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ABSTRACT

Machine learning models of music typically break down the task of composition
into a chronological process, composing a piece of music in a single pass from
beginning to end. On the contrary, human composers write music in a nonlin-
ear fashion, scribbling motifs here and there, often revisiting choices previously
made. We explore the use of blocked Gibbs sampling as an analogue to the hu-
man approach, and introduce COCONET, a convolutional neural network in the
NADE family of generative models (Uria et al., 2016). Despite ostensibly sam-
pling from the same distribution as the NADE ancestral sampling procedure, we
find that a blocked Gibbs approach significantly improves sample quality. We
provide evidence that this is due to some conditional distributions being poorly
modeled. Moreover, we show that even the cheap approximate blocked Gibbs
procedure from [Yao et al.| (2014) yields better samples than ancestral sampling.
We demonstrate the versatility of our method on unconditioned polyphonic music

generation.
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Figure 1: Ancestral inpainting of a corrupted Bach chorale by COCONET. Colors are used to
distinguish the four voices. Grayscale heatmaps show predictions p(x; | x¢). The pitch sampled
in the current step is indicated by a rectangular outline. The original Bach chorale is shown in the
bottom right. Step 0 shows the corrupted Bach chorale. Step 64 shows the result.

*Work done while at Google Brain.
"Work done while at Google Brain.
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1 INTRODUCTION

Machine learning can be used to create compelling art. This was shown recently by Deep-
Dream (Mordvintsev et al.,2015)), an optimization process that created psychedelic transformations
of images. A similar idea underlies a variety of style transfer algorithms (Gatys et al., 2015), which
impose textures and colors from one image onto another. More recently, the multistyle pastiche gen-
erator (Dumoulin et al.,|2016)) exposes adjustable knobs that allow users of the system fine-grained
control over style transfers. Neural doodle (Champandard, 2016) further closes the feedback loop
between algorithm and artist.

We wish to bring similar artistic tools to the domain of music. Whereas previous work in music has
relied mainly on sequence models such as Hidden Markov Models (HMMs, Baum & Petrie| (1966))
and Recurrent Neural Networks (RNNs, Rumelhart et al.|(1988))), we instead employ convolutional
neural networks due to their emphasis on capturing local structure and their invariance properties.
Moreover, convolutional neural networks have shown to be extremely versatile once trained, as
shown by a variety of creative uses in the literature (Mordvintsev et al.l 2015} Gatys et al.l 2015;
Almahairi et al., 2015; |[Lamb et al., 2016)).

We introduce COCONET, a deep convolutional model trained to reconstruct partial scores. Once
trained, COCONET provides direct access to all conditionals of the form p(x; | x¢) where x¢ is a
fragment of a musical score x and ¢ ¢ C'is in its complement. Figure [I|shows an example of such
conditionals used in completing a partial score.

COCONET is an instance of deep orderless NADE [Uria et al.| (2014), and thus learns an ensemble of
factorizations of the joint p(x). However, the sampling procedure for orderless NADE is not order-
less. Sampling from an orderless NADE involves (randomly) choosing an ordering, and sampling
ancestrally according to the chosen ordering. We have found that this produces poor results for the
highly structured and complex domain of musical counterpoint.

Instead, we propose to use blocked-Gibbs sampling, essentially improving sample quality through
rewriting. An instance of this was previously explored by Yao et al.| (2014) who employed a NADE
in the transition operator for a Markov Chain, yielding a Generative Stochastic Network (GSN). The
transition consists of a corruption process that masks out a subset x_,¢ of variables, followed by a
process that independently resamples variables x;,i ¢ C according to the distribution py(x; | x¢)
emitted by the NADE. Crucially, the effects of independent sampling are amortized by annealing the
probability with which variables are masked out. Whereas|Yao et al.|(2014) treat their procedure as
a cheap approximation to ancestral sampling, we find that it produces superior samples.

We show the versatility of our method on unconditioned polyphonic music generation.

Section 2] discusses previous work in the area of automatic musical composition. The details of our
model and training procedure are laid out in Section [3| In Section 4| we show that our approach is
equivalent to that of deep and orderless NADE [Uria et al| (2014). We discuss sampling from our
model in Section 5] Results of quantitative and qualitative evaluations are reported in Section [6]
Finally, Section[/|concludes.

