
Workshop track - ICLR 2018

SYNTHESIZING AUDIO WITH GANS

Chris Donahue*, Julian McAuley† & Miller Puckette*
Departments of Music* and Computer Science†
University of California, San Diego
{cdonahue,jmcauley,msp}@ucsd.edu

ABSTRACT

While Generative Adversarial Networks (GANs) have seen wide success at the
problem of synthesizing realistic images, they have seen little application to audio
generation. In this paper, we introduce WaveGAN, a first attempt at applying
GANs to raw audio synthesis in an unsupervised setting. Our experiments on
speech demonstrate that WaveGAN can produce intelligible words from a small
vocabulary of human speech, as well as synthesize audio from other domains such
as bird vocalizations, drums, and piano. Qualitatively, we find that human judges
prefer the generated examples from WaveGAN over those from a method which
naı̈vely applies GANs on image-like audio feature representations.

1 INTRODUCTION

Synthesizing audio for specific domains has many practical applications such as text-to-speech and
music production. End-to-end, learning-based approaches have recently eclipsed the performance
of production parametric systems in the area of text-to-speech (Wang et al., 2017). Such methods
depend on access to large quantities of transcribed recordings, but do not take advantage of addi-
tional untranscribed audio that is often available. Unsupervised approaches may be able to reduce
data requirements for these methods by learning to synthesize a priori. However, audio signals
have high temporal resolution with periodic behavior over large windows, and relevant unsuper-
vised strategies must perform effectively in high dimensions. Recent work has demonstrated that
convolutional (Oord et al., 2016) and recurrent (Mehri et al., 2017) neural networks can be trained
with autoregression to learn to generate raw audio. However, generation with these methods is slow
as the network must be evaluated once per audio sample.

Unlike autoregressive approaches, generative adversarial networks (Goodfellow et al., 2014) can
generate high-dimensional signals more quickly by iteratively upsampling low-dimensional noise
vectors with transposed convolution (Radford et al., 2016). Since their introduction, GANs have
been refined to generate images with increasing fidelity (Berthelot et al., 2017; Karras et al., 2018).
Despite their prevalence for image applications, GANs have yet to be demonstrated capable of syn-
thesizing audio in an unsupervised setting.

In this work, we propose WaveGAN, a time-domain strategy for generating slices of raw audio
with GANs.1 WaveGAN adapts the DCGAN architecture (Radford et al., 2016), which popularized
GANs for image synthesis, for operation on raw audio. Our modifications may serve as a template
for adapting other image-processing architectures to audio. We also propose SpecGAN, an approach
to generating audio in the frequency domain, which naı̈vely trains the DCGAN architecture on
image-like audio spectrograms.

To evaluate our methods, we propose a new standard task, generating spoken examples of digits
“zero” through ”nine.” We design our evaluation methodology based on scores from a pre-trained
classifier and human judgements. Our experiments on this task demonstrate that both WaveGAN
and SpecGAN can generate examples of speech that are intelligible to humans. On criteria of sound
quality and speaker diversity, human judges indicate a preference for the examples from WaveGAN
compared to those from SpecGAN.

1Sound examples (https://goo.gl/7EH4Z8). IPython notebook (https://goo.gl/ChSPp9).

1

https://goo.gl/7EH4Z8
https://goo.gl/ChSPp9


Workshop track - ICLR 2018

WaveGANDCGAN (Radford et al. 2016)

Figure 1: Depiction of the transposed convolution operation for the first layers of the DCGAN (Rad-
ford et al., 2016) (left) and WaveGAN (right) generators. DCGAN uses small (5x5), two-
dimensional filters while WaveGAN uses longer (length-25), one-dimensional filters and a larger
upsampling factor. Both have the same number of parameters and numerical operations.

