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ABSTRACT

The purpose of this study is to explore the feasibility and potential benefits of
using a physiological plausible model of handwriting as a feature representation
for sequence generation with recurrent mixture density networks. We build on
recent results in handwriting prediction developed by Graves (2013), and we
focus on generating sequences that possess the statistical and dynamic qualities of
handwriting and calligraphic art forms. Rather than model raw sequence data, we
first preprocess and reconstruct the input training data with a concise representation
given by a motor plan (in the form of a coarse sequence of ‘ballistic’ targets) and
corresponding dynamic parameters (which define the velocity and curvature of
the pen-tip trajectory). This representation provides a number of advantages, such
as enabling the system to learn from very few examples by introducing artificial
variability in the training data, and mixing of visual and dynamic qualities learned
from different datasets.

1 INTRODUCTION

Recent results (Graves, 2013) have demonstrated that, given a sufficiently large training data-set,
Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) Recurrent Mixture Density
Networks (RMDNs) (Schuster, 1999) are capable of learning and generating convincing synthetic
handwriting sequences. In this study we explore a similar network architecture combined with an
intermediate feature representation, given by the parameters of a physiologically plausible model of
handwriting: the Sigma Lognormal model (Plamondon, 1995; Plamondon et al., 2014).

In the work by Graves (2013) and subsequent derivations, the RMDN operates on raw sequences of
points recorded with a digitizing device. In our approach we preprocess the training data using an
intermediate representation that describes a form of “motor program” coupled with a sequence of
dynamic parameters that describe the evolution of the pen tip. By doing so, we use a representation
that is more concise (i.e. lower in dimensionality), meaningful (i.e. every data point is a high level
segment descriptor of the trajectory), and is resolution independent.

This project stems from the observation that human handwriting results from the orchestration of
a large number of motor and neural subsystems, and is ultimately produced with the execution of
complex and skillful motions. As such we seek a representation that abstracts the complex task of
trajectory formation from the neural network, which is then rather focused on a higher level task of
movement planning. Note that for the scope of this study, we do not implement text-to-handwriting
synthesis (Graves, 2013), but rather focus on the task of generating sequences that possess the
statistical and dynamic qualities of handwriting, which can be expanded to calligraphy, asemic
handwriting, drawings and graffiti (Berio & Leymarie, 2015; Berio et al., 2016)). In particular, we
focus on two distinct tasks: (1) learning and generating motor plans and (2) given a motor plan,
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predicting the corresponding dynamic parameters that determine the visual and dynamic qualities of
the pen trace. We then go on to show that this modular workflow can be exploited in ways such as:
mixing of dynamic qualities between data-sets (a form of handwriting “style transfer” ) as well as
learning from small datasets (a form of “one shot learning”).

The remainder of this paper is organised as follows: in Section 2, after briefly summarising the
background context, we then briefly describe the Sigma Lognormal model and RMDNs; in Section 3
we present the data preprocessing step and the RMDN models that build up our system; in Section 4
we propose various applications of the system, including learning handwriting representations from
small datasets and mixing styles.

2 BACKGROUND

Our study is grounded on a number of notions and principles that have been observed in the general
study of human movement as well as in the handwriting synthesis/analysis field (known as Grapho-
nomics (Kao et al., 1986)). The speed profile of aiming movements is typically characterised by a
“bell shape” that is variably skewed depending on the rapidity of the movement (Lestienne, 1979;
Nagasaki, 1989; Plamondon et al., 2013). Complex movements can be described by the superimpo-
sition of a discrete number of “ballistic” units of motion, which in turn can each be represented by
the classic bell shaped velocity profile and are often referred to as strokes. A number of methods
synthesise handwriting through the temporal superimposition of strokes, the velocity profile of which
is modelled with a variety of functions including sinusoidal functions (Morasso & Mussa Ivaldi,
1982; Maarse, 1987; Rosenbaum et al., 1995), Beta functions (Lee & Cho, 1998; Bezine et al., 2004),
and lognormals (Plamondon et al., 2009). In this study we rely on a family of models known as the
Kinematic Theory of Rapid Human Movements, that has been developed by Plamondon et al. in an
extensive body of work since the 1990’s (Plamondon, 1995; Plamondon et al., 2014). Plamondon
et al. (2003) show that if we consider that a movement is the result of the parallel and hierarchical
interaction of a large number of coupled linear systems, the impulse response of such a system to a
centrally generated command asymptotically converges to a lognormal function. This assumption is
attractive from a modelling perspective because it abstracts the high complexity of the neuromuscular
system in charge of generating movements with a relatively simple mathematical model which further
provides state of the art reconstruction of human velocity data (Rohrer & Hogan, 2006; Plamondon
et al., 2013).

A number of methods have used neural inspired approaches for the task of handwriting trajectory
formation (Schomaker, 1992; Bullock et al., 1993; Wada & Kawato, 1993). Similarly to our proposed
method, Ltaief et al. (2012) train a neural on a preprocessed dataset where the raw input data is
reconstructed in the form of handwriting model parameters. Nair & Hinton (2005) use a sequence
of neural networks to learn the motion of two orthogonal mass spring systems from images of
handwritten digits for classification purposes. With a similar motivation to ours, Plamondon &
Privitera (1996) use a Self Organising Map (SOM) to learn a sequence of ballistic targets, which
describe a coarse motor plan of handwriting trajectories. Our method builds in particular on the work
of Graves (2013), who describes a system that uses a recurrent mixture density networks (RMDNs)
(Bishop, 1994) extended with a LSTM architecture (Hochreiter & Schmidhuber, 1997), to generate
synthetic handwriting in a variety of styles.