2 RELATED WORK

Sequence models such as HMMs and RNNs are a natural choice for modeling music. However,
one of the challenges in adapting such models to music is that music generally consists of multiple
interdependent streams of events. This can be most clearly seen in the notion of counterpoint,
which refers to the relationships between the movement of individual instruments in a musical work.
Compare this to typical sequence domains such as speech and language, which involve modeling a
single stream of events: a single speaker or a single stream of words.

Successful application of sequence models to music hence requires serializing or otherwise re-
representing the music to fit the sequence paradigm. For instance, Liang| (2016)) serialize four-part
Bach chorales by interleaving the parts, while |Allan & Williams| (2005)) construct a chord vocab-
ulary. Boulanger-Lewandowski et al| (2012) adopt a piano roll representation, which is a binary
matrix x such that x;; is hot if some instrument is playing pitch ¢ at time ¢. To model the joint
probability distribution of the multi-hot pitch vector x;, they employ a Restricted Boltzmann Ma-
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chine (RBM (Smolensky, |1986; Hinton et al., | 2006)) or Neural Autoregressive Distribution Estima-
tor (Uria et al., [2016)) at each time step.

Moreover, the behavior of human composers does not fit the chronological mold assumed by previ-
ous authors. A human composer might start his work with a coarse chord progression and iteratively
refine it, revisiting choices previously made. Sampling according to z; ~ p(xt|x<+), as is common,
cannot account for the kinds of timeless dependencies that composers employ. [Hadjeres et al.[(2016)
sidestep the choice of causal factorization and instead employ an undirected Markov model to learn
pairwise relationships between neighboring notes up to a specified number of steps away in a score.
Sampling involves Markov Chain Monte Carlo (MCMC) using the model as a Metropolis-Hastings
(MH) objective. The model permits constraints on the state space to support tasks such as melody
harmonization. However, the Markov assumption severely limits the expressivity of the model.

We opt instead for a convolutional approach that avoids many of these issues and naturally captures
both relationships across time and interactions between instruments.

3 COUNTERPOINT BY CONVOLUTION

We approach the task of music composition with a deep convolutional neural network (Krizhevsky
et al.| 2012). This choice is motivated by the locality of contrapuntal rules and their near-invariance
to translation, both in time and in the frequency spectrum.

We represent the music as a stack of piano rolls encoded in a binary three-tensor x € {0, 1}/*7>F,
Here I denotes the number of instruments, 7' the number of time steps, P the number of pitches,
and x; ; , = 1 iff the 7th instrument plays pitch p at time ¢{. We will assume each instrument plays
exactly one pitch at a time, that is, Zp Xitp = 1 foralli,t.

For the present work we will restrict ourselves to the study of four-part Bach chorales as used in
prior work (Allan & Williams| [2005; Boulanger-Lewandowski et al.| {2012} |Goel et al.,2014; Liang,
2016; Hadjeres et al.| 2016). Hence we assume I = 4 throughout. We discretize pitch according to
equal temperament, but constrain ourselves to only the range that appears in our training data (MIDI
pitches 36 through 88). Time is discretized at the level of 16th notes for similar reasons. To curb
memory requirements, we enforce 1" = 64 by randomly cropping the training examples.

Given a training example x ~ p(x), we present the model with the values of only a strict subset of
its elements x¢ = {X(; ) | (4,) € C} and ask it to reconstruct its complement x_c. The input to
the model is obtained by masking the piano rolls x to obtain the context x< and concatenating this
with the corresponding mask:

hY, = 1gnecXip (1)

h? ., =1lunec 2)

where the first dimension ranges over channels and the time and pitch dimensions are convolved
over.

a' = BN(W'xh'"";4/ g 3)
h! = ReLU(a' + h!~?) for3<l<L—1andl=0mod?2 4)
ht =al 5)

With the exception of the first and final layers, all of our convolutions preserve the size of the input.
That is, we use “same” padding throughout and all activations h!,1 < [ < L have 128 channels.
The network consists of 64 layers with 3 x 3 filters on each layer. After each convolution we apply
batch normalization [loffe & Szegedy| (2015) (denoted by BN(-)) with statistics tied across time and
pitch. After every second convolution, we introduce a skip connection from the hidden state two
levels below to reap the benefits of residual learning [He et al.|(2015)).