2 WAVEGAN

We base our WaveGAN approach on DCGAN (Radford et al., 2016), modifying the architecture to
operate in one dimension. Specifically, we use longer one-dimensional filters of length 25 instead
of two-dimensional filters of size 5x5, and we upsample by a factor of 4 instead of 2 at each layer
(Figure 1). We modify the discriminator in a similar way, using length-25 filters in one dimen-
sion and increasing stride from 2 to 4. Out of several GAN-training algorithms, we found that the
WGAN-GP (Gulrajani et al., 2017) strategy alone trained WaveGAN to produce reasonable outputs.

Because DCGAN outputs 64x64 pixel images — equivalent to just 4096 audio samples — we add
one additional layer to the model resulting in 16384 samples, slightly more than one second of
audio at 16 kHz. While 16k samples is a sufficient length for certain sound domains (e.g. sound
effects, voice commands), generalization to longer output is an avenue for future work. A complete
description of our model and training hyper parameters can be found in the appendix.

2.1 PHASE SHUFFLE

Transposed convolution is known to produce characteristic “checkerboard artifacts” in im-
ages (Odena et al., 2016). For audio, analogous artifacts are perceived as tones with particular
frequencies. These artifacts have consistent phase in the generated examples, and the discriminator
could learn a trivial solution that rejects them on this basis, inhibiting the overall optimization prob-
lem. To discourage the discriminator from learning such a solution, we propose the phase shuffle
operation (with hyperparameter n) which randomly perturbs the phase of each layer’s activations by
−n to n samples before input to the next layer. See (Donahue et al., 2018) for a complete description.

3 SPECGAN

For SpecGAN, our frequency-domain audio generation model, we design a spectrogram represen-
tation that is both well-suited to GANs designed for image generation and can be approximately
inverted. Our representation is a log-amplitude magnitude spectrum of the short-time Fourier trans-
form, normalized to [−1, 1]. We choose a window size of 16ms with 8ms stride, resulting in
equivalent dimensionality to the time domain (16384 samples yield a 128x128 spectrogram). To
render the resultant generated spectrograms as waveforms, we employ the iterative Griffin-Lim al-
gorithm (Griffin & Lim, 1984) with 16 iterations.

4 EXPERIMENTS

Our primary experimentation focuses the Speech Commands Dataset (Warden, 2017). This dataset
consists of many speakers recording individual words in uncontrolled recording conditions. We
propose the Speech Commands Zero Through Nine (SC09) subset, which reduces the vocabulary of
the dataset to ten words: the digits “zero” through “nine”. We also experiment on four other datasets
(Figure 2) with different characteristics: 1) large vocabulary speech (TIMIT (Garofolo et al., 1993)),
2) bird vocalizations (Boesman, 2018), 3) single drum hits, and 4) polyphonic piano.

2



Workshop track - ICLR 2018

SC09 TIMIT PianoBirds Drums

R
ea

l
W

av
eG

A
N

Sp
ec

G
A

N

TIMIT (detail)

Figure 2: Top: Random samples from each of the five datasets used in this study, illustrating the
wide variety of spectral characteristics. Middle: Random samples generated by WaveGAN for each
domain. WaveGAN operates in the time domain but results are displayed here in the frequency
domain for visual comparison. Bottom: Random samples generated by SpecGAN for each domain.

Table 1: Results for SC09 experiments comparing real and generated data. A higher inception score
suggests that semantic modes (i.e., words) of the real data distribution have been captured.

Dataset Inception score Human accuracy MOSQ MOSD

Real data 8.01± 0.24 .976 3.95 3.54
WaveGAN 4.12± 0.03
+ Phase shuffle n = 2 4.67± 0.01 .943 2.29 3.24

SpecGAN 6.03± 0.04 .945 1.87 2.64

4.1 EVALUATION METHODOLOGY

We evaluate our SC09 generative models using inception score (Szegedy et al., 2016), which mea-
sures both the diversity and semantic discriminability of generated examples. To compute inception
score, we pre-train a classifier that achieves 93% accuracy on the SC09 test set. We also measure
the ability of human annotators on Amazon Mechanical Turk to label the generated audio. For data
generated by WaveGAN and SpecGAN, we use the classifier’s prediction as ground truth.

