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ETH Zürich
aeirikur@ethz.ch

Radu Timofte
ETH Zürich
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ABSTRACT

This past year alone has seen unprecedented leaps in the area of learning-based
image translation, namely the unsupervised model CycleGAN, by Zhu et al.. But
experiments so far have been tailored to merely two domains at a time, and scal-
ing them to more would require an quadratic number of models to be trained.
With two-domain models taking days to train on current hardware, the number of
domains quickly becomes limited by training. In this paper, we propose a multi-
component image translation model and training scheme which scales linearly -
both in resource consumption and time required - with the number of domains.

1 INTRODUCTION

Introduced by Zhu et al., CycleGAN (Zhu et al. (2017)) uses a conditional setting where Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. (2014)) create a framework for unsupervised
image-to-image translation, meaning no alignment of image pairs are necessary. CycleGAN con-
sists of two pairs of neural networks, (G,DA) and (F,DB), where the translators between domains
A and B are G : A → B and F : B → A. DA is trained to discriminate between real images a
and translated images F (a), while DB is trained to discriminate between images b and G(a). The
system is trained using both an adversarial loss and a cycle consistency loss, the latter regularizing
the unconstrained problem of translating in a single direction, by encouraging the mappings G and
F to be inverses of each other such that F (G(a)) ≈ a and G(F (b)) ≈ b.

The concurrent work of StarGAN (Choi et al. (2017)) aimed to extend CycleGAN to multiple do-
mains, by having only one generator and discriminator to be shared by all domains. While this
proved satisfactory for translation among a limited number of human-face attributes, this approach
is, in theory, unsustainable for large numbers of domains or for domains with large variation.

2 THE COMBOGAN MODEL
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Figure 1: ComboGAN: (a) Model design setup for N domains. (b) Example inference functionality
of translation from one domain to all others.
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Decoupling the Generators The scalability of setups such as CycleGAN’s is hindered by the fact
that both networks used are tied jointly to two domains, one from some domain A to B and the other
from B to A. To add another domain C, we would then need to add four new networks, A to C,
C to A, B to C, and C to B. To solve this issue of exploding model counts, we introduce a new
model, ComboGAN, which decouples the domains and networks from each other. ComboGAN’s
generator networks are identical to the networks used in CycleGAN (see Appendix A for network
specifications), yet we divide each one in half, labeling the frontal halves as encoders and the latter
halves as decoders. We can now assign an encoder and decoder to each domain. This approach is
similar to the one Google took for multi-language machine translation (Johnson et al. (2016)).

As the name ComboGAN suggests, we can combine the encoders and decoders of our trained model
like building blocks, taking as input any domain and outputting any other. For example during
inference, to transform an image x from an arbitrary domain X to y from domain Y , we simply
perform y = GY X(x) = DecoderY (EncoderX(x)). With only one generator (an encoder-decoder
pair) per domain, the number of generators scales exactly linearly with the number of domains. The
discriminators remain untouched in our experiment; the number of discriminators already scales
linearly when each domain receives its own. Figure 1 displays our full setup.

Training While ComboGAN’s discriminators are trained identically to CycleGAN, the generator
training scheme must be adapted. Fully utilizing the same generator losses as CycleGAN requires
focusing on two domains, as the generator’s cyclic and adversarial training are not directly adaptable
for more domains. At the beginning of each iteration, we select two domains X,Y ∈ {1..n} from
our n domains, uniformly at random. Then maintaining the same notation as CycleGAN’s training
loss, we set A := X and B := Y and proceed as CycleGAN would for the remainder of the iteration.

Randomly choosing between two domains per iteration means we should eventually cover training
between all pairs of domains uniformly. Though of course the training time (number of iterations)
required must increase as well. We keep the training linear in the number of domains, since the
number of parameters in our model increases linearly with the number of domains, as well. We only
desire each domain - not each pair - to be chosen for a training iteration the same number of times
as in CycleGAN. We observe that since a domain X is chosen in each iteration with probability 2

n ,
during training it is chosen in expectation n

2 · kn times. Requiring equality to the two-domain case
k2, we obtain kn = k2

2 n, or k2

2 iterations per domain, which proves satisfactory in practice.

It is easy to see that for the case of two domains, ComboGAN becomes exactly equivalent to Cy-
cleGAN. But for more than two domains, the model must be implicitly placing images into a shared
latent space - ideally invariant to all domains. This has potential to be exploited for other tasks.
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Figure 2: (a) Validation results for pictures of the Alps in all four seasons. Original images lie on
the diagonal. (b) Same Alps images but from standard CycleGAN results instead.
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3 EXPERIMENTAL RESULTS
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Figure 3: Validation results for our 14 painters. Original images lie on the diagonal.

The first of two datasets used in this experiment consists of approximately 6,000 images of the
Alps mountain range scraped from Flickr. The photos are individually categorized into four seasons
based on their timestamps. Figure 2 shows validation image results for ComboGAN trained on the
four seasons for 400 iterations. The same figure also contains results from CycleGAN trained on
all six combinations of the four seasons to produce the same images, demonstrating that Combo-
GAN maintains comparable quality, while only training four networks for 400 epochs instead of
CyleGAN’s twelve nets for a total of 1200 epochs.

The other dataset is a collection of approximately 10,000 paintings total from 14 different artists
from Wikiart.org, whose names are listed above Figure 3, which displays randomly-chosen vali-
dation images. Looking at columns as a whole, one can see common texture behavior and color
palettes common to the pieces per artist column. The fourteen painters dataset ran 1400 epochs in
220 hours on our nVidia Titan X GPU with ComboGAN. Pairwise CycleGAN instead would have
taken about 2860 hours, or four months, and required (14 choose 2) = 91 models, thus comparison
with CycleGAN is not shown as it is computationally infeasible.

It’s noteworthy that the training hyperparameters are unaltered from the original CycleGAN; no
modifcations were needed for ComboGAN to train stably every time. Our code is available at
https://github.com/AAnoosheh/ComboGAN and our original paper with full details can
be found at https://arxiv.org/abs/1712.06909
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