Finally, we obtain predictions for the pitch at each instrument/time pair:
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exp(hfy )
po(Xitp | %0, C) = =——7— (6)
( t,p | ) Zp eXp(hﬁm)
The loss function is given by
L(x;C0) =~ Y logpy(xis | xc,C) (7)
(i,t)¢C
== Y > Xiuplogps(xiry | xc,C) ®)
(i.)gC p
where py denotes the probability under the model with parameters § = W1 41 B ...
WE—L ~L=1 3L=1 To minimize the expected loss
ExnpoEomp(e) £(x;C,0) ©)

with respect to 6, we sample piano rolls x from the training set and contexts C' ~ p(C') and optimize
by stochastic gradient descent with step size determined by Adam (Kingma & Ba, [2014)).

4 RELATIONSHIP TO NADE

Our approach is an instance of orderless and deep Neural Autoregressive Distribution Estimators
(Uria et al., 2016). NADE models a d-variate distribution p(x) through a factorization

po(x) = [ [ po (%o, | Xo,) (10)
d

where o is a permutation, and the parameters 6 are shared among the conditionals. NADE can be
trained for all orderings o simultaneously using the orderless NADE (Uria et al. [2014) training
procedure. This procedure relies on the observation that, thanks to parameter sharing, computing
Po(Xo, | Xo_,) forall d > d is no more expensive than computing it only for d’ = d. Hence for a
given o and d we can simultaneously obtain partial losses for all orderings that agree with o up to d:

Lxave (%3 0<a,0) = = _10gpo(Xo, | Xo_,» 0<d; 0a) (11

Od

(12)

Letting o4 = C, we obtain our loss from Equation|[7]
Leoconer(x;C,0) = — > logps(xis | X0, C) (13)

(i,t)¢C

For any one sample (x, C'), this loss consists of | =C'| terms of the form log pp(x;.; | Xc, C). We let
p(C) be uniform in the size of the mask |C| and reweight the sample losses according to

L(x;C,0) = |_‘—1C|L(x; C.0). (14)
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This correction, due to|Uria et al.| (2014)), ensures consistent estimation of the negative log-likelihood
of the joint pp(x).

However, we might wish to increase the difficulty by choosing p(C') so as to frequently mask out
large contiguous regions, as otherwise the model might learn only superficial local relationships.
This is discussed in [Pathak et al.| (2016) for the case of images, where a model might learn only that
pixels are similar to their neighbors. Similar low-level relationships hold in our case, as our piano
roll representation is binary and very sparse. For instance, if we mask out only a single sixteenth
step in the middle of a long-held note, reconstructing the masked out step does not require any
deep understanding of music. To this end we also consider choosing the context C' by independent
Bernoulli samples, such that each variable has a low probability of being included in the context.

5 SAMPLING

We can sample from the model using the NADE ancestral ordering procedure. However, we find that
this yields poor samples, and we propose instead to use Gibbs sampling.

5.1 NADE SAMPLING

To sample according to NADE, we start with an empty (zero everywhere) piano roll x° and context
C° and populate them iteratively by the following process. We feed the piano roll x* and context
C* into the model to obtain a set of categorical distributions pg(x; ¢|x¢.., C*®) for (i,t) ¢ C®. As
the x; ; are not conditionally independent, we cannot simply sample from these distributions inde-
pendently. However, if we sample from one of them, we can compute new conditional distributions

for the others. Hence we randomly choose one (i,¢)**! to sample from, and let xffl equal the

one-hot realization. Augment the context with C**1 = C* U (i, ) and repeat until the piano roll is
populated. This procedure is easily generalized to tasks such as melody harmonization and partial
score completion by starting with a nonempty piano roll.