2.1 SIGMA LOGNORMAL MODEL

On the basis of Plamondon’s Kinematic Theory (Plamondon, 1995), the Sigma Lognormal (ΣΛ)
model (Plamondon & Djioua, 2006) describes complex handwriting trajectories via the vectorial
superimposition of a discrete number of strokes. With the assumption that curved handwriting
movements are done by rotating the wrist, the curvilinear evolution of strokes is described with a
circular arc shape. Each stroke is charactersied by a variably assymmetric "bell shape" speed profile,
which is described with a (3 parameter) lognormal function. The planar evolution of a trajectory
is then described by a sequence of virtual targets {vi}i=mi=1 , which define “imaginary” (i.e. not
necessarily located along the generated trajectory) loci at which each consecutive stroke is aimed.
The virtual targets provide a low level description of the motor plan for the handwriting trajectory. A
smooth trajectory is then generated by integrating the velocity of each stroke over time. The trajectory
smoothness can be defined by adjusting the activation-time offset of a given stroke with respect to the
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Figure 1: A sequence of virtual targets and the corresponding ΣΛ trajectory. (a), the virtual targets and the
corresponding stroke aiming directions. (b), the virtual targets and the corresponding circular arcs. (c), a possible
trajectory generated over the given sequence of virtual targets. While the generated trajectory might appear
similar to a polynomial curve such as a B-Spline, it also describes a smooth and physiologically plausible
velocity profile (d).

previous stroke, which is denoted with ∆t0i; a smaller time offset (i.e. a greater overlap between
lognormal components) will result in a smoother trajectory (Fig. 1, c). The curvature of the trajectory
can be varied by adjusting the central angle of each circular arc, which is denoted with θi. Equations
and further details for the ΣΛ model can be found in Appendix A.

A sequence of virtual targets provides a very sparse spatial description or “motor plan” for the
trajectory evolution. The remaining stroke parameters, ∆t0i and θi, define the temporal, dynamic
and geometric features of the trajectory and we refer to those as dynamic parameters.

2.2 RECURRENT MIXTURE DENSITY NETWORKS

Mixture Density Networks (MDN) were introduced by Bishop (1994) in order to model and predict
the parameters of a Gaussian Mixture Model (GMM), i.e. a set of means, covariances and mixture
weights. Schuster (1999) showed that MDNs could be to model temporal data using RNNs. The
author used Recurrent Mixture Density Networks (RMDN) to model the statistical properties of
speech, and they were found to be more successful than traditional GMMs. Graves (2013) used
LSTM RMDNs to model and synthesise online handwriting, providing the basis for extensions to the
method, also used in Ha et al. (2016); Zhang et al. (2016). Note that in the case of a sequential model,
the RMDN outputs a unique set of GMM parameters for each timestep t, allowing the probability
distribution to change with time as the input sequence develops. Further details can be found in
Appendix C.1.

3 METHOD

We operate on discrete and temporally ordered sequences of planar coordinates. Similarly to Graves
(2013), most of our results come from experiments made on the IAM online handwriting database
(Marti & Bunke, 2002). However, we have made preliminary experiments with other datasets, such
as the Graffiti Analysis Database (Lab, 2009) as well as limited samples collected in our laboratory
from a user with a digitiser tablet.

As a first step, we preprocess the raw data and reconstruct it in the form of ΣΛ model parameters
Section 3.1. We then train and evaluate a number of RMDN models for two distinct tasks:

1. Virtual target prediction. We use the V2V-model for this task. Given a sequence of virtual
targets, this model predicts the next virtual target.

2. Dynamic parameter prediction. For this task we trained and compared two model ar-
chitectures. Given a sequence of virtual targets, the task of these models is to predict the
corresponding dynamic parameters. The V2D-model is condititioned only on the previous
virtual targets, whereas the A2D-model is conditioned on both the previous virtual targets
and dynamic parameters.

We then exploit the modularity of this system to conduct various experiments, details of which can
found in Section 4.
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3.1 PREPROCESSING: RECONSTRUCTING ΣΛ PARAMETERS

A number of methods have been developed by Plamondon et. al in order to reconstruct ΣΛ-model
parameters from digitised pen input data (O’Reilly & Plamondon, 2008; Plamondon et al., 2014;
Fischer et al., 2014). These methods provide the ideal reconstruction of model parameters, given a
high resolution digitised pen trace. While such methods are superior for handwriting analysis and
biometric purposes, we opt for a less precise method (Berio & Leymarie, 2015) that is less sensitive to
sampling quality and is aimed at generating virtual target sequences that remain perceptually similar
to the original trace. We purposely choose to ignore the original dynamics of the input, and base the
method on a geometric input data only. This is done in order to work with training sequences that
are independent of sampling rate, and in sight of future developments in which we intend to extract
handwriting traces from bitmaps, inferring causal/dynamic information from a static input as humans
are capable of (Edelman & Flash, 1987; Freedberg & Gallese, 2007).

