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ABSTRACT

The fundamental task of general density estimation has been of keen interest to
machine learning. Recent advances in density estimation have either: a) proposed a
flexible model to estimate the conditional factors of the chain rule, p(xi ∣xi−1, . . .);
or b) used flexible, non-linear transformations of variables of a simple base dis-
tribution. Instead, this work jointly leverages transformations of variables and
autoregressive conditional models, and proposes novel methods for both. We pro-
vide a deeper understanding of our methods, showing a considerable improvement
through a comprehensive study over both real world and synthetic data. Moreover,
we illustrate the use of our models in outlier detection and image modeling tasks.

1 INTRODUCTION

Density estimation is at the core of a multitude of machine learning applications. However, this
fundamental task, which encapsulates the understanding of data, is difficult in the general setting
due to issues like the curse of dimensionality. Furthermore, general data, unlike spatial/temporal
data, does not contain a priori known correlations among covariates that may be exploited and
engineered with. For example, image data has known correlations among neighboring pixels that
may be hard-coded into a model, whereas one must find such correlations in a data-driven fashion
with general data.

In order to model high dimensional data, a large number of methods have considered auto-regressive
models, which model the conditional factors of the chain rule (Uria et al., 2013; 2016; Germain
et al., 2015; Gregor et al., 2014). I.e these models estimate the conditionals: p(xi∣xi−1, . . . , x1),
for i ∈ {1, . . . , d}. While some methods directly model the conditionals p(xi∣xi−1, . . .) using
sophisticated semiparametric density estimates, other methods apply sophisticated transformations of
variables x↦ z and take the conditionals over z to be a restricted, often independent base distribution
p(zi∣zi−1, . . .) ≈ f(zi) (Dinh et al., 2014; 2016; Goodfellow, 2016). In this paper we take a step back
from these previous approaches that have considered either: a) a flexible autoregressive scheme with
simple or no transformations of variables (Figure 1a); or b) a simple autoregressive scheme with
flexible transformations of variables (Figure 1b) . We leverage both of these approaches (Figure 1c),
develop novel methods for each, and show a considerable improvement with their combination.

Contributions: The following are our contributions. First, we propose two flexible autoreggressive
models for modeling conditional distributions: the linear autoregressive model (LAM), and the
recurrent autoregressive model (RAM). LAM employs a simple linear form to condition on previously
seen covariates in a flexible fashion. RAM uses a recurrent neural network (RNN) to evolve
conditioning features as the set of conditioning covariates expands. Furthermore, this paper proposes
several novel transformations of variables: 1) we propose an efficient method for learning a linear
transfromations on covariates; 2) we develop an invertible RNN-based transformation that directly
acts on covariates; 3) we also propose an additive RNN-base transformation. To better capture
correlations in general data, we propose transformation autogressive networks (TANs) that combine
our novel autoreggresive models and transformations of variables. We performed a comprehensive
evaluation of autoregressive models and transformations that shows the fundamental result that
modern density estimation methods should employ both a flexible conditional model and a flexible
transformation. Extensive experiments on both real and synthetic datasets show the power of TANs
for capturing complex dependencies between the covariates. Moreover, we show that the learned
model can be used for outlier detection, and image modeling.
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The remainder of the paper is structured as follows. First, in Section 2.1 we present two novel
methods for modeling condition distributions across covariates. Next, in Section 2.2, we describe
several transformations to use in conjunction with our proposed conditional models. After, we discuss
related work and contrast our approach to previous methods. We then illustrate the efficacy of our
methods with both synthetic and real-world data.

→ zi−1 p(zi)
⋮ ↗
xi → zi p(zi+1)
⋮ ↘
→ zi+1 p(zi+2)

(a) Flexible transformation,
restricted conditionals.

→ xi−1 → p(xi∣xi−1, . . .)
⋮ ↘
xi → xi → p(xi+1∣xi, . . .)
⋮ ↘
→ xi+1 → p(xi+2∣xi+1, . . .)

(b) Restricted transformation, flexible conditionals.

→ zi−1 → p(zi∣zi−1, . . .)
⋮ ↗ ↘
xi → zi → p(zi+1∣zi, . . .)
⋮ ↘ ↘
→ zi+1 → p(zi+2∣zi+1, . . .)

(c) Our approach: flexible transformation, flexible
conditionals.

Figure 1: Illustration from left to right: (a) a flexible transformations of variables with an independent
autoregressive scheme; (b) no transformations of variables with a flexible autoregressive scheme;
and (c) a transformation autogressive network (TAN) that has a flexible transformation and a flexible
autoregressive scheme.

2 TRANSFORMATION AUTOREGRESSIVE NETWORKS

First, we propose two autoregressive models to estimate the conditional distribution of input covariates
x ∈ Rd. After, we shall show how we may use such models over a transformation z = q(x), while
renormalizing to obtain density values for x.

2.1 AUTOREGRESSIVE MODELS

Autoregressive models decompose density estimation of a multivariate variable x ∈ Rd into multiple
conditional tasks on a growing set of inputs through the chain rule:

p(x1, . . . xd) =
d

∏
i=1
p(xi ∣xi−1, . . . , x1). (1)

That is, autoregressive models will look to estimate the d conditional distributions p(xi∣xi−1, . . .). A
particular class of autoregressive models can be defined by approximating conditional distributions
through a mixture model, MM(θ(xi−1, . . . , x1)), with parameters depending on xi−1, . . . , x1:

p(xi∣xi−1, . . . , x1) = p(xi ∣MM(θ(xi−1, . . . , x1)), (2)
θ(xi−1, . . . , x1) = f (hi) (3)

hi = gi (xi−1, . . . , x1) , (4)

where f(⋅) is a fully connected network that may use a element-wise non-linearity on inputs, and
gi(⋅) is some general mapping that computes a hidden state of features, hi ∈ Rp, which help in
modeling the conditional distribution of xi ∣xi−1, . . . , x1. One can control the flexibility of the
autoregressive model through gi. It is important to be powerful enough to model our covariates while
still generalizing. In order to achieve this we propose two methods for modeling gi.

First, we propose the linear autoregressive model (LAM), using a straightforward linear map as gi
(eq. 4):

gi (xi−1, . . . , x1) =W (i)x<i + b, (5)

where W (i) ∈ Rp×(i−1), b ∈ Rp, and x<i = (xi−1, . . . , x1)T . Notwithstanding the simple form
of (eq. 5), the resulting model is quite flexible as it may model consecutive conditional problems
p(xi∣xi−1, . . . , x1) and p(xi+1∣xi, . . . , x1) very differently.
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Next we propose the recurrent autoregressive model (RAM), which features a recurrent relation
between gi’s. Given the expanding set of covariates progressively fed into gi’s, it is natural to consider
a hidden state that evolves according to an RNN recurrence relationship:

hi = g (xi−1, g(xi−2, . . . , x1)) = g (xi−1, hi−1) , (6)

where g(x, s) is a RNN function for updating one’s state based on an input x and prior state s
(see Figure 2). In the case of gated-RNNs, the model will be able to scan through previously seen
dimensions remembering and forgetting information as needed for conditional densities without
making any strong Markovian assumptions.