Unfortunately, samples thus generated are of low quality, which we surmise is due to accumulation
of errors. While the model provides conditionals pg(x; |xc,C) for all (i,t) ¢ C, some of these
conditionals may be better modeled than others. We suspect in particular those conditionals used
early on in the procedure, for which the context C consists of very few variables. Moreover, although
the model is trained to be order-agnostic, different orderings invoke different distributions, which is
another indication that some conditionals are poorly learned. We test this hypothesis in Section[6.2]

5.2 GIBBS SAMPLING

To remedy this, we allow the model to revisit its choices: we repeatedly mask out some part of the
piano roll and then repopulate it. This is a form of blocked Gibbs sampling (Liu, [1994). Blocked
sampling is crucial for mixing, as the high temporal resolution of our representation causes strong
correlations between consecutive notes. For instance, without blocked sampling, it would take many
steps to snap out of a long-held note. Similar observations hold for the Ising model from statistical
mechanics, leading to the development of the Swendsen-Wang algorithm (Swendsen & Wang| |1987)
in which large clusters of variables are resampled at once.

We consider two strategies for resampling a given block of variables: ancestral sampling and inde-
pendent sampling. Ancestral sampling invokes the orderless NADE sampling procedure described
in Section [5.1| on the masked-out portion of the piano roll. Independent sampling simply treats the
masked-out variables x_ as independent given the context xc.

Using independent blocked Gibbs to sample from a NADE model has been studied by [Yao et al.
(2014), who propose to use an annealed masking probability given by

n
Qp = ImMax <amin7 Qmax — 77N (amax - amin))

for some minimum and maximum probabilities amin, max, NumMber of Gibbs steps N and fraction
7 of time spent before settling onto the minimum probability au,in. This scheme ensures the Gibbs
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Table 1: Negative log-likelihood on the test set for the Bach corpus. As discussed in the text, our
numbers are not directly comparable to those of other authors due to the use of different splits. Re-
sults from [Boulanger-Lewandowski et al.| (2012)) were based on an eighth-note temporal resolution
(our resolution is sixteenth notes). Please note that our results are preliminary validation likelihoods.

Model Notewise NLL Framewise NLL
Bachbot (Liang, [2016) 0.477 -
NADE (Boulanger-Lewandowski et al.,2012) - 7.19
RNN-RBM (Boulanger-Lewandowski et al.,[2012) - 6.27
RNN-NADE (Boulanger-Lewandowski et al.,[2012) - 5.56
COCONET, i.i.d Bernoulli(0.50) - 0.924 00
COCONET, i.i.d Bernoulli(0.25) 0.655 4.48
COCONET, i.i.d Bernoulli(0.10) 0.812 4.66
COCONET, importance sampling 0.569 3.73

process with independent resampling produces samples from the model distribution pg(x). Initially,
when the masking probability is high, the chain mixes fast but samples are poor due to independent
sampling. As the masking probability reduces, fewer variables are sampled at a time, until finally
variables are sampled one at a time and conditioned on all the others.

Yao et al| (2014)) treat independent blocked Gibbs as a cheap approximation to ancestral sam-
pling. Indeed, per Gibbs step, independent sampling requires only a single model evaluation,
whereas ancestral sampling requires as many model evaluations as there are variables to sam-
ple. Moreover, we find that independent blocked Gibbs sampling in fact yields better sam-
ples than the NADE procedure from Section Samples can be heard here: |https://
soundcloud.com/czhuang/sets/coconet—-nadeand https://soundcloud.com/
czhuang/sets/coconet-independent—-gibbs.

6 EVALUATION

We evaluate our approach on a corpus of four-part Bach chorales. The literature features many
variants of this dataset (Allan & Williams, |2005; [Boulanger-Lewandowski et al.|[2012; |Liang}, 2016
Hadjeres et al.| [2016)), and we follow the unfortunate tradition of introducing our own adaptation.
Although this complicates comparisons against earlier work, we feel justified in doing so as our
approach requires instruments to be separated, and other authors’ eighth-note temporal resolution is
too coarse to accurately convey counterpoint.

