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Abstract

Deep convolutional neural networks have shown excellent performance in object recognition tasks
and dense classification problems such as semantic segmentation. However training deep neural
networks is still challenging and can require large amounts of computational resources to find net-
work hyperparameters that result in good generalization properties. This procedure can be further
complicated when an adaptive/boosted/online-hard-mining sampling scheme is used which varies
the amount of information in mini-batches throughout training. In this work we address the task of
tuning the learning rate schedule for Stochastic Gradient Descent (SGD) whilst employing an adap-
tive sampling procedure. We review recent theory of SGD training dynamics to help interpret our
experimental findings, give a detailed description of the proposed algorithm for optimizing the SGD
learning rate schedule and show that our method generalizes well and is able to attain state-of-art
results on the VISCERAL Anatomy benchmark.

1 Introduction

To address the problem of efficiently training convolutional neural networks (CNNs) on large and
imbalanced datasets. Training strategies that dynamically sample the training data, by evaluating the
classification error throughout training to effectively speed up training and avoid over-sampling data
that contains little extra information, have been proposed [1, 2, 3]. This prevents the vast number of
easy negatives from overwhelming the optimization process during training. However they introduce
an additional non-linearity into the stochastic gradient descent process (SGD) by changing how
data samples are chosen throughout training, by making the sampling dependent on current model
performance. As a result, adaptive sampling can even cause the loss of minibatches to increase
during training, since more difficult samples are preferred [2]. This makes it challenging to choose
an effective learning rate schedule that adapts to the ever changing amount of information/loss in the
updates during training.

Hyperparameter tuning is arguably the most time-consuming part of deep learning, with thousands
of productive hours sacrificed and many papers outlining best tuning practices [4, 5, 6, 7]. State-
of-the-art optimizers, such as Adagrad [8], RMSProp [9] and Adam [10], make things easier by
adaptively tuning the learning rate individually for each variable. However, recent theory and ex-
periments outlined in [11], show that hand-tuned SGD achieves superior results, and finds minima
that generalize well [12, 11]. Naive methods for tuning the learning rate schedule of SGD, like grid-
search, are prohibitively expensive for all but the smallest problems. Therefore hand-tuning of the
hyperparameters such as the initial learning rate and learning rate decay (when to reduce the learn-
ing rate and by how much) is recommended [11]. Moreover, for applications using deep learning
for medical image segmentation, it is often observed by practitioners that a good choice of these
hyperparameters, can make the difference between a bad and a good segmentation algorithm [13].

This paper addresses the problem of efficiently training a Convolutional Neural Network architecture
that uses an adaptive sampling strategy. We make the following contributions:
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• We review available theory of SGD training dynamics to gain insights into how to best
adapt the learning rate throughout training.

• We propose a simple algorithm to adaptively tune the learning rate, set within the frame-
work of genetic algorithms, and thus are able to effectively and automatically tune the
amount of information during minibatch updates resulting in competitive performance
compared with hand-tuned SGD.

• Provide experimental results that support the theory, validate the proposed algorithm and
give state-of-the-art segmentation results on the VISCERAL anatomy benchmark.

2 Background

2.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) remains the dominant optimization algorithm of deep learning.
Many recent works have interpreted SGD as a stochastic differential equation [15, 16, 17, 18, 19]
and asymptotic theory for stochastic gradient descent has been developed [20]. Following [19, 18],
the stochastic gradient update, at time t, can be written as,

θ(t+ 1) = θ(t)− ηgS(θ(t)), (1)

where θ are the model parameters (weights), η is the learning rate and gS is the gradient of the
loss function of a minibatch of size S, given by gS(θ) = ∂

∂θ
1
S

∑
xn∈B

l(θ,xn). By the central limit

theorem, assuming the noise in the stochastic gradient is Gaussian with covariance matrix 1
SC(θ),

gS(θ) = g(θ) +
1√
S

∆g(θ), where ∆g(θ) ∼ N(0,C(θ)). (2)

Combining (1) and (2), and assuming discretisation errors are small this leads to the following
continuous-time stochastic differential equation,

dθ(t) = −ηg(θ)dt+
η√
S
B(θ) dW (t), where W (t) ∼ N(0, I), (3)

where the property C(θ) = B(θ)B(θ)T has been applied, and it is assumed that the loss function
is well approximated locally by a quadratic, L(θ) = 1

2θ
TAθ, where A is the symmetric Hessian

matrix. The SDE (3) is known as a Ornstein-Uhlenbeck process [21] which has been well studied
[22]. Note that larger learning rates, η, in (3) result in a larger drift term and hence faster initial
descent along the gradient of the loss. However, the same factor is also multiplied to the noise term,
causing greater asymptotic fluctuations.