∅ → h1 = b →
x1 → h2 =W (2)x1 + b →
↘

x2 → h3 =W (3)x<3 + b →
↘ ⋮
⋮ ⋮

xd−1 → hd =W (d)x<d + b →
(a) LAM

∅ → h1 = g(∅, h0) →
↓

x1 → h2 = g(x1, h1) →
↓

x2 → h3 = g(x3, h2) →
↓
⋮

xd−1 → hd = g(xd−1, hd−1) →
(b) RAM

Figure 2: Illustration of both LAM (left) and RAM (right) models. Hidden states hk’s are updated
and then used to compute the parameters of the next conditional density for xk. Note that in LAM
the hidden states hj’s are not tied together, where in RAM the hidden state hj along with xj are used
to compute the hidden state hj+1 which determines the parameters of p(xj+1 ∣hj+1).

Both LAM and RAM are flexible and able to adjust the hidden states, hi (eq. 4), to model the
distinct conditional tasks p(xi∣xi−1, . . .). However, there is a trade-off of added flexibility and
transferred information between the two models (see Figure 2). LAM treats the conditional tasks for
p(xi∣xi−1, . . .) and p(xi+1∣xi, . . .) in a largely independent fashion. This makes for a very flexible
model, however the parameter size is also large and there is no sharing of information among the
conditional tasks. On the other hand, RAM provides a framework for transfer learning among the
conditional tasks by allowing the hidden state hi to evolve through the distinct conditional tasks. This
leads to fewer parameters and more sharing of information in respective tasks, but also yields less
flexibility since conditional estimates are tied, and may only change in a smooth fashion.

2.2 TRANSFORMATIONS

Several methods (Dinh et al., 2014; 2016; Goodfellow, 2016) have shown that the expressive power
of very simple conditional densities (eq. 1) (such as independent Gaussians) can be greatly improved
with transformations of variables. Although the chain rule holds for arbitrary distributions, a limited
amount of data and parameters limits the expressive power of models. Hence, we expect that com-
bining our conditional models with transformations of variables will also further increase flexibility.
When using an invertible transformation of variables z = (q1(x), . . . , qd(x)) ∈ Rd, one renormalizes
the pdf of x as:

p(x1, . . . xd) = ∣det dq
dx

∣
d

∏
i=1
p (qi(x) ∣ qi−1(x), . . . , q1(x)) , (7)

where ∣det dq
dx

∣ is a normalizing factor of the Jacobian of the transformation.

For analytical and computational considerations, we require transformations that are invertible,
efficient to compute and invert, and have a structured Jacobian matrix. In order to meet these criteria
we consider the following transformations.
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Linear Transformation: First, we propose a linear transformation:

z = Ax + b, (8)

where we take A to be invertable. Note that even though this linear transformation is simple, it
includes permutations, and may also perform a PCA-like transformation, capturing coarse and highly
varied features of the data before moving to more fine grained details. In order to not incur a high
cost for updates, we wish to compute the determinant of the Jacobian efficiently. We do so by directly
working over an LU decomposition A = LU where L is a lower triangular matrix with unit diagonals
and U is a upper triangular matrix with arbitrary diagonals. As a function of L, U we have that
det dz

dx
= ∏di=1Uii; hence we may efficiently optimize the parameters of the linear map. Furthermore,

inverting our mapping is also efficient through solving two triangular matrix equations.

Recurrent Transformation: Recurrent neural networks are also a natural choice for variable
transformations. Due to their dependence on only previously seen dimensions, RNN transformations
have triangular Jacobians, leading to simple determinants. Furthermore, with an invertible output unit,
their inversion is also straight-forward. We consider the following form to an RNN transformation:

zi = rα (yxi +wT si−1 + b) , si = r (uxi + vT si−1 + a) , (9)

where rα is a leaky ReLU unit rα(t) = I{t < 0}αt+I{t ≥ 0}t, r is a standard ReLU unit, s ∈ Rρ is the
hidden state y, u, b a are scalars, and w, v ∈ Rρ are vectors. As compared to the linear transformation,
the recurrent transformation is able to transform the input with different dynamics depending on its
values. Inverting (eq. 9) is a matter of inverting outputs and updating the hidden state (where the
initial state s0 is known and constant):

xi = y−1 (r−1α (z(r)i ) −wT si−1 − b) , si = r (uxi + vT si−1 + a) . (10)

Furthermore, the determinant of the Jacobian for (eq. 9) is the product of diagonal terms:

det
dz

dx
= yd

d

∏
i=1
r′α (yxi +wT si−1 + b) , (11)

where r′α (t) = I{t > 0} + αI{t < 0}.

Recurrent Shift Transformation: It is worth noting that the rescaling brought on by the recurrent
transformation effectively incurs a penalty through the log of the determinant (eq. 11). However, one
can still perform a transformation that depends on the values of covariates through a shift operation.
In particular, we propose an additive shift based on a recurrent function on prior dimensions:

zi = xi +m(si−1), si = g(xi, si−1), (12)

where g is some recurrent function for updating states, and m is a fully connected network. Inversion
proceeds as before:

xi = zi −m(si−1), si = g(xi, si−1), . (13)

The Jacobian is again lower triangular, however due to the additive nature of (eq. 12), we have a unit
diagonal. Thus, det dz

dx
= 1. One interpretation of this transformation is that one can shift the value

of xk based on xk−1, xk−2, . . . for better conditional density estimation without any penalty coming
from the determinant term in (eq. 7).

Composing Transformations: Lastly, we considering stacking (i.e. composing) several transfor-
mations q = q(1) ○ . . . ○ q(T ) and renormalizing:

p(x1, . . . xd) =
T

∏
t=1

∣det dq(t)

dq(t−1)
∣
d

∏
i=1
p (qi(x) ∣ qi−1(x), . . . , q1(x)) , (14)

where we take q(0) to be x. We note that composing several transformations together allows one to
leverage the respective strengths of each transformation. Moreover, inserting a reversal transformation
(x1, . . . , xd ↦ xd, . . . , x1) in between transformations yields biderectional relationships for several
transformations.
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2.3 COMBINED APPROACH

We combine the use of both transformations of variables and rich autoregressive models by: 1)
writing the density of inputs, p(x), as a normalized density of a transformation: p(q(x)) (eq. 14).
Then we estimate the conditionals of p(q(x)) using an autoregressive model. I.e. to learn our model
we minimize the negative log likelihood:

− log p(x1, . . . xd) = −
T

∑
t=1

log ∣det dq(t)

dq(t−1)
∣ −

d

∑
i=1

log p (qi(x) ∣hi) , (15)

which is obtained by substituting (eq. 2) into (eq. 14) with hi as defined in (eq. 4).