We rebuilt our dataset from the Bach chorale musicXML scores readily available through (Cuthbert
& Ariza, [2010), which was also the basis for the dataset used in (Liang, [2016)). The scores included
357 four-part Bach chorales. We excluded scores that included note durations less than sixteenth
notes, resulting in 354 pieces. These pieces were split into train/valid/test in 60/20/20% ratios.

We compare with [Liang| (2016) based on note-level likelihood and |Boulanger-Lewandowski et al.
(2012) based on frame-level likelihood. Note that train/valid/test differs among both prior work and
also with our work, and that|Liang| (2016)) uses a 80/10/10% split instead.

However, evaluation of generative models is hard (Theis et al.,|2015)). The gold standard for evalua-
tion is qualitative comparison by humans, and we therefore report human evaluation results.

6.1 EVALUATING LOG-LIKELIHOOD

To estimate the log-likelihood of a datapoint x, we follow the orderless NADE approach. That is, we
sample a random ordering (i1, t1), (i2, t2), ... (irT, tr7), and compute the notewise log-likelihood

IT
. 1
log pg(x) = T E log po(Xiy ity | Xcy 1> Ca—1) (15)
d=1
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where Cy = U‘Z:l{(z'c, t.)}. Note that we randomly crop each datapoint to be 7" time steps long
before processing it, as this facilitates batch processing.

We repeat this procedure k times and average across all point estimates. The numbers for our models
in Table [[l were obtained with k& = 5.

The process for computing the notewise log-likelihood is akin to teacher-forcing, where at each step
of the way the model observes the ground truth for all its previous predictions. To compute the
framewise log-likelihood, we instead let the model run free within each frame ¢. This results in a
more representative measure of the model’s quality as it is sensitive to accumulation of error.

Table[T]lists notewise and framewise likelihoods of the validation data under variants of our model,
as well as comparable results from other authors. We include four variants of COCONET that differ
in the choice of the distribution p(C') over contexts during training. By importance sampling we
refer to the orderless NADE strategy discussed in Section[4] in which p(C) is uniform over |C| and
the sampled losses are reweighted by 1/|-C|. We also evaluate three variants where the contexts
are chosen by biased coin flips, that is, Pr((i,¢) € C') = p, for p € 0.5,0.25,0.1. The framewise
log-likelihood for p = 0.5 is listed as oo as its estimation repeatedly overflowed.

Overall, COCONET seems to underperform in terms of notewise likelihood, yet perform well in terms
of framewise likelihood. Estimating the loss by importance sampling appears to work significantly
better than determining the context using independent Bernoulli variables, as one might expect.
However, the choice of Bernoulli probability p strongly affects the resulting loss, which suggests
that some of the conditionals benefit from more training.

Table 2: Mean (+ SEM) negative log-likelihood under the model of unconditioned samples gener-
ated from the model by various procedures.

Sampling scheme Notewise NLL. Framewise NLL
Ancestral Gibbs, p = 0.00 (NADE) 0.565 + 0.011 3.872 £+ 0.052
Ancestral Gibbs, p = 0.01 0.560 £ 0.010 3.824 £+ 0.052
Ancestral Gibbs, p = 0.25 0.444 £+ 0.008 3.276 £ 0.036
Ancestral Gibbs, p = 0.50 0.438 £+ 0.007 3.332 £ 0.040
Contiguous Gibbs, p = 0.50 0.447 £ 0.008 3.476 £ 0.048
Independent Gibbs (Yao et al.,2014)  0.440 £ 0.008 3.348 + 0.040

6.2 SAMPLE QUALITY

In Section [5| we conjectured that the low quality of NADE samples is due to poorly modeled condi-
tionals pg(x;,, | xc, C') where C'is small. We test this hypothesis by evaluating the likelihood under
the model of samples generated by the ancestral blocked Gibbs procedure with C' chosen according
to independent Bernoulli variables. When we set the inclusion probability p to 0, we obtain NADE.
Increasing p increases the expected context size |C'|, which should yield better samples if our hy-
pothesis is true. The results shown in Table [2] confirm that this is the case. For these experiments,
we used sample length 7" = 32 time steps and number of Gibbs steps N = 100.

