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ABSTRACT

Recent studies show that the choice of the prior has a profound effect on the ex-
pressiveness of deep latent factor models. In this paper, we propose to learn the
prior from data for adversarial autoencoders (AAEs). We introduce the notion of
code generators to transform manually selected simple priors into ones that can
better characterize the data distribution.

1 INTRODUCTION

Deep latent factor models, such as variational autoencoders (VAEs) and adversarial autoencoders
(AAEs), involve specifying a prior distribution over latent variables and defining a deep generative
network (i.e., the decoder) that maps latent variables to data space. Training such deep models usu-
ally requires learning a recognition network (i.e., the encoder) regularized by the prior. Traditionally,
a simple prior, e.g. the standard normal distribution (Kingma & Welling, 2013), is used. However,
some recent works (Hoffman & Johnson, 2016; Goyal et al., 2017; Tomczak & Welling, 2017) sug-
gest that the choice of the prior may have a profound impact on the expressiveness of the model.
Burda et al. (2015) indicate that the standard normal prior often results in overly regularized mod-
els. Hoffman & Johnson (2016) conjecture that multi-modal priors can achieve a higher variational
lower bound on the data log-likelihood. Tomczak & Welling (2017) further confirm this conjec-
ture by showing that their multi-modal prior consistently outperforms simple priors. Goyal et al.
(2017) learn a tree-structured nonparametric Bayesian prior for capturing the hierarchy of semantics
presented in the data. All these priors are learned under the VAE framework.

In this paper, we propose the notion of code generators for learning the prior from data for AAEs.
The code generator, modeled by a neural network, is to transform a manually-specified simple prior
into one that together with the decoder can better characterize the data distribution. To this end, we
generalize the AAE framework in several significant ways: (a) we train a code generator to minimize
an adversarial loss in data space; (b) we employ a learned similarity metric (Larsen et al., 2015) for
training the autoencoder; and (c) we maximize the mutual information between part of the code
generator input and the decoder output for supervised and unsupervised tasks using InfoGAN (Chen
et al., 2016).

2 LEARNING THE PRIOR

To train the code generator, an objective function is needed to shape the distribution at its output.
Normally, we wish to find a prior that, together with the decoder, would lead to a distribution that
maximizes the data likelihood. We are however faced with two challenges. First, the output of the
code generator could be any distribution, which makes the likelihood function and its variational
lower bound intractable. Second, the decoder has to be learned simultaneously, which creates a
moving target for the code generator.

To address the first challenge, we impose an adversarial loss on the decoder output when training
the code generator. In symbols, this is to minimize

LI
GAN = log(DI(x)) + log(1−DI(dec(zc))), (1)

where zc = CG(z) is the code generator output driven by a noise z ∼ p(z), DI is the discriminator
in data space, and dec(zc) is the decoder output driven by zc.
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(a) The prior improvement phase (b) The AAE phase

Figure 1: Training phases.

(a) (b)

Figure 2: Providing conditions: (a) the supervised setting and (b) the unsupervised setting.

To address the second challenge, we propose to alternate training of the code generator and the
decoder/encoder until convergence, as illustrated in Figure 1. In the prior improvement phase, we
update the code generator based on minimizing Eq. (1) while fixing the encoder. In the regular AAE
phase, we fix the code generator and update the autoencoder following the training procedure of
AAE. Specifically, the encoder is regularized by the following adversarial loss in latent code space:

LC
GAN = log(DC(zc)) + log(1−DC(enc(x))), (2)

where enc(x) is the encoder output driven by x and DC is the discriminator in latent space. Because
the decoder will be updated in both phases, the convergence of the decoder relies on consistent
training objectives during the alternation of training phases. The widely used pixel-wise squared
error criterion in the AAE phase tends to produce blurry decoded images, which conflicts with the
adversarial objective in the prior improvement phase. We thus adopt the learned similarity metric
(Larsen et al., 2015) to compute the reconstruction errors in feature domain so that the decoder is
driven consistently in both phases towards producing realistic images.

Providing conditions. In the following experiments, we showcase the ability of the proposed
method to generate images conditionally on a control variable s input to the code generator, as
illustrated in Figure 2. With the supervised setting, the s denotes the label associated with the input
image, whereas with the unsupervised setting, it is governed by a categorical distribution. To have
the code generator pick up the information carried by the variable s when generating the latent code,
we introduce the variational learning technique in InfoGAN (Chen et al., 2016) to maximize the
mutual information I(s; dec(zc)) between the variable s and the generated image dec(zc).

3 EXPERIMENTS

This section demonstrates the superiority of the proposed model (AAE + learned similarity metric
+ learned prior) over a baseline model (AAE + learned similarity metric + fixed prior) in terms
of learning disentangled representations on MNIST and CIFAR-10. Both models implement the
same autoencoder with the ResNet and have the same latent space dimension (64-D), in order to
understand the sole effect of the learned prior. The fixed prior regularizes the encoder output without
being transformed by the code generator.

Figure 3 compares sample images generated by the decoder with the learned (proposed) and fixed
(baseline) priors, respectively. Both models are trained under the supervised and unsupervised set-
tings (cf. Providing conditions). On MNIST, both models work well in separating the label infor-
mation from the remaining (style) information. On CIFAR-10, ours generates semantically more
discernible images that match the labels in the supervised setting, whereas in the unsupervised set-
ting, both exhibit a tendency to cluster images with similar colors. Moreover, the learned prior
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(a) Supervised: learned prior (b) Supervised: fixed prior

(c) Unsupervised: learned prior (d) Unsupervised: fixed prior

(e) Supervised: learned prior (IS: 6.52) (f) Supervised: fixed prior (IS: 6.2)

(g) Unsupervised: learned prior (IS: 6.02) (h) Unsupervised: fixed prior (IS: 5.73)

Figure 3: Sample images produced by the proposed and baseline models trained supervisedly and
unsupervisedly on MNIST and CIFAR-10. Each column of images have the same label/class infor-
mation but varied Gaussian noise. Inception scores (IS) are presented for CIFAR-10 images.

(a) Supervised: learned (b) Supervised: fixed (c) Unsupervised: learned (d) Unsupervised: fixed

(e) Supervised: learned (f) Supervised: fixed (g) Unsupervised: learned (h) Unsupervised: fixed

Figure 4: Latent code space visualization on MNIST (upper) and CIFAR-10 (lower).

consistently outperforms the fixed prior in terms of inception scores. Figure 4 further visualizes
their latent code space with T-SNE (Maaten & Hinton, 2008). It is seen that the learned prior forms
obvious clusters according to the label/class in both settings, presenting its regularization effect on
the encoder output. On the contrary, the fixed prior, although clustering in high-dimensional space
along the label/class-defining dimensions, shows a uni-modal distribution in 2-D space due to the
limitations of T-SNE. These confirm the benefits of the learned prior in generating better quality im-
ages and learning better disentangled representations than the fixed prior. For complete experimental
results, please visit our website1.

1https://github.com/a514514772/Learning-Priors-for-Adversarial-Autoencoders
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