3 RELATED WORK

Nonparametric density estimation has been a well studied problem in statistics and machine learning
(Wasserman, 2007). Unfortunately, nonparametric approaches like kernel density estimation suffer
greatly from the curse of dimensionality and do not perform well when data does not have a small
number of dimensions (d ≲ 3). To alleviate this, several semiparametric approaches have been
explored. Such approaches include forest density estimation (Liu et al., 2011), which assumes that the
data has a forest (i.e. a collection of trees) structured graph. This assumption leads to a density which
factorizes in a first order Markovian fashion through a tree traversal of the graph. Another common
semiparametric approach is to use a nonparanormal type model (Liu et al., 2009). This approach
uses a Gaussian copula with a rank-based transformation and a sparse precision matrix. While both
approaches are well-understood theoretically, their strong assumptions often lead to inflexible models.

In order to provide greater flexibility with semiparametric models, recent work has employed deep
learning for density estimation. The use of neural networks for density estimation dates back to early
work by Bishop (1994) and has seen success in areas like speech (Zen & Senior, 2014; Uria, 2015),
music (Boulanger-Lewandowski et al., 2012), etc.. Typically such approaches use a network to learn
to parameters of a parametric model for data. Recent work has also explored the application of deep
learning to build density estimates in image data (Oord et al., 2016; Dinh et al., 2016). However,
such approaches are heavily reliant on exploiting structure in neighboring pixels, often subsampling,
reshaping or re-ordering data, and using convolutions to take advantage of neighboring correlations.
Modern approaches for general density estimation in real-valued data include Uria et al. (2013; 2016);
Germain et al. (2015); Gregor et al. (2014); Dinh et al. (2014); Kingma et al. (2016); Papamakarios
et al. (2017).

NADE (Uria et al., 2013) is an RBM-inspired density estimator with a weight-sharing scheme across
conditional densities on covariates. It may be written as a special case of LAM (eq. 5) with:

qi (xi−1, . . . , x1) =W<ix<i + b, (16)

where W<i ∈ Rp×i−1 is the weight matrix compose of the first i − 1 columns of a shared matrix
W = (w1, . . .wd). We note also that LAM and NADE models are both related to fully visible
sigmoid belief networks (Frey, 1998; Neal, 1992).

Even though the weight-sharing scheme in (eq. 16) reduces the number of parameters, it also greatly
limits the types of distributions one can model. Roughly speaking, the NADE weight-sharing scheme
makes it difficult to adjust conditional distributions when expanding the conditioning set with a
covariate that has a small information gain. We illustrate these kinds of limitations with a simple
example. Consider the following 3-dimensional distribution:

x1 ∼ N(0,1), x2 ∼ N(sign(x1), ε), x3 ∼ N (I{∣x1∣ < C0.5} , ε) (17)

where C0.5 is the 50% confidence interval of a standard Gaussian distribution, and ε > 0 is some
small constant. That is, x2, and x3 are marginally distributed as an equi-weighted bimodel mixture
of Gaussian with means −1,1 and 0,1, respectively. Due to NADE’s weight-sharing linear model,
it will be difficult to adjust h2 and h3 jointly to correctly model x2 and x3 respectively. However,
given their additional flexibility, both LAM and RAM are able to adjust hidden states to remember
and transform features as needed.

NICE models assume that data is drawn from a latent independent Gaussian space and transformed
(Dinh et al., 2014). The transformation uses several “additive coupling” shifting transformations on
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the second half of dimensions, using the first half of dimensions. That is, additive coupling proceeds
by splitting inputs into halves x = (x<d/2, x≥d/2), and transforming the second half as an additive
function of the first half:

z = (x<d/2, x≥d/2 +m(x<d/2)) , (18)

where m(⋅) is the output of a fully connected network. Inversion is simply a matter of subtraction
x = (z<d/2, z≥d/2 −m(z<d/2)) . The full transformation is the result of stacking several of these
additive coupling layers together followed by a final rescaling operation. Furthermore, as with the
RNN shift transformation, the additive nature of (eq. 18) yields a simple determinant, det dz

dx
= 1.

We also note that are several methods for obtaining samples from an unknown distribution that
by-pass density estimation. For instance, generative adversarial networks (GANs) apply a (typically
noninvertible) transformation of variables to a base distribution by optimizing a minimax loss over a
discrimator and the transformation (Goodfellow, 2016). Furthermore, one can also obtain samples
with only limited information about the density of interest. For example, if one has an unnormalized
pdf, one may use Markov chain Monte Carlo (MCMC) methods to obtain samples (Neal, 1993).

4 EXPERIMENTS

We compare models using several experiments on synthetic and real-world datasets. First, we compute
the average log likelihoods on test data. Then, to gain further context of the efficacy of models, we
also use their density estimates for anomaly detection, where we take low density instances to be
outliers. Moreover, we look at an illustrative MNIST image modeling task.

We study the performance of various combinations of conditional models and transformation.
That is, we consider various models for the conditionals p (qi(x) ∣hi) and various transformations
q(⋅) (eq. 15). In particular the following conditional models were considered: LAM, RAM, Tied,
MultiInd, and SingleInd. Here, LAM, RAM, and Tied are as described in equations (eq. 5),
(eq. 6), and (eq. 16), respectively. MultiInd takes p (qi(x) ∣hi) to be p (qi(x) ∣MM(θi)), that
is we shall use d distinct independent mixtures to model the transformed covariates. Similarly,
SingleInd takes p (qi(x) ∣hi) to be p (qi(x)), the density of a standard single component. More-
over, we considered the following transformations: None, RNN, 2xRNN, 4xAdd+Re, 4xSRNN+Re,
RNN+4xAdd+Re, and RNN+4xSRNN+Re. None indicates that no transformation of variables was
performed. RNN and 2xRNN performs a single recurrent transformation (eq. 9), and two recurrent
transformations with a reversal permutation in between, respectively. Following (Dinh et al., 2014),
4xAdd+Re performs four additive coupling transformations (eq. 18) with reversal permutations in
between followed by a final element-wise rescaling: x↦ x ∗ exp(s), where s is a learned variable.
Similarly, 4xSRNN+Re, performs four recurrent shift transformations (eq. 12) with reversal permuta-
tions in between, followed by an element-wise rescaling. RNN+4xAdd+Re, and RNN+4xSRNN+Re
are as before, but performing an initial recurrent transformation. Furthermore, we also considered per-
forming an initial linear transformation (eq. 8). We flag this by prepending an L to the transformation;
e.g. L RNN denotes a linear transformation followed by a recurrent transformation.