Our method operates on a uniformly sampled input contour, which is then segmented in correspon-
dence with perceptually salient key points: loci of curvature extrema modulated by neighbouring
contour segments (Brault & Plamondon, 1993; Berio & Leymarie, 2015), which gives an initial
estimate of each virtual target vi. We then (i) fit a circular arc to each contour segment in order to
estimate the θi parameters and (ii) estimate the ∆t0i parameters by analysing the contour curvature in
the region of each key point. Finally, (iii) we iteratively adjust the virtual target positions to minimise
the error between the original trajectory and the one generated by the corresponding ΣΛ parameters.
For Further details on the ΣΛ parameter reconstruction method, the reader is referred to Appendix B.

(a)

(b)

(c)

Figure 2: ΣΛ parameter reconstruction. (a) The original and reconstructed trajectories. (b) The reconstructed
virtual targets. Note that the virtual targets define a shape that is perceptually similar to the input. (c) Aligned
and scaled speed profiles of the original (gray) and reconstructed (black) trajectories. Although the dynamic
information in the input is ignored (due to uniform sampling), the two speed profiles show similarities in number
and relative-height of peaks.

3.2 DATA AUGMENTATION

We can exploit the ΣΛ parameterisation to generate many variations over a single trajectory, which
are visually consistent with the original, and with a variability that is similar to the one that would be
seen in multiple instances of handwriting made by the same writer (Fig. 3) (Djioua & Plamondon,
2008a; Fischer et al., 2014; Berio & Leymarie, 2015). Given a dataset of n training samples, we
randomly perturb the virtual target positions and dynamic parameters of each sample np times, which
results in a new augmented dataset of size n+ n× np where legibility and trajectory smoothness is
maintained across samples. This would not be possible on the raw online dataset, as perturbations for
each data-point would eventually result in a noisy trajectory.

(a) (b)

Figure 3: Data augmentation step.

3.3 PREDICTING VIRTUAL TARGETS WITH THE V2V-MODEL

The V2V-model is conditioned on a history of virtual targets and given a new virtual target it predicts
the next virtual target (hence the name V2V). Note that each virtual target includes the corresponding
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pen state — up (not touching the paper) or down (touching the paper). Repeatedly feeding the
predicted virtual target back into the model at every timestep allows the model to synthesise sequences
of arbitrary length. The implementation of this model is very similar to the handwriting prediction
demonstrated by Graves (2013), although instead of operating directly on the digitised pen positions,
we operate on the much coarser virtual target sequences which are extracted during the preprocessing
step. The details of this model can be found in Appendix C.3

3.4 PREDICTING DYNAMIC PARAMETERS WITH THE V2D AND A2D MODELS

The goal of these models is to predict the corresponding dynamic parameters (∆t0i, θi) for a given
sequence of virtual targets. We train and compare two model architectures for this task. The V2D-
model is conditioned on the history of virtual targets, and given a new virtual target, this model
predicts the corresponding dynamic parameters (∆t0i, θi) for the current stroke (hence the name
V2D). Running this model incrementally for every stroke of a given virtual target sequence allows us
to predict dynamic parameters for each stroke. The implementation of this model is very similar to
the V2V-model, and details can be found in Appendix C.4.

At each timestep, the V2D model outputs and maintains internal memory of a probability distribution
for the predicted dynamic parameters. However, the network has no knowledge of the parameters that
are sampled and used. Hence, dynamic parameters might not be consistent across timesteps. This
problem can be overcome by feeding the sampled dynamic parameters back into the model at the
next timestep. From a human motor planning perspective this makes sense as, for a given drawing
style, when we decide the curvature and smoothness of a stroke we will take into consideration the
choices made in previously executed strokes.

The A2D model predicts the corresponding dynamic parameters (∆t0i, θi) for the current stroke
conditioned on a history of both virtual targets and dynamic parameters (i.e. all ΣΛ parameters
- hence the name A2D). We use this model in a similar way to the V2D model, whereby we run
it incrementally for every stroke of a given virtual target sequence. However, internally, at every
timestep the predicted dynamic parameters are fed back into the model at the next timestep along
with the virtual target from the given sequence. The details of this implementation can be found in
Appendix C.5.

4 EXPERIMENTS AND RESULTS

Predicting Virtual Targets. In a first experiment we use the V2V model, trained on the prepro-
cessed IAM dataset, to predict sequences of virtual targets. We prime the network by first feeding it a
sequence from the test dataset. This conditions the network to predict sequences that are similar to
the prime. We can see from the results (Fig. 4) that the network is indeed able to produce sequences
that capture the statistical qualities of the priming sequence, such as overall incline, proportions, and
oscillation frequency. On the other hand, we observe that amongst the generated sequences, there are
often patterns which do not represent recognisable letters or words. This can be explained by the
high variability of samples contained in the IAM dataset, and by the fact that our representation is
very concise, with each data-point containing high significance. As a result, the slightest variation in
a prediction is likely to cause a large error in the next. To overcome this problem, we train a new
model with a dataset augmented with 10× variations as described in Section 3.2. Due to our limited
computing resources 1, we test this method on 1/10th of the dataset, which results in a new dataset
with the same size as the original, but with a lower number of handwriting specimens with a number
of subtle variations per specimen. With this approach, the network predictions maintain statistical
similarity with the priming sequences, and patterns emerge that are more evocative of letters of the
alphabet or whole words, with fewer unrecognizable patterns (Fig. 4). To validate this result, we also
test the model’s performance training it on 1/10th of the dataset, without data augmentation, and the
results are clearly inferior to the previous two models. This suggests that the data augmentation step
is highly beneficial to the performance of the network.