Now assuming isotropic covariance C(θ) = σ2I , where σ is a constant, and defining P (θ, tη) to
be the probability density of θ at time t, we arrive at the Focker-Plank equation [18, 22],

∂P (θ, t)

∂t
= ∇θ · [ηg(θ)P (θ, t)] +

η2σ2

2S
∇2
θP (θ, t). (4)

After rescaling time to be tη = tη we get,

∂P (θ, tη)

∂tη
= ∇θ · [g(θ)P (θ, tη)] +

ησ2

2S
∇2
θP (θ, tη), (5)

Now the ratio ησ2

2S , is a clear measure of the amount of diffusivity or noise in the system. If we now
run SGD, asymptotically modeled by (5), for long enough until we reach an equilibrium described
by a Gaussian distribution [22]. Following [18] and assuming that the loss is locally strictly convex
with Hessian HA and loss L(θA) at a minimum θA, then the probability of ending in a region near
minima θA, can be expressed as,

P (θA) ∝ 1√
detHA

exp
(
−2L(θA)

nσ2

)
, (6)

where n = η
S is the amount of noise during SGD. The above result shows that the probability of

landing in a specific minimum depends on the learning rate, batch-size, covariances of the gradients
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and loss of the minimum. The fact that the loss is divided by n in equation 6 emphasizes their direct
relationship, and shows that the higher the noise ratio n, which we can control directly, the less
granular the loss surface appears to SGD. The determinant of the Hessian detHA can be interpreted
to describe the shape of the converged local minima, a smaller determinant implying a wider minima
with better generalisation properties. Note that in the above section several assumptions were made
to derive a closed form solution for the equilibrium distribution of SGD. Many of these, such as
the linearity of the covariances will not hold in practice, see [19, 18] for discussions, and further
theoretical analysis is needed.

Based on similar insights, several strategies for setting and decaying the learning rate throughout
training have been proposed, to optimize for flat minima that result in good generalisation, and
fast training. In [23] the linear noise scaling rule n = η

S is also observed and exploited to train
ResNet-50 on ImageNet in one hour, by parallelizing the training on large batches and reducing the
learning rate by 1/10, after 30, 60 and 80 epochs. In [15] the linear scaling rule was used to show
that the same learning curve on both training and test sets can be achieved by increasing the batch
size during training instead of decreasing the learning rate, to allow for further parallelization of
large batch training. Applying optimal control theory to minimize the loss from equation (3), and
assuming that the loss is quadratic, in [17], they obtain a learning rate annealing schedule which says
that the maximum learning rate should be used for descent phases, whereas∼ 1/t decay on learning
rate should be applied after the onset of fluctuations, during the second phase of SGD. Authors
in [24] stress the importance of having the highest possible diffusion rates (which do not result in
numerical instability) and a large number of training iterations at the start of training to reach wide
(‘flat’) minima that result in good generalisation. Another approach [25] eliminates the need to
experimentally find the best values and schedule for the learning rates by monotonically decreasing
the learning rate, and letting the learning rate cyclically vary between reasonable boundary values
[25].

Due to the infancy of the described theoretical tools available and automated learning rate sched-
ulers, practitioners still spend vast resources on tuning these critical hyper-parameters. For ex-
ample in medical imaging, to achieve state-of-the-art results in brain lesion segmentation, [7]
had to identify an optimal predefined learning rate schedule, halving the learning rate after epoch
12, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43 and 46. To overcome these challenges we propose an adap-
tive and simple to implement method to optimally tune the learning rate throughout training.

3 Methods

3.1 Adaptive learning rate scheduling

We evolve the learning rate throughout training, by evaluating the CNN’s validation performance
on a small population of concurrent CNN runs, each trained with a different learning rate, for some
validation period. The weights of the best performing run at the end of the period are then used
to spawn a new set (population) of CNN runs, each with a different learning rate. This simple
algorithm can also be extended to any other hyperparameter. This simple procedure is outlined in
more detail in Algorithm 1. The number of parallel runs used can be chosen arbitrarily. However a
clear disadvantage, as with any genetic type algorithm, is that the more parallel runs are spawned,
the more parallel processing is required. The described algorithm can easily be generalised to fit
within the framework of evolutionary algorithms and therefore can be extened to deal with more
complex genetic operators and fitness functions, depending on the application.