Models were implemented in Tensorflow (Abadi et al., 2016). Both RAM conditional models as well
as the RNN shift transformation make use of the standard GRUCell GRU implementation1. We take
the mixture models of conditionals (eq. 2) to be mixtures of 40 Gaussians. We optimize all models
using the AdamOptimizer (Kingma & Ba, 2014) with an initial learning rate of 0.005. Training
consisted of 30000 iterations, with mini-batches of size 256. The learning rate was decreased by
a factor of 0.1, or 0.5 (chosen via a validation set) every 5000 iterations. Gradient clipping with a
norm of 1 was used. After training, the best iteration according to the validation set loss was used to
produce the test set mean log likelihoods.

4.1 SYNTHETIC

We perform a thorough empirical analysis over synthetic data. By carefully constructing data we
will be able to pinpoint strengths and short-comings of conditional models and transformations. We
study a dataset with a first-order Markovian structure, and one with a star-shaped structure; they are
described below.

1Code will be made public upon publication.
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4.1.1 MARKOVIAN DATA

First, we describe experiments performed on a synthetic dataset with a Markovian structure that
features several exploitable correlations among covariates. The dataset is sampled as follows:
y1, y2, y3 ∼ N(0,1) and yi ∣ yi−1, . . . , y1 ∼ f(i, y1, y2, y3) + εi for i > 3 where εi ∼ N(εi−1, σ),
f(i, y1, y2, x3) = y1 sin(y2gi + y3), and gi’s are equi-spaced points on the unit interval. That is,
instances are sampled using random draws of amplitude, frequency, and shift covariates y1, y2, y3,
which determine the mean of the other covariates, y1 sin(y2gi + y3), stemming from function
evaluations on a grid, and random noise εi with a Gaussian random walk. The resulting instances
are easy to visualize, and contain many correlations among covariates (for instance, y4 is highly
informative of y5). To test robustness to correlations from distant (by index) covariates, we observe
covariates that are shuffled using a fixed permutation π chosen ahead of time: x = (yπ1 , . . . , yπd

).
We take d = 32, and the number of training instances to be 100000.

We detail the mean log-likelihoods on a test set for TANs using various combinations of conditional
models and transformations in Appendix, Table 6. Note that the performance of previous one-
prong approaches that considered a complex conditional model with simple or no transformation
and vice-versa are illustrated by None & Tied (NADE), 4xAdd+Re & SingleInd (NICE)
models, as well as by the entire row corresponding to None transformation and the MultiInd and
SingleInd columns. We see that both LAM and RAM conditionals are providing most of the top
models. We observe good samples from the best performing model (picked on validation dataset) as
shown in Figure 3. Here we also observe relatively good performance stemming from MultiInd
conditionals with more complex transformations.
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Figure 3: RNN+4xSRNN+Re & RAM model samples. Each plot shows a single sample. We plot the
sample values of unpermuted dimensions y4, . . . , y32 ∣ y1, y2, y3 in blue and the expected value of
these dimensions (i.e. without the Markovian noise) in green. One may see that the model is able to
correctly capture both the sinusoidal and random walk behavior of our data.

4.1.2 STAR DATA

Next, we consider a dataset with a star-structured graphical model where fringe nodes are very
uninformative with each-other. We divide the covariates into disjoint center and vertex sets C =
{1, . . . ,4}, V = {5, . . . , d} respectively. For center nodes j ∈ C, yj ∼ N(0,1). Then, for j ∈ V ,
yj ∼ N(fj(wTj yC), σ) where fj is a fixed step function with 32 intervals, wj ∈ R4 is a fixed vector,
and yC = (y1, y2, y3, y4). We note that this dataset poses a difficult density estimation problem since
the distribution of each of the fringe vertices will be considerably different from each other, the fringe
vertices are largely uninformative from one another, and the distribution of the fringe vertices are
difficult to estimate without conditioning on all the center nodes. As before we observe covariates
that are shuffled using a fixed permutation π chosen ahead of time: x = (yπ1 , . . . , yπd

), with d = 32.

We detail the mean log-likelihoods on a test set for TANs using various combinations of conditional
models and transformations in the Appendix, Table 7. Once more we observe that both LAM and
RAM conditionals are providing most of the top models. In this dataset, however, simpler conditional
methods are unable to model the data well, suggesting that the complicated dependencies need a
two-prong TAN approach. We observe a similar pattern when learning over data with d = 128 (see
Appendix, Table 8).
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Table 1: Average test log-likelihood. For each dataset and each conditional model, top-2 transfor-
mations are selected using log-likelihoods on a validation set and their mean test log-likelihood are
reported. ∗ denotes the best model for each dataset picked by validation. Largest values per dataset
are shown in bold.

Dataset LAM RAM Tied MultiInd NADE NICE
forrest 2.389 2.297 2.672∗ 2.443 0.909 0.857 0.754 0.600 −0.653 −0.492

d= 10
N=286,048

L RNN+
4xAdd+Re

L RNN+
4xSRNN+Re

L RNN+
4xAdd+Re

L RNN+
4xSRNN+Re

L 4xAdd+
Re

RNN+
4xAdd+Re

L 4xSRNN+
Re

L RNN+
4xSRNN+Re

pendigits 6.923∗ 5.854 3.896 3.911 1.437 −2.299 −5.010 −4.742 1.437 −6.498
d= 16

N=6,870 None 4xSRNN+
Re 2xRNN None None L RNN 4xAdd+

Re
L RNN+

4xAdd+Re

susy 17.673 17.474 18.941∗ 18.389 15.397 13.765 12.161 12.105 −5.721 4.245
d= 18

N=5,000,000
L 4xAdd+

Re
L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re L RNN L 4xSRNN+
Re

L RNN+
4xAdd+Re

L 4xSRNN+
Re

L RNN+
4xSRNN+Re

higgs −3.396 −3.756 −0.340∗ −2.116 −8.052 −8.006 −8.223 −9.378 −13.883 −15.138
d= 28

N=11,000,000
L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re L RNN RNN+
4xSRNN+Re

L RNN+
4xAdd+Re

L 4xAdd+
Re

L 4xSRNN+
Re

L RNN+
4xSRNN+Re

hepmass 3.906 3.759 4.935∗ 5.047 −0.239 −0.863 −5.747 −6.091 −4.948 −11.387
d= 28

N=10,500,000
L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re RNN L RNN L RNN+
4xSRNN+Re

RNN+
4xSRNN+Re

L 4xSRNN+
Re

4xSRNN+
Re

satimage2 −1.716 −7.728 −0.550∗ −0.773 −2.137 −2.549 −1.570 −1.699 −9.296 −17.977
d= 36

N=5,803 None RNN L 2xRNN L RNN 2xRNN 4xSRNN+
Re L None L 2xRNN

music −51.572∗ −52.617 −55.665 −56.190 −58.885 −59.093 −69.484 −69.887 −98.047 −83.524
d= 90

N=515,345
L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re
L 4xSRNN+

Re
L RNN+

4xAdd+Re
L RNN+

4xAdd+Re
L 4xAdd+

Re
L RNN+

4xAdd+Re
L 4xAdd+

Re

wordvecs −247.440∗ −248.393 −272.371 −275.508 −273.372 −273.976 −308.148 −308.735 −278.789 −374.563
d= 300