1We are thus not able to thoroughly test the large network architectures that would be necessary to train on
the whole augmented dataset.
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(a)

(b)

(c)

Figure 4: Predicting virtual targets. (a) Virtual targets from the test set (not seen during V2V training) used
to prime the V2V models. (b) Sequences generated with the V2V model. (c) Sequences generated with the
augmented V2V model. Note that the non-augmented V2V model produces more undesired ‘errors’. This is
more visibly noticable when rendered with dynamic parameters (Fig. 6).

Predicting Dynamic Parameters. We first evaluate the performance of both the V2D and A2D
models on virtual targets extracted from the test set. Remarkably, although the networks have not
been trained on these sequences, both models predict dynamic parameters that result in trajectories
that are readable, and are often similar to the target sample. We settle on the A2D model trained on a
3× augmented dataset, which we qualitatively assess to produce the best results (Fig. 5).

(b)

(a)

(c)

(d)

Figure 5: Dynamic parameter prediction. (a) Virtual targets from samples in the test set (not seen during training).
(b) The original trajectories provided for comparison. (c) Trajectories reconstructed using predicted dynamic
parameters. (d) Trajectories reconstructed with random dynamic parameters provided for comparison.

We then proceed with applying the same A2D model on virtual targets generated by the V2V models
primed on the test set. We observe that the predictions on sequences generated with the augmented
dataset are highly evocative of handwriting and are clearly different depending on the priming
sequence (Fig. 6, c), while the predictions made with the non-augmented dataset are more likely to
resemble random scribbles rather than human readable handwriting (Fig. 6, b). This further confirms
the utility of the data augmentation step.

—

(b)

(c)

Figure 6: Trajectories reconstructed with dynamic parameters predicted for generated virtual targets from Fig. 4
using (b) non-augmented V2V, (c) augmented V2V.
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User defined virtual targets. The dynamic parameter prediction models can also be used in
combination with user defined virtual target sequences (Fig. 7). Such a method can be used to
quickly and interactively generate handwriting trajectories in a given style, by a simple point and click
procedure. The style (in terms of curvature and dynamics) of the generated trajectory is determined
by the data used to train the A2D model, and by priming the A2D model with different samples, we
can apply different styles to the user defined virtual targets.

Figure 7: Dynamic parameters generated over user specified virtual targets for the word ‘Res’, using the A2D
model trained on the IAM database.

One shot learning. In a subsequent experiment, we apply the data augmentaion method described
in Section 3.2 to enable both virtual target and dynamic prediction models to learn from a small
dataset of calligraphic samples recorded by a user using a digitiser tablet. We observe that with a
low number of augmentations (50×) the models generate quasi-random outputs, and seem to learn
only the left to right trend of the input. With higher augmentation (700×), the system generates
outputs that are consistent to the human eye with the input data (Fig. 8). We also train our models
using only a single sample (augmented 7000×) and again observe that the model is able to reproduce
novel sequences that are similar to the input sample (Fig. 9). Naturally, the output is a form of
recombination of the input, but this is sufficient to synthesise novel outputs that are qualitatively
similar to the input. It should be noted that we are judging the performance of the one-shot learned
models qualitatively, and we may not be testing the full limits of how well the models are able to
generalise. On the other hand, these results, as well as the “style transfer” capabilities exposed in
following section suggest a certain degree of generalisation.

(a) (b) (c)

Figure 8: Training with small (n = 4) datasets. (a) Training set with 4 samples. (b) Output of the networks
when using 50× data augmentation. (c) Output of the networks with 700× data augmentation.

(a) (b) (c)

Figure 9: Training with single training samples. For each row: (a) Training sample (augmented ×7000). (b)
Output of combined V2V/A2D models primed on the training sample. (c) Output without priming.

Style Transfer. Here, with a slight abuse of terminology, we utilise the term "style" to refer to the
dynamic and geometric features (such as pen-tip acceleration and curvature) that determine the visual
qualities of a handwriting trajectory. Given a sequence of virtual targets generated with the V2V
model trained on one dataset, we can also predict the corresponding dynamic parameters with the A2D
model trained on another. The result is an output that is similar to one dataset in lettering structure, but
possesses the fine dynamic and geometric features of the other. If we visually inspect Fig. 10, we can
see that both the sequence of virtual targets reconstructed by the dataset preprocessing method, and
the trajectory generated over the same sequence of virtual targets with dynamic parameters learned
from a different datasets, are both readable. This emphasises the importance of using perceptually
salient points along the input for estimating key-points in the data-set preprocessing step (Section
3.1).
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Furthermore, we can perform the same type of operation within a single dataset, by priming the A2D
model with the dynamic parameters of a particular training example, while feeding it with the virtual
targets of another. To test this we train both (V2V, A2D) models on a corpus containing 5 samples of
the same sentence written in different styles and then augmented 1400× (Fig. 11). We envision the
utility of such as system in combination with virtual targets interactively specified by a user.