3.2 isample: Adaptive sampling strategy

To overcome issues of inefficient training on sparse datasets such as CT data we use the previously
described isample algorithm [2]. The sampling algorithm prioritises sampling from training data that
at the time of training produces large training error. This affects the loss and noise in the minibatches
selected throughout training, and can even cause the loss function to increase, as more difficult
samples, which have a high loss, are chosen by the sampler. Therefore introducing a further non-
linearity into the training process, and motivating the need for an automated learning rate scheduler.

This simple method is described in Algorithm 2, where U(0, 1) is a random number drawn from the
uniform distribution and Ei refers to the error map of the ith training image. Error maps can easily
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Algorithm 1 AutoLR: Adaptive learning rate scheduler
Choose, β the step length, the number of runs, Ri, and the initial learning rate and modulating
factor for each run ηi, λi.
while CNN training do

while training each run, Ri in parallel, for γ epochs do
Record validation performance of each run, Ri, at each epoch in the vector vi of length β.

end while
Identify the best performing run, R∗i = max

Ri

{max [vi]}
Set the optimal learning rate to be the learning rate of the best performing run, η∗ = R∗i , η
Update the learning rate of each run, ηi = η∗λi

end while

Algorithm 2 isample: adaptive sampling algorithm

Initialise error maps for every image in the training data: Ei(x) = 1.
while CNN training do

while training for 1 epoch do
while filling batch with patches do

Pick an image Ij from the training set I∗.
Pick a class k from the corresponding label map Lj .
Pick a patch in image Ij , centered at location c, where Lj(c) = k.
Accept patch into batch if Ei(c) > U(0, 1).

end while
Back-propagate loss of batch and update the current CNN weights: w.

end while
Select a subset of images, I∗, and label maps, L∗, from the training set:
for [Ik,Lk] ∈ [I∗,L∗] do

Update error maps: Ek(x) = 1− CNN(w, Ik(x))Lk(x)

end for
end while

be calculated, either after each epoch or concurrently to the training process, as

Ek(x) = 1− CNN(w, Ik(x))Lk(x), (7)

where CNN(w, Ik(x))Lk(x) is a map of the CNN predictions over the full training image Ik, evalu-
ated using the most current weights,w, and outputting the probability of the true class label Lk(x),
at position x.

3.3 Neural Network Architecture

For the dual path network architecture we build on several previous ideas [7, 26, 27]. Compared to
the 3D network outlined in [7], we further develop the architecture by replacing the standard con-
volution layers with popular resnet blocks [28], and increase the maximum network depth from 11
layers in [7] to 21 layers. By having a deeper network and a down sampled pathway with input reso-
lution 1/4 of the original resolution, we obtain a large receptive field of size 1233 whilst maintaining
a deep high resolution pathway that does not compromise the resolution through pooling layers. The
architecture results in a total of 649,251 parameters.

A sketch of the architecture is given in Figure 1a. In Figure 1a, numbers inside round brackets
give the input dimensions of each block. For the training stage these dimensions have been chosen
carefully to balance memory usage with processing speed. During testing the dimensions may be
chosen as large as can be fit into memory, to take advantage of the fully convolutional inference.
Numbers in square brackets refer to the number of feature maps used at each layer. The proposed
configuration allows for a large number of samples (3D patches) per batch to ensure balanced class
sampling and effective optimization, whilst maintaining a deep and wide enough network to capture
the high variability and spatial semantics of the data.

The blocks labeled ‘Conv’ are standard convolutional layers with kernel size 3× 3× 3. The blocks
labeled ‘RA block’ and ‘RB block’ are standard and bottleneck resnet blocks, respectively, as de-
tailed in [28]. Each fully connected layer is preceded by a dropout layer with probability 0.5, and a
softmax nonlinearity is used as a final classification layer.
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The rationale for having a deep low resolution path is to further increase the receptive field and
allow for complex higher level features to be learned i.e where an organ is positioned in relation
to other structures. To minimize the memory footprint, the high definition path is chosen to be
slightly shorter than the low resolution path. This seems reasonable as this path should learn texture
information which is likely to require fewer layers and non-linearites. Further details on training
hyper-parameters are given in section 4.1.