N=3,000,000
L 4xAdd+

Re
L 4xSRNN+

Re
L 4xAdd+

Re L 2xRNN L 4xSRNN+
Re

L RNN+
4xAdd+Re

L RNN+
4xSRNN+Re

L 4xSRNN+
Re

4.2 TEST-DATA LOG LIKELIHOODS

We used multiple datasets from the UCI machine learning repository2 and Stony Brook outlier
detection datasets collection (ODDS)3 to evaluate log-likelihoods on test data. Broadly, the datasets
can be divided into: Particle acceleration: higgs, hepmass, and susy datasets where generated
for high-energy physics experiments using Monte Carlo simulations; Music: The music dataset
contains timbre features from the million song dataset of mostly commercial western song tracks from
the year 1922 to 2011; (Bertin-Mahieux et al., 2011). Word2Vec: wordvecs consists of 3 million
words from a Google News corpus. Each word represented as a 300 dimensional vector trained using
a word2vec model4. ODDS datasets: We used several ODDS datasets–forest, pendigits,
satimage2. These are multivariate datasets from varied set of sources meant to provide a broad
picture of performance across anomaly detection tasks. To not penalize models for low likelihoods
on outliers in ODDS, we removed anomalies from test sets when reporting log-likelihoods.

As noted in (Dinh et al., 2014), data degeneracies and other corner-cases may lead to arbitrarily
low negative log-likelihoods. In order to avoid such complications, we remove discrete features,
standardized all datasets, and add independent Gaussian noise with a standard deviation of 0.01 to
training sets.

We report average test log-likelihoods in Table 1. For each dataset and conditional model, we report
the test log-likelihood of the top-2 transformations (picked on a validation dataset). We note that the
best performing model on each dataset had either LAM or RAM conditionals. The tables detailing
test log-likelihoods for all combinations of conditional models and transformations for each dataset
may be found in the Appendix (see Tables 10-16). We also observe that L RNN+4xAdd+Re & LAM
and L RNN & RAM are consistently among the top-10 picked models.

4.2.1 FURTHER COMPARISONS

In order to provide further context for the performance of our TAN models, we performed additional
real-world data experiments and compared to several state-of-the-art auto-regressive density estima-
tion methods. We carefully followed Papamakarios et al. (2017) and code (MAF Git Repository) to
ensure that we operated over the same instances and covariates for each of the datasets considered in
Papamakarios et al. (2017). In Table 2, we show the average test log-likelihoods of the best TAN
model selected using a validation set and compare to values reported by Papamakarios et al. (2017)
for MADE (Germain et al., 2015), Real NVP (Dinh et al., 2016), and MAF (Papamakarios et al.,
2017) methods for each dataset. Also, we compared to MAF MoG, which uses a MAF transformation

2http://archive.ics.uci.edu/ml/
3http://odds.cs.stonybrook.edu
4https://code.google.com/archive/p/word2vec/
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of variables (Papamakarios et al., 2017) with a MADE MoG conditional model (Germain et al.,
2015).

As can be seen, our TAN models are considerably outperforming other state-of-the-art methods across
all datasets used by Papamakarios et al. (2017).

Table 2: Average test log-likelihood comparison of TANs with baselines MADE, Real NVP, MAF as
reported by Papamakarios et al. (2017). Parenthesized numbers indicate number of transformations
used. Standard errors with 2σ are shown. Largest values per dataset are shown in bold.

POWER GAS HEPMASS MINIBOONE BSDS300
MADE -3.08 ± 0.03 3.56 ± 0.04 -20.98 ± 0.02 -15.59 ± 0.50 148.85 ± 0.28

MADE MoG 0.40 ± 0.01 8.47 ± 0.02 -15.15 ± 0.02 -12.27 ± 0.47 153.71 ± 0.28
Real NVP (5) -0.02 ± 0.01 4.78 ± 1.80 -19.62 ± 0.02 -13.55 ± 0.49 152.97 ± 0.28

Real NVP (10) 0.17 ± 0.01 8.33 ± 0.14 -18.71 ± 0.02 -13.84 ± 0.52 153.28 ± 1.78
MAF (5) 0.14 ± 0.01 9.07 ± 0.02 -17.70 ± 0.02 -11.75 ± 0.44 155.69 ± 0.28
MAF (10) 0.24 ± 0.01 10.08 ± 0.02 -17.73 ± 0.02 -12.24 ± 0.45 154.93 ± 0.28

MAF MoG (5) 0.30 ± 0.01 9.59 ± 0.02 -17.39 ± 0.02 -11.68 ± 0.44 156.36 ± 0.28
TAN 0.48 ± 0.01 11.19 ± 0.02 −15.12 ± 0.02 −11.01 ± 0.48 157.03 ± 0.07

L RNN+4xAdd+Re
& RAM

L RNN+4xSRNN+Re
& RAM

L RNN
& RAM

4xSRNN+Re
& RAM

L RNN+4xSRNN+Re
& RAM

4.3 ANOMALY DETECTION

Next, we apply density estimates to anomaly detection. Typically anomalies or outliers are data-
points that are unlikely given a dataset. In terms of density estimations, such a task is framed
by identifying which instances in a dataset have a low corresponding density. That is, we shall
label an instance x, as an anomaly if p̂(x) ≤ t, where t ≥ 0 is some threshold and p̂ is the density
estimate based on training data. Note that this approach is trained in an unsupervised fashion.
However, each methods’ density estimates were evaluated on test data with anomaly/non-anomaly
labels on instances. We used thresholded log-likelihoods on the test set to compute precision and
recall. We use the average-precision metric: avg-prec = ∑Ntest

k=1 precisionr (recallr − recallr−1) where
precisionr =

tpr
tpr+fpr , recallr = tpr

tpr+fnr
, and tpr, fpr, fnr are true positive anomalies, false positives

and false negative respectively among the bottom r log-likelihood instances in test data. Our results
are shown in Table 3. We see that RAM performs the best on all three datasets. Beyond providing
another interesting use for our density estimates, seeing good performance in these outlier detection
tasks further demonstrates that our models are learning semantically meaningful patterns.

Table 3: Average precision score on outlier detection datasets. For each dataset and conditional, the
average precision corresponding to the top-2 best transformation model, picked using likelihood on a
validation set, is shown. The best score for each dataset is in bold, the number of outliers is O.