5 RESULTS AND DISCUSSION

Results for our evaluation appear in Table 1. WaveGAN trained with phase shuffle achieved a better
inception score than WaveGAN without. Despite the higher inception score for SpecGAN compared
to WaveGAN, human judges are able to label examples from the two methods with identical accu-
racy. Furthermore, on subjective criteria of sound quality (MOSQ) and speaker diversity (MOSD),
human annotators assign a higher mean opinion score (MOS) to examples from WaveGAN com-
pared to those from SpecGAN.

In Figure 2, we show results for all our experimental domains. For TIMIT, a large-vocabulary speech
dataset with many speakers, WaveGAN produces speech-like babbling (similar to results from un-
conditional autoregressive models (Oord et al., 2016)). On bird vocalizations, WaveGAN generates
a variety of bird sounds but with more noise than the other domains. For drum sound effects,
WaveGAN captures semantic modes such as kick and snare drums. On piano, WaveGAN produces
musically-consonant motifs that, as with the training data, represent a variety of key signatures.

3



Workshop track - ICLR 2018

ACKNOWLEDGMENTS

The authors thank Peter Boesman, Sander Dieleman, and Colin Raffel for helpful conversations
about this work. This work was supported by the UC San Diego Department of Computer Science.
GPUs used for this work were provided by the HPC @ UC program and donations from NVIDIA.

REFERENCES

David Berthelot, Tom Schumm, and Luke Metz. BEGAN: Boundary equilibrium generative adver-
sarial networks. arXiv:1703.10717, 2017.

Peter Boesman. Bird recordings. https://www.xeno-canto.org/contributor/
OOECIWCSWV, 2018. Accessed: 2018-01-08.

Chris Donahue, Julian McAuley, and Miller Puckette. Synthesizing audio with generative adversar-
ial networks. arXiv, 2018.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, David S Pallett, Nancy L
Dahlgren, and Victor Zue. Timit acoustic-phonetic continuous speech corpus. Linguistic data
consortium, 1993.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In NIPS, 2014.

Daniel Griffin and Jae Lim. Signal estimation from modified short-time fourier transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 1984.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of Wasserstein GANs. In NIPS, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In ICLR, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo,
Aaron Courville, and Yoshua Bengio. SampleRNN: An unconditional end-to-end neural audio
generation model. In ICLR, 2017.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 2016.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv:1609.03499, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. arXiv:1703.10135, 2017.

Pete Warden. Speech commands dataset. https://research.googleblog.com/2017/
08/launching-speech-commands-dataset.html, 2017. Accessed: 2017-12-15.

4

https://www.xeno-canto.org/contributor/OOECIWCSWV
https://www.xeno-canto.org/contributor/OOECIWCSWV
https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html


Workshop track - ICLR 2018

Table 2: WaveGAN generator architecture
Operation Kernel Size Output Shape
Input z ∼ Uniform(−1, 1) (n, 100)
Dense 1 (100, 256d) (n, 256d)
Reshape (n, 16, 16d)
ReLU (n, 16, 16d)
Trans Conv1D (Stride=4) (25, 16d, 8d) (n, 64, 8d)
ReLU (n, 64, 8d)
Trans Conv1D (Stride=4) (25, 8d, 4d) (n, 256, 4d)
ReLU (n, 256, 4d)
Trans Conv1D (Stride=4) (25, 4d, 2d) (n, 1024, 2d)
ReLU (n, 1024, 2d)
Trans Conv1D (Stride=4) (25, 2d, d) (n, 4096, d)
ReLU (n, 4096, d)
Trans Conv1D (Stride=4) (25, d, c) (n, 16384, c)
Tanh (n, 16384, c)