(a) (b) (c)

Figure 1: (a) The proposed dual path CNN architecture. (b) Coronal slice of a CT scan with overlaid
segmentation output, described in section 4.2. The organs visible in this slice are: lungs (green), liver
(red), spleen (light blue), psoas major muscle (dark blue), kidneys (brown) and bladder (yellow). (c)
3D surface rendering of the segmentation.

4 Experiments

We trained, validated and tested the automatic segmentation method on contrast enhanced CT scans
from the VISCERAL Anatomy 3 dataset, made up of 20 scans [29]. The scans are form a hetero-
geneous dataset with various topological changes between patients, and manual segmentations are
available for a number of different anatomical structures. We randomly split the training set into 14
scans for training (70%), 2 scans for validation (10%) and 4 scans for hold-out testing (20%).

4.1 CNN training setup

During training we perform data augmentation by re-sampling the 3D patches to
a [1mm, 1mm, 1.5mm] + U(−0.1, 0.1) resolution. We also rotate each patch by
[U(−10, 10),U(−4, 4),U(−4, 4)] degrees. We set voxels with values greater than 1000 to
1000, and values less than −1000 to −1000, and divide all values by a constant factor of 218 (the
standard deviation of the dataset). We use Glorot initializations [30] on all convolution layers. For
batchnorm layers we use the initializations technique described in [23]. We impose L2 weight
decay of size 0.0001, on all convolutional layers except on the last fully convolutional layer before
the final softmax non-linearity. Using techniques described in [23] we make use of large batch
sizes and large learning rates. We use SGD with Nestrov momentum set at 0.8 [31], and each
batch contains 40 patches, sampled randomly from the whole training set. We run each epoch for
100 batches. We also employ a linear learning rate warm up schedule as described in [23] for 10
epochs when starting to train or switching between learning rates. This is especially important
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when increasing the learning rate, to avoid gradient blow up and accumulation due to momentum,
as described in [23].

For Algorithm 1 we chose to use three runs with the following configurations, R0 : η0 = 0.05, λ0 =
2, R1 : η1 = 0.01, λ1 = 1 and R2 : η2 = 0.005, λ2 = 0.5. We found that having one run that
explores at a higher learning rate (R0), one continuing at the same as the previously used learning
rate (R1), and one that explores at half the learning rate (R2) worked well, and allowed the algorithm
to effectively adapt to a well performing learning rate schedule. This configuration was used for all
subsequent experiments, unless stated otherwise.

4.2 Multi-organ segmentation on the VISCERAL CT dataset

We now present results of experiments performed using the multi-organ VISCERAL anatomy CT-
enhanced dataset.

Figure 2 demonstrates how the algorithm adapts to find an optimal learning rate schedule. During
this example we only show the first 200 epochs of training to best visualise the method’s dynamics.
Figure 2b shows the learning rate throughout training by the three spawned runs. After training
for 50 epochs, the recorded validation scores are evaluated, which for these experiments have been
chosen to be the mean dice score of all the organs segmented on the full validation scans. In Figure
2a it can be seen that the maximum dice score for this first period was achieved by the run colored in
red, training at a learning rate of η = 0.05, such that η∗ = 0.05 in Algorithm 1. Therefore after the
first step period, following epoch 50, the three runs evolve such that η0 = η∗λ0 = 0.05 × 2 = 0.1,
η1 = 0.05× 1 = 0.05 and η2 = 0.05× 0.5 = 0.025 throughout the next step period. From Figure
2b we can see that this causes the learning rate to initially increase, which speeds up training and
allows SGD to move away from its initialisation, and later reduce the learning rate. The loss of the
three runs is shown in 2c. The higher the learning rate the more stochasticity can be seen in the SGD
loss function, which agrees with equation 5.
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Figure 2: (a) Mean organ validation dice score on validation scans. (b) Learning rate throughout
training of three parallel runs during AutoLR. (c) Cross entropy loss during training.

To benchmark the proposed learning rate scheduling Algorithm 1 we select several handcrafted
learning rate training schedules and compare their performance against the proposed method. Before
arriving at these handcrafted many initial experiments (not shown here) were run to get close to the
optimal initial learning rates and decay schedules shown in in Figure 3. To produce the results shown
in Figure 3, five weeks of training time using eight NVIDIA Tesla K40s was required.