Dataset LAM RAM Tied MultiInd NADE NICE
forrest 0.936 0.902 0.944 0.944 0.918 0.923 0.928 0.882 0.866 0.802
O=2,747 L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re
L RNN+

4xAdd+Re
L RNN+

4xSRNN+Re
L 4xAdd+

Re
RNN+

4xAdd+Re
L 4xSRNN+

Re
L RNN+

4xSRNN+Re

pendigits 0.930 0.956 0.981 0.918 0.919 0.916 0.927 0.915 0.919 0.933
O=156 None 4xSRNN+

Re 2xRNN None None L RNN 4xAdd+
Re

L RNN+
4xAdd+Re

satimage2 0.986 0.987 0.990 0.947 0.990 0.989 0.975 0.969 0.990 0.981
O=71 None RNN L 2xRNN L RNN 2xRNN 4xSRNN+

Re L None L 2xRNN

4.4 IMAGE MODELING

For illustrative purposes, we consider modeling MNIST digits. In keeping with our focus of general
data modeling, we treat each image as a flattened vector of 784 dimensions. Here we demonstrate
that our proposed models can be used to model high dimensional data and produce coherent samples.

First, we model dequantized pixel values rescaled to the unit interval as described in (Dinh et al., 2014).
Moreover, we also model the MNIST digits through a logit transformation of pixel values. That is,
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we take the dequantized pixel values in the range [0,256], y and model: x = logit (λ + (1 − λ) y
256

),
with λ = 0.05. This transformation will lessen boundary effects and keep pixel values inside a valid
range.

We ran experiments on MNIST using the two models (L RNN+4xAdd+Re & LAM and
L RNN & RAM) that consistently appear in the top-10 in our previous experiments (see Tables 10-16
in Appendix). We observe test set average log-likelihoods and samples reported in bits per pixel in
Table 4. Furthermore, we plot samples in Figure 4. We see that our models are able to capture the
structure of MNIST digits, with very few artifacts in samples. This is also reflected in the likelihoods,
which are comparable or better than state-of-the-art.

Table 4: Bits per pixel for models (lower is better). “(Unit)” denotes model with unit scale on pixels,
and “(Logit)” denotes model with logit transformation on pixels. Standard errors with 2σ are shown.

NICE
(Dinh et al., 2014)

(Unit)

Real NVP
(Papamakarios et al., 2017)

(Logit)

MADE
(Papamakarios et al., 2017)

(Logit)

LAM
L RNN+4xAdd+Re

(Unit)

RAM
L RNN
(Unit)

LAM
L RNN+4xAdd+Re

(Logit)

RAM
L RNN
(Logit)

4.47 ± 0.021 1.93 ± 0.01 1.41 ± 0.01 2.27 ± 0.013 1.60 ± 0.007 2.12 ± 0.01 1.19 ± 0.005

(a) LAM (Unit) (b) RAM (Unit) (c) LAM (Logit) (d) RAM (Logit)

Figure 4: Samples from L RNN+4xAdd+Re & LAM, and L RNN & RAM models on unit scaled,
and logit transformed pixels.

We also ran a TAN model on the CIFAR-10 dataset of 32 × 32 natural colored images. As before
we focus on general data modeling, where we treat each image as a flattened vector. In Table 5, we
compared our TAN model RAM & L RNN to several baselines reported in Papamakarios et al. (2017).
Once again, we find that TANs are able to better model the CIFAR-10 dataset of images.

Table 5: Bits per pixel for models (lower is better) using logit transforms on CIFAR-10. MADE, Real
NVP, and MAF values are as reported by Papamakarios et al. (2017). Standard errors with 2σ are
shown.

MADE Real NVP MAF RAM & L RNN
5.67 ± 0.01 4.53 ± 0.01 4.31 ± 0.01 3.98 ± 0.01

5 DISCUSSION

We begin by noting the breadth of our proposed methods. As mentioned above, previous approaches
considered a complex conditional model with a simple or no transformation and vice-versa. As such,
some previous works have proposed a single new type of transformation, or a single new conditional
model. Here, we propose multiple methods for transformations (linear, recurrent, and shift recurrent)
and multiple autoregressive conditional models (LAM, and RAM). Furthermore, we consider the
various combinations of transformations and autoregressive models, most of which constitute a novel
TAN.

We draw several conclusions through our comprehensive empirical study. First, we consider our
experiments on synthetic data. Methods that only consider complex transformations or condition
models are illustrated in the entire row corresponding to the None transformation and the MultiInd
and SingleInd columns, respectively. The performance of some of these models, which include

10
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None & Tied (NADE), 4xAdd+Re & SingleInd (NICE), was moderate on the Markovian
data, however these one-prong approaches fail in the star dataset. Overall LAM and RAM methods
provided considerable improvements, especially in the star dataset, where the flexibility of LAM made
it possible to learn the widely different conditional probabilities present in the data.

Similarly, we observe that the best performing models in real-world datasets are those that incorporate
a flexible transformation and conditional model. In fact, the best model (according to validation
dataset) always has LAM or RAM autoregressive components. Hence, validation across models would
always select one of these methods. In fact, 95% of top-10 models (aggregated across all datasets)
have a LAM and RAM conditional model (see Tables 10-16). It is interesting to see that many of
these top models also contain a linear transformation. Of course, linear transformations of variables
are common to most parametric models, however they have been under-explored in the context of
autoregressive density estimation. Our methodology for efficiently learning linear transformations
coupled with their strong empirical performance encourages their inclusion in autoregressive models.

Finally, we digest results over the real-world datasets by computing the percentage of the top
likelihood achieved by each transformation t, and conditional model m, in dataset D: s(t,m,D) =
exp(lt,m,D)/maxa,b exp(la,b,D), where lt,m,D is the test log-likelihood for t,m on D. We then
average S over the datasets: S(t,m) = 1

T ∑D S(t,m,D), where T is the total number of datasets.
We show this score in the Appendix, Table 9. This table gives a summary of which models performed
better (closer to the best performing model per dataset) over multiple datasets. We see that RAM
conditional with L RNN transformation, and LAM conditional with L RNN+4xAdd+Re were the
two best performers.

6 CONCLUSION

In conclusion, this work jointly leverages transformations of variables and autoregressive models, and
proposes novel methods for both. We show a considerable improvement with our methods through a
comprehensive study over both real world and synthetic data. Also, we illustrate the utility of our
models in outlier detection and digit modeling tasks.
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APPENDIX

Table 6: Held out test log-likelihoods for the Markovian dataset. The superscripts denote rankings of
log-likelihoods on the validation dataset.