Figure [2| shows the convergence behavior of the various Gibbs procedures, averaged over 100 runs.
We see that for low values of p (small C'), the chains hardly make progress beyond NADE in terms
of likelihood. Higher values of p (large C) enable the model to bootstrap and reach significantly
better likelihood. However, high values of p cause the chain to mix slowly, as can be seen in the
case where p = 0.50. For comparison, we included a variant, Contiguous(0.50), that always
masks out in contiguous chunks of at least four sixteenth notes. This variant converges much more
rapidly than Bernoulli(0.50) despite masking out equally many variables on average. Note that
whereas ancestral sampling (NADE) requires O(I7T') model evaluations and ancestral Gibbs requires
O(ITN) model evaluations, independent Gibbs requires only O(N') model evaluations, with typi-
cally N < IT.
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Comparing sample quality

0.8 % Contiguous(0.50)  -— Bernoulli(0.05) |1
+—+ Bernoulli(0.50) Bernoulli(0.01)
* < Bernoulli(0.25) — NADE
+ -+ Bernoulli(0.10)

I
g

Note-wise NLL
o
[«)]

0.5}

0 20 40 60 80 100
# of Gibbs steps

Figure 2: Likelihood under the model of Gibbs samples obtained with various context distributions
p(C). NADE (equivalent to Bernoulli(0.00)) is included for reference.

6.3 HUMAN EVALUATIONS

We carried out a listening test on Amazon’s Mechani-
cal Turk (MTurk) to compare quality of samples from
different sources (sampling schemes and Bach). The
sampling schemes under study are ancestral Gibbs
with Bernoulli(0.00) masking (NADE), independent
Gibbs 2014), and ancestral Gibbs with
Contiguous(0.50). For each scheme, we generate
four unconditioned samples from empty piano rolls. Independent Gibbs
For Bach, we randomly crop four fragments from the

Bach

NADE

Ancestral Gibbs
contiguous(0.50)

Sampling scheme

chorale validation set. We thus obtain four sets of four 0 10 20 30 40 50

sounds each. All fragments are two measures long, # of wins

and last twelve seconds after synthesis. Figure 3: Human evaluations from MTurk
on comparing sampling schemes.

For each MTurk hit, users are asked to rate on a Likert scale which of two random samples they
perceive as more musical. The study resulted in 192 ratings, where each source was involved in 92
pairwise comparisons. Figure [6.3]reports for each source the number of times it was rated as more
musical. We see that although ancestral sampling on NADE performs poorly compared to Bach, both
ancestral and independent Gibbs were considered at least as musical as fragments
from Bach, with independent Gibbs outperforming ancestral sampling (NADE) by
a large margin. Pairwise comparisons are listed in Appendix [A]

7 CONCLUSION

We introduced a convolutional approach to modeling musical scores based on the NADE
[2016) framework. Our experiments show that the NADE ancestral sampling procedure yields poor
samples for our domain, which we have argued is because some conditionals are not captured well
by the model. We have shown that sample quality improves significantly when we use blocked Gibbs
sampling to iteratively rewrite parts of the score. Moreover, annealed independent blocked Gibbs
sampling as proposed by is not only faster but in fact produces better samples.
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A PAIRWISE HUMAN EVALUATION RESULTS

This appendix supplements Section on the evaluation of samples by human subjects. Figure
lists the number of wins, ties and losses for each sample source against each other sample source.
All pairs of sources were compared 32 times.

I C N B I1 C N B I C N B
1 11 20 20 1 6 7 2 1 15 5 10
C 15 12 16 C 6 6 6 C 11 14 10
N 5 14 7 N 7 6 3 N 20 12 22
B 10 10 22 B 2 6 3 B 20 16 7
(a) Wins (b) Ties (c) Losses

Figure 3: Pairwise human evaluation results. Each element of Table[3(a)[shows the number of times
the source corresponding to the row was preferred over the source corresponding to the column.
Table 3(b)] shows the number of ties. Table [3(c)] shows the number of losses and is the transpose of
Table |3(a)l Source legend: I denotes Independent Gibbs (Yao et al., |2014)), C denotes Contiguous
Gibbs, N denotes NADE and B denotes Bach.
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