which can be fixed to their default values η+ = 1.2 and
η− = 0.5, and therefore the Rprop algorithms require no parameter tuning (e.g., of a learning rate).
For RNNs, ∆0 is set to 0.0125 (Igel & Hüsken, 2003).

Some Rprop variants implement weight-backtracking. They partially retract “unfavorable” previous
steps based on heuristics. In iRprop+ (Igel & Hüsken, 2003), which is described in pseudo-code in
Algorithm 1, a component x(t)i is reset to its previous value x(t−1)

i iff the signs of g(t)i and g(t−1)
i

differ and the value of the objective function changed to the worse.1

For a comparison of iRprop+ with other Rprop variants, a conjugate gradient method, and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, the reader is referred to the article by Igel &
Hüsken (2003), which demonstrates the superior performance of iRprop+ in the domain of neural
network training and provides a more detailed description of the algorithm.

3 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Implementation. We implemented the four Rprop variants (Rprop+, Rprop−, iRprop+, iRprop−)
discussed by Igel & Hüsken (2003) in TensorFlow using C++ and Python.2 In the following, we focus
on the simple and elegant Rprop− (Riedmiller, 1994) and iRprop+. The latter implements partial
weight-backtracking and is in our evaluation the most robust and fastest variant.

Test problems. We consider training RNNs with gated recurrent units (GRUs, Cho et al., 2014).
The first benchmark was the Human Activity Recognition using Smartphones dataset (Anguita et al.,
2013). The task is to classify activities based on times signals from motion sensors. The data set
contains 10299 instances with a sequence length of 128 and 561 attributes, partitioned into 70% for
training and 30% for testing. We used a 2-layer RNN with 48 GRUs per layer. The cross-entropy
loss was used for training.

1After decreasing a step-size parameter, it is ensured that in the next iteration the corresponding step-size is
not changed and that backtracking is not applied to the same component two times in a row (this is achieved by
setting the variable keeping track of the partial derivative of the ith component to zero if the previous update of
that variable has been undone, see Algorithm 1).

2We will contribute our implementation to the TensorFlow open source repository in the near future.

2



Workshop track - ICLR 2018

The second benchmark was predicting the dynamics of the x variable of the Lorenz (1963) attractor
five time steps ahead. The RNN had 1-layer with 42 GRUs. We used 500 samples for training and
500 for testing. The squared-error loss was used for training.

Experimental setup. We compared with steepest descent, Adam, and RMSPprop. We only con-
sidered Rprop for batch learning and with default parameters. In contrast, we optimized the hyper-
parameters of the other methods using grid-search averaging over 5 trials for each parameter config-
uration. Learning rates were chosen on a logarithmic scale between [10−6, 1]. For Adam, the best
two values for α were chosen. For these, all combinations of β1 ∈

{
0.5, 0.8, 0.85, 0.9, 0.99, 0.999

}
,

β2 ∈
{

0.9, 0.99, 0.999, 0.9999
}

and ε ∈
{

10−8, 10−6, 10−3, 10−1, 1
}

were tested.

As additional baselines, we applied Adam and RMSProp using mini-batches of size 128 for the
classification problem, and mini-batches of size 64 for the regression task. For both methods we
performed hyperparameter optimization.

Results. In our movement classification experiments, batch learning was about 15 times faster
than mini-batch learning (NVIDIA Tesla K80, 4 vCPUs, 7.5 GB memory, TensorFlow 1.5.0), due
to a bottleneck when computing the aggregated gradients for a multi-layer RNN leading to a worse
GPU utilization.

Steepest descent and RMSProp performed worse than Adam for both batch and mini-batch learn-
ing. Therefore, they are not discussed any further in this abstract. The best performing parameter
configurations for Adam in the movement classification task were (α = 0.01, β1 = 0.9, β2 =
0.9, ε = 10−8) and (α = 0.001, β1 = 0.85, β2 = 0.99, ε = 10−6) for batch and mini-
batch learning, respectively. For Lorenz time series modeling the best parameter configuration for
batch learning was (α = 0.1, β1 = 0.9, β2 = 0.9999, ε = 10−3) and for mini-batch learning
(α = 0.01, β1 = 0.8, β2 = 0.9999, ε = 10−8).

Figure 1 shows that on both tasks iRprop+with default parameters outperformed Adam and the
other methods even if their hyperparameters were tuned. Furthermore, iRprop+performed better
than Rprop−. On the larger movement data set, using mini-batches accelerated Adam with tuned
parameters. The higher frequency of updated steps led to faster learning in the beginning, but after
50 epochs iRprop+ gave better results. For both benchmark problems, there were no significant
differences on the test data after 300 epochs.

0 50 100 150 200 250 300
Epochs

10
5

10
4

10
3

10
2

10
1

10
0

Lo
ss

Movement Classification

iRprop+
Rprop-
Adam batch fully tuned
Adam mini-batch fully tuned

0 50 100 150 200 250 300
Epochs

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

Lo
ss

Lorenz Time Series Modeling
iRprop+ batch default
Rprop- batch default
Adam batch fully tuned
Adam mini-batch fully tuned

Figure 1: Median of training errors with lower and upper quartiles. Rprop used default parameters,
“fully tuned” refers to optimization of all hyperparameters of the learning algorithm.

3



Workshop track - ICLR 2018

4 CONCLUSIONS

For batch learning in TensorFlow, iRprop+ has become our method of choice and the times of
fiddling around with learning rates etc. are over. However, for mini-batch learning (i.e., for large
data sets) we still resort to other algorithms.

ACKNOWLEDGEMENTS

CI acknowledges support from the Innovation Fund Denmark through the Danish Center for Big
Data Analytics Driven Innovation (DABAI).

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz. A public
domain dataset for human activity recognition using smartphones. In 21th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp.
437–442. i6doc.com, 2013.

Heinrich Braun. Neuronale Netze: Optimierung durch Lernen und Evolution. Springer-Verlag,
1997.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational
Linguistics, 2014.

Christian Igel and Michael Hüsken. Improving the Rprop learning algorithm. In Proceedings of the
Second International ICSC Symposium on Neural Computation (NC 2000), pp. 115–121. ICSC
Academic Press, 2000.

Christian Igel and Michael Hüsken. Empirical evaluation of the improved Rprop learning algo-
rithms. Neurocomputing, 50:105 – 123, 2003.

Diederik P. Kinga and Jimmy Lei Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):
130–141, 1963.

Alan Mosca and George D. Magoulas. Adapting resilient propagation for deep learning. CoRR,
abs/1509.04612, 2015. URL http://arxiv.org/abs/1509.04612.

Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons – From backpropaga-
tion to adaptive learning algorithms. Computer Standards and Interfaces, 16(5):265–278, 1994.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learn-
ing: The RPROP algorithm. In IEEE International Conference on Neural Networks, pp. 586–591.
IEEE, 1993.

Michel Schuster. On supervised learning from sequential data with applications for speech regogni-
tion. PhD thesis, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, 1999.

4

http://tensorflow.org/
http://arxiv.org/abs/1509.04612


Workshop track - ICLR 2018

Tijmen Tieleman and Geoffrey Hinton. Neural networks for machine learning. Lecture notes.
Lecture 6.5-rmsprop, COURSERA, 2012.

5


	Introduction
	Resilient Backpropagation
	Implementation and experimental evaluation
	Conclusions