Transformation LAM RAM TIED MultiInd SingleInd
None 14.319 −29.950 −0.612 −41.472 − − −

L None 15.486(9) 14.538 10.906 5.252 −9.426
RNN 14.777 −37.716 11.075 −30.491 −37.038

L RNN 15.658(5) 10.354 10.910 5.370 3.310
2xRNN 14.683 13.698 11.493 −18.448 −34.268

L 2xRNN 15.474(8) 15.752(3) 12.316 5.385 3.739
4xAdd+Re 15.269 12.257 12.912 12.446 11.625

L 4xAdd+Re 15.683(6) 12.594 13.845 12.768 12.069
4xSRNN+Re 14.829 14.381 11.798 11.738 12.932

L 4xSRNN+Re 15.289 16.202(1) 12.748 15.415(10) 13.908
RNN+4xAdd+Re 15.171 12.991 14.455 11.467 10.382
L RNN+4xAdd+Re 15.078 12.655 14.415 12.886 12.315

RNN+4xSRNN+Re 14.968 16.216(2) 12.590 15.589(4) 14.231

L RNN+4xSRNN+Re 15.429 15.566(7) 14.179 14.528 13.961

Table 7: Held out test log-likelihoods for star 32d dataset. The superscript denotes ranking of
log-likelihood on cross validation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −2.041 2.554 −10.454 −29.485 − − −

L None 5.454 8.247 −7.858 −26.988 −38.952
RNN −1.276 2.762 −6.292 −25.946 −41.275
L RNN 7.775 6.335 −1.157 −25.986 −34.408
2xRNN 3.705 8.032 −0.565 −25.100 −38.490

L 2xRNN 14.878(3) 9.946 0.901 −23.772 −33.075

4xAdd+Re 13.278(6) 11.561(9) 7.146 −16.740 −21.332

L 4xAdd+Re 15.728(2) 12.444(7) 9.031 −6.091 −11.225
4xSRNN+Re 3.496 8.429 −1.380 −15.590 −23.712

L 4xSRNN+Re 16.042(1) 9.939(10) 5.598 −12.530 −16.889

RNN+4xAdd+Re 14.071(5) 14.123(4) 6.868 −14.773 −20.483

L RNN+4xAdd+Re 11.819(8) 9.253 2.638 −7.662 −14.530
RNN+4xSRNN+Re −0.679 3.320 −6.172 −12.879 −19.204
L RNN+4xSRNN+Re 7.433 7.324 3.554 −10.427 −15.243
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Table 8: Held out test log-likelihood for Star 128d dataset.The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 15.671 15.895 −83.115 −128.238 − − −

L None 57.881 −82.100 −28.206 −123.939 −159.391
RNN 18.766 48.295 −22.485 −113.181 −178.641

L RNN 66.070(9) −49.084 31.136 −107.083 −155.324
2xRNN 27.295 45.834 −11.930 −113.210 −178.331

L 2xRNN 85.681(3) −84.524 30.974 −105.368 −162.635

4xAdd+Re 77.195(6) 61.947(10) 16.062 −75.206 −111.542

L 4xAdd+Re 88.837(1) −21.882 20.234 −65.694 −96.071
4xSRNN+Re 33.577 −98.796 3.256 −88.912 −98.936

L 4xSRNN+Re 86.375(2) 76.968(5) 33.481 −85.590 −93.086

RNN+4xAdd+Re 66.540(8) −57.861 −16.277 −75.491 −114.729

L RNN+4xAdd+Re 80.063(4) 32.104 21.944 −71.933 −100.384
RNN+4xSRNN+Re 21.719 −87.335 −6.517 −76.459 −85.422

L RNN+4xSRNN+Re 72.463(7) 56.201 26.269 −71.843 −91.695

Table 9: Average performance percentage score for each model across all datasets. Note that this
measure is not over a logarithmic space.

Transformation LAM RAM TIED MultiInd SingleInd MAX
None 0.218 0.118 0.006 0.000 0.000 0.218
L None 0.154 0.179 0.026 0.051 0.001 0.179
RNN 0.086 0.158 0.014 0.001 0.000 0.158
L RNN 0.173 0.540 0.014 0.040 0.013 0.540
2xRNN 0.151 0.101 0.045 0.001 0.000 0.151
L 2xRNN 0.118 0.330 0.015 0.045 0.025 0.330
4xAdd+Re 0.036 0.047 0.015 0.010 0.006 0.047
L 4xAdd+Re 0.153 0.096 0.025 0.014 0.009 0.153
4xSRNN+Re 0.086 0.051 0.031 0.010 0.008 0.086
L 4xSRNN+Re 0.109 0.143 0.023 0.021 0.018 0.143
RNN+4xAdd+Re 0.121 0.096 0.023 0.011 0.011 0.121
L RNN+4xAdd+Re 0.336 0.165 0.024 0.016 0.013 0.336
RNN+4xSRNN+Re 0.102 0.151 0.017 0.012 0.014 0.151
L RNN+4xSRNN+Re 0.211 0.288 0.024 0.018 0.016 0.288

MAX 0.336 0.540 0.045 0.051 0.025

Table 10: Held out test log-likelihood for forest dataset.The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 0.751 −1.383 −0.653 −12.824 − − −

L None 1.910 1.834 −0.243 −7.665 −11.062
RNN 1.395 0.053 0.221 −5.130 −15.983

L RNN 2.189(8) 1.747 −0.087 −4.001 −5.807
2xRNN 1.832 1.830 0.448 −6.162 −9.095

L 2xRNN 2.240(6) 2.432(3) 0.264 −3.956 −5.125
4xAdd+Re 1.106 1.430 0.420 −0.021 −0.492
L 4xAdd+Re 2.043 1.979 0.909 0.365 −0.088
4xSRNN+Re 1.178 1.428 0.187 −0.029 −0.212

L 4xSRNN+Re 2.089(9) 2.061(10) 0.611 0.754 0.593

RNN+4xAdd+Re 1.962 2.226(7) 0.857 0.081 0.086

L RNN+4xAdd+Re 2.389(4) 2.672(1) 0.852 0.450 0.251
RNN+4xSRNN+Re 1.599 1.545 0.510 0.182 0.369

L RNN+4xSRNN+Re 2.297(5) 2.443(2) 0.804 0.600 0.480
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Table 11: Held out test log-likelihood for pendigits dataset. The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 6.923(1) 3.911(8) 1.437 −14.138 − − −

L None 4.104(9) 2.911 −2.872 −9.997 −15.617

RNN 5.464(3) 3.273 −1.676 −10.144 −19.719

L RNN 4.072(6) 1.398 −2.299 −10.840 −13.103

2xRNN 6.376(5) 3.896(7) −4.002 −12.132 −16.576
L 2xRNN 2.987 0.871 −3.977 −10.890 −12.711
4xAdd+Re −1.924 −3.087 −3.172 −5.010 −6.498
L 4xAdd+Re −1.796 −1.438 −2.288 −4.951 −7.834

4xSRNN+Re 5.854(2) 2.146 −2.827 −5.970 −7.084
L 4xSRNN+Re 3.758 −1.020 −3.370 −5.885 −12.978
RNN+4xAdd+Re −2.357 −2.869 −2.187 −5.454 −8.053
L RNN+4xAdd+Re −2.687 −2.103 −2.185 −4.742 −6.941

RNN+4xSRNN+Re 5.207(4) 2.425 −2.126 −5.147 −8.859

L RNN+4xSRNN+Re 3.466(10) 0.496 −2.761 −7.205 −13.897

Table 12: Held out test log-likelihood for susy dataset.The superscript denotes ranking of log-
likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 9.736 −14.821 −5.721 −21.369 − − −

L None 15.731 16.930(8) 6.410 −8.846 −17.130
RNN 12.784 3.347 6.114 −18.575 −44.273