(a) (b)

(c)

Figure 10: Style transfer mixing training sets. (a) The priming sequence from the V2V dataset (IAM). (b) A2D
is trained on a different, single user specified sample. (c) The virtual targets from (a) rendered with the dynamic
parameters predicted form the A2D model from (b).

Figure 11: Style transfer using priming. The leftmost column shows the entire training set consisting of 5 user
drawn samples. The top row (slightly greyed out) shows the virtual targets for two of the training examples.
Each cell in the table shows the corresponding virtual targets rendered using the dynamic parameters predicted
with the A2D model primed with the sample in the corresponding row.

5 CONCLUSIONS AND FUTURE WORK

We have presented a system that is able to learn the parameters for a physiologically plausible model
of handwriting from an online dataset. We hypothesise that such a movement centric approach
is advantageous as a feature representation for a number of reasons. Using such a representation
provides a performance that is similar to the handwriting prediction demonstrated by Graves (2013)
and Ha et al. (2016), with a number of additional benefits. These include the ability to: (i) capture
both the geometry and dynamics of a hand drawn/written trace with a single representation, (ii)
express the variability of different types of movement concisely at the feature level, (iii) demonstrate
greater flexibility for procedural manipulations of the output, (iv) mix “styles” (applying curvature
and dynamic properties from one example, to the motor plan of another), (v) learn a generative
model from a small number of samples (n < 5), (vi) generate resolution independent outputs.

The reported work provides a solid basis for a number of different future research avenues. As a first
extension, we plan to implement the label/text input alignment method described in Graves’ original
work that should allow us to synthesise readable handwritten text and also to provide a more thorough
comparison of the two methods. Our method strongly relies on an accurate reconstruction of the
input in the preprocessing step. Improvements should target especially parts of the latter method that
depend on user tuned parameters, such as the identification of salient points along the input (which
requires a final peak detection pass), and measuring the sharpness of the input in correspondence
with salient points.
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A SIGMA LOGNORMAL MODEL

The Sigma Lognormal model (Plamondon & Djioua, 2006) describes complex handwriting trajectories
via the vectorial superimposition of lognormal strokes. The corresponding speed profile Λi(t) assumes
a variably asymmetric "bell shape" which is described with a 3 parameter lognormal function

Λi(t) = − 1

σi
√

2π(t− t0i)
exp

(
(ln(t− t0i)− µi)2

2σi2

)
(1)

where t0i defines the activation time of a stroke and the parameters µi and σi determine the shape
of the lognormal function. µi is referred to as log-time delay and is biologically interpreted as
the rapidity of the neuromuscular system to react to an impulse generated by the central nervous
system (Plamondon et al., 2003); σi is referred to as log-response time and determines the spread and
asymmetry of the lognormal.
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The curvilinear evolution of strokes is described with a circular arc shape, which results in

φi(t) = θi + θi

[
1 + erf

(
ln(t− t0i)− µi

σi
√

2

)]
, (2)

where θi is the central angle of the circular arc that defines the shape of the ith stroke.

The planar evolution of a trajectory is defined by a sequence of virtual targets {vi}i=mi=1 , where a
trajectory with m virtual targets will be characterised by m− 1 circular arc strokes. A ΣΛ trajectory,
parameterised by the virtual target positions, is given by

ξ(t) = v1 +

∫ t

0

dτΛi(τ)

m−1∑
i=1

Φi(τ) (vi+1 − vi), (3)

with Φi(t) =

[
h(θi)cosφi(t) −h(θi)sinφi(t)
h(θi)sinφi(t) −h(θi)cosφi(t)

]
, and h(θi) =

{
2θi

2sinθi
if |sinθi| > 0,

1 otherwise,
(4)

which scales the extent of the stroke based on the ratio between the perimeter and the chord length of
the circular arc.

Intermediate parameterisation. In order to facilitate the precise specification of timing and profile
shape of each stroke, we recur to an intermediate parametrisation that takes advantage of a few known
properties of the lognormal (Djioua & Plamondon, 2008b) in order to define each stroke with (i) a
time offset ∆ti with respect to the previous stroke, (ii) a stroke duration Ti and (iii) a shape parameter
αi, which defines the skewedness of the lognormal. The corresponding ΣΛ parameters {t0i, µi, σi}
can be then computed with:

σi = ln(1 + αi), (5)

µi = −ln

(
−e

−3σi − e3σi

Ti

)
, (6)

and
t0i = t1i − eµ−3σ t1i = t1(i−1) + ∆ti t1(0) = 0, (7)

where t1i is the onset time of the lognormal stroke profile. As α approaches 0, the shape of the
lognormal converges to a Gaussian, with mean t1 + eµ−σ

2

(the mode of the lognormal) and standard
deviation d

6 .
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Figure 12: Lognormals with varying "skeweness" parameter α and corresponding values for µ, σ. As α→ 0,
the lognormal approaches a Gaussian.
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B RECONSTRUCTING ΣΛ PARAMETERS FROM AN ONLINE DATASET

The ΣΛ parameter reconstruction method operates on a input contour uniformly sampled at a fixed
distance which is defined depending on the extent of the input, where we denote the kth sampled point
along the input with p[k]. The input contour is then segmented in correspondence with perceptually
salient key points, which correspond with loci of curvature extrema modulated by neighbouring
contour segments (Brault & Plamondon, 1993; Berio & Leymarie, 2015). The proposed approach
shares strong similarities with previous work done for (i) compressing online handwriting data with a
circular-arc based segmentation (Li et al., 1998) and (ii) for generating synthetic data for handwriting
recognisers (Varga et al., 2005). The parameter reconstruction algorithm can be summarised with the
following steps:

• Find m key-points in the input contour.