Table 3: WaveGAN discriminator architecture
Operation Kernel Size Output Shape
Input x or G(z) (n, 16384, c)
Conv1D (Stride=4) (25, c, d) (n, 4096, d)
LReLU (α = 0.2) (n, 4096, d)
Phase Shuffle (n = 2) (n, 4096, d)
Conv1D (Stride=4) (25, d, 2d) (n, 1024, 2d)
LReLU (α = 0.2) (n, 1024, 2d)
Phase Shuffle (n = 2) (n, 1024, 2d)
Conv1D (Stride=4) (25, 2d, 4d) (n, 256, 4d)
LReLU (α = 0.2) (n, 256, 4d)
Phase Shuffle (n = 2) (n, 256, 4d)
Conv1D (Stride=4) (25, 4d, 8d) (n, 64, 8d)
LReLU (α = 0.2) (n, 64, 8d)
Phase Shuffle (n = 2) (n, 64, 8d)
Conv1D (Stride=4) (25, 8d, 16d) (n, 16, 16d)
LReLU (α = 0.2) (n, 16, 16d)
Reshape (n, 256d)
Dense (256d, 1) (n, 1)

A ARCHITECTURE DESCRIPTION

In Tables 2 and 3, we list the full architectures for our WaveGAN generator and discriminator respec-
tively. In Tables 4 and 5, we list the full architectures for our SpecGAN generator and discriminator
respectively. In these tables, n is the batch size, d modifies model size, and c is the number of
channels in the examples. All dense and convolutional layers include biases.

B TRAINING HYPERPARAMETERS

In Table 6, we list the values of these and all other hyperparameters for our experiments, which con-
stitute our out-of-the-box recommendations for applying WaveGAN and SpecGAN to new datasets.

5



Workshop track - ICLR 2018

Table 4: SpecGAN generator architecture
Operation Kernel Size Output Shape
Input z ∼ Uniform(−1, 1) (n, 100)
Dense 1 (100, 256d) (n, 256d)
Reshape (n, 4, 4, 16d)
ReLU (n, 4, 4, 16d)
Trans Conv1D (Stride=2) (5, 5, 16d, 8d) (n, 8, 8, 8d)
ReLU (n, 8, 8, 8d)
Trans Conv1D (Stride=2) (5, 5, 8d, 4d) (n, 16, 16, 4d)
ReLU (n, 16, 16, 4d)
Trans Conv1D (Stride=2) (5, 5, 4d, 2d) (n, 32, 32, 2d)
ReLU (n, 32, 32, 2d)
Trans Conv1D (Stride=2) (5, 5, 2d, d) (n, 64, 64, d)
ReLU (n, 64, 64, d)
Trans Conv1D (Stride=2) (5, 5, d, c) (n, 128, 128, c)
Tanh (n, 128, 128, c)

Table 5: SpecGAN discriminator architecture
Operation Kernel Size Output Shape
Input x or G(z) (n, 128, 128, c)
Conv1D (Stride=4) (5, 5, c, d) (n, 64, 64, d)
LReLU (α = 0.2) (n, 64, 64, d)
Conv1D (Stride=4) (5, 5, d, 2d) (n, 32, 32, 2d)
LReLU (α = 0.2) (n, 32, 32, 2d)
Conv1D (Stride=4) (5, 5, 2d, 4d) (n, 16, 16, 4d)
LReLU (α = 0.2) (n, 16, 16, 4d)
Conv1D (Stride=4) (5, 5, 4d, 8d) (n, 8, 8, 8d)
LReLU (α = 0.2) (n, 8, 8, 8d)
Conv1D (Stride=4) (5, 5, 8d, 16d) (n, 4, 4, 16d)
LReLU (α = 0.2) (n, 4, 4, 16d)
Reshape (n, 256d)
Dense (256d, 1) (n, 1)

Table 6: WaveGAN hyperparameters
Name Value
Input data type 16-bit PCM (requantized)
Model data type 32-bit floating point
Num channels (c) 1
Batch size (b) 64
Model size (d) 64
Phase shuffle (WaveGAN) 2
Phase shuffle (SpecGAN) 0
Loss WGAN-GP (Gulrajani et al., 2017)
WGAN-GP λ 10
D updates per G update 5
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 0.0001
Beta 1 0.5
Beta 2 0.9

6


	Introduction
	WaveGAN
	Phase shuffle

	SpecGAN
	Experiments
	Evaluation methodology

	Results and discussion
	Architecture description
	Training hyperparameters