L RNN 16.381 18.389(2) 6.772 −5.744 −11.489
2xRNN 11.052 14.362 3.595 −16.478 −33.126

L 2xRNN 14.523 17.373(7) 10.687 −6.884 −10.420
4xAdd+Re 9.835 8.033 7.238 6.031 4.245

L 4xAdd+Re 17.673(3) 16.500(10) 11.613 10.941 9.034
4xSRNN+Re 8.798 13.235 1.234 6.936 3.378

L 4xSRNN+Re 14.242 17.870(5) 15.397 12.161 13.413
RNN+4xAdd+Re 15.408 12.480 9.409 7.619 5.446

L RNN+4xAdd+Re 17.474(6) 16.376 13.765 10.951 8.269

RNN+4xSRNN+Re 14.066 17.691(4) 9.136 10.088 7.656

L RNN+4xSRNN+Re 16.627(9) 18.941(1) 13.469 12.105 12.349
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Table 13: Held out test log-likelihood for higgs dataset.The superscript denotes ranking of log-
likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −6.220 −5.848 −13.883 −25.793 − − −

L None −3.798(8) −10.651 −9.084 −16.025 −36.051

RNN −5.800 −2.600(3) −10.797 −25.760 −66.223

L RNN −3.975(9) −0.340(1) −8.574 −18.607 −32.753
2xRNN −6.456 −4.833 −9.192 −25.398 −60.040

L 2xRNN −5.866 −3.222(5) −8.216 −16.083 −30.730
4xAdd+Re −6.502 −10.491 −9.356 −13.678 −15.138
L 4xAdd+Re −5.377 −5.611 −8.006 −12.106 −14.129
4xSRNN+Re −7.422 −6.863 −11.033 −11.878 −12.182
L 4xSRNN+Re −5.999 −9.329 −8.474 −8.223 −8.926

RNN+4xAdd+Re −4.242(10)
−4.804 −9.187 −12.321 −15.261

L RNN+4xAdd+Re −3.396(6) −3.049(4) −8.052 −12.246 −13.765

RNN+4xSRNN+Re −5.262 −2.116(2) −10.105 −12.307 −9.388

L RNN+4xSRNN+Re −3.756(7) −4.773 −8.097 −9.378 −7.721

Table 14: Held out test log-likelihood for hepmass dataset.The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 2.328 3.710(6) −4.948 −19.771 − − −

L None 3.570(7) 2.517 −4.052 −9.266 −35.042

RNN 2.088 4.935(1) −1.639 −19.851 −47.686

L RNN 2.869(10) 5.047(2) −2.920 −16.032 −30.210
2xRNN 1.774 0.902 −1.909 −15.440 −36.754

L 2xRNN 2.053 3.680(5) −2.150 −15.457 −24.079
4xAdd+Re 1.678 1.873 −4.046 −9.117 −11.387
L 4xAdd+Re 1.961 2.543 −2.259 −6.907 −9.275
4xSRNN+Re 1.443 2.156 −2.904 −6.091 −7.186
L 4xSRNN+Re 2.072 2.730 −3.014 −5.747 −6.245
RNN+4xAdd+Re 2.817 0.912 −2.514 −6.003 −9.284

L RNN+4xAdd+Re 3.906(3) −1.869 −3.847 −6.339 −9.103

RNN+4xSRNN+Re 2.663 3.586(8) −0.863 −7.146 −3.939

L RNN+4xSRNN+Re 3.759(4) 3.487(9) −0.239 −7.522 −6.102

Table 15: Held out test log-likelihood for satimage2 dataset.The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −1.716(9) −1.257(3) −9.296 −50.507 − − −

L None −20.164 −1.079(4) −2.635 −1.570(5) −5.972
RNN −7.728 −4.949 −5.466 −6.047 −16.521

L RNN −31.296 −0.773(2) −3.944 −1.824(8) −2.977

2xRNN −12.283 −2.193(7) −2.137 −5.447 −8.075

L 2xRNN −20.968 −0.550(1) −5.140 −1.699(6) −2.276(10)
4xAdd+Re −19.931 −7.539 −11.826 −18.901 −17.977
L 4xAdd+Re −21.128 −9.944 −12.336 −21.677 −24.070
4xSRNN+Re −7.519 −11.368 −2.549 −7.730 −7.232
L 4xSRNN+Re −18.170 −7.709 −5.533 −17.085 −15.347
RNN+4xAdd+Re −19.278 −11.789 −12.837 −21.249 −22.786
L RNN+4xAdd+Re −20.899 −12.949 −12.867 −26.164 −28.302
RNN+4xSRNN+Re −13.476 −3.951 −6.284 −15.025 −16.443
L RNN+4xSRNN+Re −20.179 −12.128 −7.258 −18.065 −18.125
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Table 16: Held out test log-likelihood for music dataset.The superscript denotes ranking of log-
likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −57.873 −97.925 −98.047 −113.099 − − −

L None −52.954(4) −74.220 −72.441 −82.866 −104.287

RNN −54.933(10)
−80.436 −74.361 −106.219 −144.735

L RNN −52.710(3) −59.815 −66.536 −82.731 −98.813
2xRNN −56.958 −85.359 −77.456 −104.440 −133.898

L 2xRNN −53.956(8) −57.611 −65.016 −82.678 −96.542
4xAdd+Re −56.349 −69.302 −67.064 −73.886 −83.524

L 4xAdd+Re −53.169(5) −59.282 −59.093 −69.887 −79.330
4xSRNN+Re −57.670 −68.116 −74.006 −78.032 −121.197

L 4xSRNN+Re −53.879(7) −55.665 −63.894 −77.564 −81.188

RNN+4xAdd+Re −53.177(6) −67.377 −63.372 −73.882 −84.032

L RNN+4xAdd+Re −51.572(1) −56.190 −58.885 −69.484 −79.555

RNN+4xSRNN+Re −54.065(9) −61.204 −76.437 −71.814 −81.087

L RNN+4xSRNN+Re −52.617(2) −68.756 −65.061 −83.292 −78.997

Table 17: Held out test log-likelihood for wordvecs dataset.The superscript denotes ranking of
log-likelihood on validation dataset. Due to time constraints only models with linear transformations
were trained.

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
L None −252.659(6) −279.788 −278.789 −332.474 −387.341

L RNN −252.894(7) −278.795 −278.663 −332.689 −386.700

L 2xRNN −250.285(4) −275.508 −277.848 −333.234 −386.649

L 4xAdd+Re −247.440(1) −272.371(8) −274.205 −331.148 −374.563

L 4xSRNN+Re −248.393(2) −300.666 −273.372(9) −308.735 0.000

L RNN+4xAdd+Re −249.980(3) −280.938 −273.976(10)
−331.316 −380.031

L RNN+4xSRNN+Re −251.468(5) −280.325 −274.082 −308.148 −395.084
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