• Fit a circular arc to each contour segment defined between two consecutive key-points
(defining individual strokes), and obtain an estimate of each curvature parameter θi.

• For each stroke compute the corresponding ∆ti parameter by analysing the curvature signal
in the region of the corresponding key-point.

• Define an initial sequence of virtual targets with m positions corresponding with each input
key-point.

• Repeat the following until convergence or until a maximum number of iterations is reached
Berio & Leymarie (2015):

– Integrate the ΣΛ trajectory with the current parameter estimate.
– Identify m key-points in the generated trajectory.
– Move the virtual target positions to minimise the distance between the key-points of

the generated trajectory and the key-points on the input contour.

The details for each step are highlighted in the following paragraphs.

Estimating input key-points. Finding significant curvature extrema (which can be counted as
convex and concave features for a closed/solid shape) is an active area of research, as relying on
discrete curvature measurements remains challenging. We currently rely on a method described by
Feldman & Singh (2005), and supported experimentally by De Winter & Wagemans (2008): first
we measure the turning angle at each position of the input p[k] and then compute a smooth version
of the signal by convolving it with a Hanning window. We assume that the turning angles have

Figure 13: Input key-point estimation. Left, the (smoothed) turning angle surprisal signal and the key-points
estimated with peak detection. Right, the corresponding key-points along the input trajectory.

been generated by a random process with a Von Mises distribution with mean at 0 degrees, which
corresponds with giving maximum probability to a straight line. We then measure the surprisal (i.e.
the negative logarithm of the probability) for each sample as defined by Feldman & Singh (2005),
which normalised to the [0, 1] range simplifies to:

1− cos(θ[k]), (8)

where θ[k] is the (smoothed) turning angle. The first and last sample indices of the surprisal signal
together with its local maxima results in m key-point indices {ẑi}. The corresponding key-points
along the input contour are then given by {p [ẑi]}.
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Estimating stroke curvature parameters. For each section of the input contour defined between
two consecutive key-points, we estimate the corresponding stroke curvature parameter θi by first
computing a least square fit of a circle to the contour section. We then compute the internal angle of
the arc supported between the two key-points, which is equal 2θi, i.e. two times the corresponding
curvature parameter θi.

Figure 14: Fitting circles (dotted red) and circular arcs (red) to the input.

Estimating stroke time-overlap parameters. This step is based on the observation that a smaller
values of ∆t0i, i.e. a greater time overlap between strokes, result in smoother trajectories. On
the contrary, a sufficiently large value of ∆t0i will result in a sharp corner in proximity of the
corresponding virtual target. We exploit this notion, and compute an estimate of the ∆t0i parameters
by examining the sharpness of the input contour in the region of each key-point.

To do so we examine the previously computed turning angle surprisal signal, in which we can observe
that sharp corners in the contour correspond with sharper peaks, while smoother corners correspond
with smooth peaks with a larger spread. By treating the surprisal signal as a probability density
function, we can then use statistical methods to measure the shape of each peak with a mixture of
parametric distributions, and examine the shape of each mixture component in order to get an estimate
of the corresponding sharpness along the input contour. To do so we employ a variant of Expectation
Maximisation (EM) (Dempster et al., 1977) in which we treat the distance along the contour as a
random variable weighted by the corresponding signal amplitude normalised to the [0, 1] range. Once
the EM algorithm has converged, we treat each mixture component as a radial basis function (RBF)
centred at the corresponding mean, and use linear regression as in Radial Basis Function Networks
(Stulp & Sigaud, 2015) to fit the mixture parameters to the original signal (Calinon, 2016). Finally
we generate an estimate of sharpness λi (bounded in the [0, 1] range) for each key point using as a
logarithmic function of the mixture parameters and weights. The corresponding ∆t0i parameters are
then given by

∆ti = ∆tmin + (∆tmax −∆tmin)λi , (9)

where ∆tmin and ∆tmax are user specified parameters that determine the range of the ∆t0i estimates.

Figure 15: Sharpness estimation. Left, the GMM components estimated from the turning angle surprisal signal.
Right, the ΣΛ trajectory generated before the final iterative adjustment step. Note that at this stage the virtual
target positions correspond with the estimated input key-points.
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Note that we currently utilise an empirically defined function for this task. But in future steps, we
intend to learn the mapping between sharpness and mixture component parameters from synthetically
samples generated with the ΣΛ model (for which ∆t0i, and consequently λi, are known).

Iteratively estimating virtual target positions. The loci along the input contour corresponding
with the estimated key-points provide an initial estimate for a sequence of virtual targets, where
each virtual target position is given by vi = p[ẑi]. Due to the trajectory-smoothing effect produced
by the time overlaps, the initial estimate will result in a generated trajectory that is likely to have
a reduced scale with respect to the input we wish to reconstruct (Varga et al., 2005). In order to
produce a more accurate reconstruction, we use an iterative method that shifts each virtual target
towards a position that will minimise the error between the generated trajectory and the reconstructed
input. To do so, we compute an estimate of m output key-points {ξ (zi)} in the generated trajectory,
where z2, ..., zm are the time occurrences at which the influence of one stroke exceeds the previous.
These will correspond with salient points along the trajectory (extrema of curvature) and can be easily
computed by finding the time occurrence at which two consecutive lognormals intersect. Similarly to
the input key-point case, ξ(z1) and ξ(zm) respectively denote the first and last points of the generated
trajectory. We then iteratively adjust the virtual target positions in order to move each generated

vi final

vi initial

y(zi)^^

p(zi)

Figure 16: Final trajectory reconstruction step. Left, iterative adjustment of virtual target positions. Right, the
final trajectory generated with the reconstructed dynamic parameters.

key-point ξ(zi) towards the corresponding input key-point p[ẑi] with:

vi ← vi + p [ẑi]− ξ (zi) , (10)

The iteration continues until the Mean Square Error (MSE) of the distances between every pair p [ẑi]
and ξ(zi) is less than an experimentally set threshold or until a maximum number of iterations is
reached (Fig. 16). This method usually converges to a good reconstruction of the input within few
iterations (usually < 5). Interestingly, even though the dynamic information of the input is discarded,
the reconstructed velocity profile is often similar to the original (in number of peaks and shape),
which can be explained by the extensively studied relationships between geometry and dynamics of
movement trajectories (Viviani & Terzuolo, 1982; Lacquaniti et al., 1983; Viviani & Schneider, 1991;
Flash & Handzel, 2007).

C RMDN MODEL DETAILS

In order to increase the expressive generative capabilities of our networks, we train them to model
parametric probability distributions. Specifically, we use Recurrent Mixture Density Networks that
output the parameters of a bivariate Gaussian Mixture Model.

C.1 BIVARIATE RECURRENT MIXTURE DENSITY NETWORK

If a target variable zt can be expressed as a bivariate GMM, then for K Gaussians we can use
a network architecture with output dimensions of 6K. This output vector would then consist of
(µ̂t ∈ IR2K , σ̂t ∈ IR2K , ρ̂t ∈ IRK , π̂t ∈ IRK), which we use to calculate the parameters of the
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GMM via (Graves, 2013)

µkt = µ̂kt : means for k’th Gaussian, µkt ∈ IR2

σkt = exp(σ̂kt ) : standard deviations for k’th Gaussian, σkt ∈ IR2

ρkt = tanh(ρ̂kt ) : correlations for k’th Gaussian, ρkt ∈ (−1, 1)

πkt = softmax(π̂kt ) : mixture weight for k’th Gaussian ,
K∑
k

πkt = 1

(11)

We can then formulate the probability distribution function Pt at timestep t as

Pt =

K∑
k

πktN(zt | µkt ,σkt , ρkt ), where (12)

N (x | µ,σ, ρ) =
1

2πσ1σ2
√

1− ρ2
exp

[
− Z

2(1− ρ2)

]
, and (13)

Z =
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ2)(x2 − µ2)

σ1σ2
(14)

C.2 TRAINING OBJECTIVE

If we let θ denote the parameters of a network, and given a training set S of input-target pairs
(x ∈X, ŷ ∈ Ŷ ), our training objective is to find the set of parameters θML which has the maximum
likelihood (ML). This is the θ that maximises the probability of training set S and is formulated as
(Graves, 2008)

θML = arg max
θ

Pr(S | θ) (15)

= arg max
θ

S∏
(x,ŷ)

Pr(ŷ | x,θ). (16)

Since the logarithm is a monotonic function, a common method for maximizing this likelihood is
minimizing its negative logarithm, also known as the Negative Log Likelihood (NLL), Hamiltonian or
surprisal (Lin & Tegmark, 2016). We can then define our cost function J as

J = − ln

S∏
(x,ŷ)

Pr(ŷ | x,θ) (17)

= −
S∑

(x,ŷ)

ln Pr(ŷ | x,θ). (18)

For a bivariate RMDN, the objective function can be formulated by substituting eqn. (12) in place of
Pr(ŷ | x,θ) in eqn. (18).

C.3 V2V MODEL

Input At each timestep i, the input to the V2V model is xi ∈ IR3, where the first two elements
are given by ∆vi (the relative position displacement for the i’th stroke, i.e. between the i’th virtual
target and the next), and the last element is ui ∈ {0, 1} (the pen-up state during the same stroke).
Given input xi and its current internal state (ci,hi), the network learns to predict xi+1, by learning
the parameters for the Probability Density Function (PDF) : Pr(xi+1 |xi, ci,hi). With a slight abuse
of notation, this can be expressed more intuitively as Pr(xi+1 | xi,xi−1, ...,xi−n) where n is the
maximum sequence length.
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Output We express the predicted probability of ∆vi as a bivariate GMM as described in Section
C.1, and ui as a Bernoulli distribution. Thus for K Gaussians the network has output dimensions
of (6K + 1) which, in addition to eqn. (11), contains êi which we use to calculate the pen state
probability via (Graves, 2013)

ei =
1

1 + exp(êi)
, ei ∈ (0, 1) (19)

Architecture We use Long Short-Term Memory (Hochreiter & Schmidhuber, 1997) networks with
input, output and forget gates (Gers et al., 2000), and we use Dropout regularization as described by
Pham et al. (2014). We employ both a grid search and a random search (Bergstra & Bengio, 2012) on
various hyperparameters in the ranges: sequence length {64, 128}, number of hidden recurrent layers
{1, 2, 3}, dimensions per hidden layer {64, 128, 256, 400, 512, 900, 1024}, number of Gaussians {5,
10, 20}, dropout keep probability {50%, 70%, 80%, 90%, 95%} and peepholes {with, without}.

For comparison we also tried a deterministic architecture whereby instead of outputing a probability
distribution, the network outputs a direct prediction for xi+1. As expected, the network was unable
to learn this function, and all sequence of virtual targets synthesized with this method simply travel in
a repeating zig-zag line.

Training We use a form of Truncated Backpropagation Through Time (BPTT) (Sutskever, 2013)
whereby we segment long sequences into overlapping segments of maximum length n. In this case
long-term dependencies greater than length n are lost, however with enough overlap the network can
effectively learn a sliding window of length n timesteps. We shuffle our training data and reset the
internal state after each sequence. We empirically found an overlap factor of 50% to perform well,
though further studies are needed to confirm the sensitivity of this figure.

We use dynamic unrolling of the RNN, whereby the number of timesteps to unroll to is not set at
compile time, in the architecture of the network, but unrolled dynamically while training, allowing
variable length sequences. We also experimented with repeating sequences which were shorter than
the maximum sequence length n, to complete them to length n. We found that for our case they
produced desirable results, with some side-effects which we discuss in later sections.

We split our dataset into training: 70%, validation: 20% and test:10% and use the Adam optimizer
(Kingma & Ba, 2014) with the recommended hyperparameters. To prevent exploding gradients we
clip gradients by their global L2 norm as described in (Pascanu et al., 2013). We tried thresholds of
both 5 and 10, and found 5 to provide more stability.

We formulate the loss function J to minimise the Negative Log Likelihood as described in Section
C.2 using the probability density functions described in eqn. (12) and eqn. (19).

C.4 V2D MODEL

Input The input to this network at each timestep i is identical to that of the V2V-model, xi ∈ IR3,
where the first two elements are ∆vi (normalised relative position displacement for the i’th stroke),
and ui ∈ {0, 1} (the pen state during the same stroke). Given input xi and its current internal state
(ci,hi), the network learns to predict the dynamic parameters (∆t0i, θi) for the current stroke i, by
learning the parameters for Pr(∆t0i, θi | xi, ci,hi). Again with an abuse of notation, this can be
expressed more intuitively as Pr(∆t0i, θi | xi,xi−1, ...,xi−n) where n is the maximum sequence
length.

Output We express the predicted probability of the dynamic parameters (∆t0i, θi) as a bivariate
GMM as described in Section C.1.

Architecture We explored very similar architecture and hyperparamereters as the V2V-model, but
found that we achieved much better results with a shorter maximum sequence length. We trained a
number of models with a variety of sequence lengths {3, ..., 8, 13, 16, 21, 32}.

Training We use the same procedure for training as the V2V-model.
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C.5 A2D MODEL

Input The input to this network xi ∈ IR5 at each timestep i is slightly different to the V2V and
V2D models. Similar to the V2V and V2D models, the first two elements are ∆vi (normalised
relative position displacement for the i’th stroke), and the third element is ui ∈ {0, 1} (the pen state
during the same stroke). However in this case the final two elements are the dynamic parameters for
the previous stroke (∆t0i−1, θi−1), normalized to zero mean and unit standard deviation.

Given input xi and its current internal state (ci,hi), the network learns to predict the dynamic param-
eters (∆t0i, θi) for the current stroke i, by learning the parameters for Pr(∆t0i, θi |xi, ci,hi). Again
with an abuse of notation, this can be expressed more intuitively as Pr(∆t0i, θi | xi,xi−1, ...,xi−n)
where n is the maximum sequence length.

Output The output of this network is identical to that of the V2D model.

Architecture We explored very similar architecture and hyperparamereters as the V2D model.

Training We use the same procedure for training as the V2V-model.

C.6 MODEL SELECTION

We evaluated and batch rendered the outputs of many different architectures and models at different
training epochs, and settled on models which were amongst those with the lowest validation error,
but also produced visibily more desirable results. Once we picked the models, the results displayed
are not cherry picked.

The preprocessed IAM dataset contains 12087 samples (8460 in the training set) with maximum
sequence length 305, minimum 6, median 103 and mean 103.9. For the V2V/V2D/A2V models
trained on the IAM database we settle on an architecture of 3 recurrent layers, each with size 512, a
maximum sequence length of 128, 20 Gaussians, dropout keep probability of 80% and no peepholes.

For the augmented one-shot learning models we used similar architectures, but found that 2 recurrent
layers each with size 256 was able to generalise better and produce more interesting results that both
captured the prime inputs without overfitting.

For V2V we used L2 normalisation on ∆vi input, and for A2D/V2D we used

We also tried a number of different methods for normalising and representing ∆vi on the input to the
models. We first tried normalising the components individually to have zero mean and unit standard
deviation. We also tried normalising uniformly on L2 norm again to have zero mean and unit standard
deviation. Finally, we tried normalised polar coordinates, both absolute and relative.
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Figure 17: Schematic overview of the system.
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