With and without adaptive sampling used (algorithm 2) we find that AutoLR performs competitively
with the top hand tuned learning rate schedules, shown in Figure 3a and 3c, and the automatically
found learning rate schedule follows a similar path to the top performing schedule, shown in Figure
3b and 3d.
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Dataset (training updates) Sched A Sched B AutoLR Sched A + is Sched B + is AutoLR + is

Validation (25k) 0.773 0.788 0.827 0.792 0.839 0.866

Validation (100k) 0.859 0.866 0.848 0.881 0.867 0.880

Table 1: Mean validation dice scores after 25k and 100k SGD updates, for two different hand tuned
learning rate schedules: Sched A: η0 = 0.05, λ = 0.1, γ = 400, Sched B: η0 = 0.025, λ = 0.1, γ =
400, and AutoLR, with and without adaptive sampling (+ is).
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Figure 3: Mean validation dice scores throughout training of four hand tuned schedules and an
AutoLR schedule, with (c) and without (a) using adaptive sampling. The learning rate of the top
performing hand tuned schedule and the AutoLR learning rate schedule, with (d) and without (b)
using adaptive sampling.

Table 1 shows the average validation dice scores achieved by AutoLR and the best manually tuned
learning rate schedules. The top performing manually tuned learning rate schedule when training the
CNN without isample is ‘Sched B’, with hyperparameters η0 = 0.025, λ = 0.1, γ = 400. The top
performing manually tuned learning rate schedule when training the CNN with isample is ‘Sched
A’, with hyperparameters η0 = 0.05, λ = 0.1, γ = 400. AutoLR is able to achieve a high dice score
of 0.827 (without isample) and 0.866 (with isample) after 25k updates, significantly improving on
both ‘Sched A’ and ‘Sched B’. This can also be seen from the validation dice curves in Figure 3a and
3c. AutoLR achieves this by moving to a high learning rate at the start of training which speeds up
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Aorta Lung Kidney PMajor Liver Abdom Spleen Sternum Trachea Bladder
Ga et al [32] 0.785 0.963 0.914 0.813 0.908 - 0.781 0.635 0.847 0.683

Jimenez et al [33] 0.762 0.961 0.899 0.797 0.887 0.463 0.730 0.721 0.855 0.679
Kéchichian et al [34] 0.681 0.966 0.912 0.802 0.933 0.538 0.895 0.713 0.824 0.823

Vincent et al [35] 0.838 0.972 0.935 0.869 0.942 - - - - -
AutoLR + isample 0.875 0.979 0.922 0.851 0.929 0.824 0.895 0.829 0.910 0.860

AutoLR + isample + post-proc 0.887 0.983 0.924 0.861 0.953 0.830 0.947 0.855 0.927 0.903
Inter-annotator agreement 0.859 0.973 0.917 0.823 0.965 0.673 0.934 0.810 0.877 0.857

Table 2: Dice scores for different automatic multi-organ segmentation methods and inter-annotator
agreement results [29] on the VISCERAL dataset.

overall training dynamics as can be seen from the natural rescaling of time argument, involving the
learning rate, in equation 5. After 100k the manually tuned learning rate schedules, which train at
constant learning rates for long periods before dropping, catch up and slightly outperform AutoLR.
We hypothesis this is because the strategy of ‘train longer, generalize better’, as described in [24],
allows SGD to move further away from the initialisation before converging to a minimum, resulting
in wider minima that generalise better. This effect of diffusing away from minima can also be
interpreted by looking at equation 5 and observing that a high and prolonged learning rate maintains
stochasticity/diffusivity during the optimization process. With the adaptive sampling used, ‘Sched
A’ (η0 = 0.05) performs better after 100k updates of training than ‘Sched B’ (η0 = 0.025). However
when not using adaptive sampling, then ‘Sched B’ is better than ‘Sched A’. This indicates, that when
using an adaptive sampler such as isample that selects patches (samples) with higher loss and thus
higher informative value, that an overall higher learning rate is favored during training, which is
supported by the inverse relationship between the loss and learning rate in equation 6.

The results of our proposed method and other state-of-the-art methods on this dataset, also sum-
marized in [29], are given in Table 2. Inference on a full size CT scans takes ∼ 65 seconds using
four Tesla K40 GPU cards, each with 4GB of RAM. We note that because the cloud-based evalu-
ation service [29] containing the test data was closed at the time of running these experiments, we
were not able to evaluate our method on the test data, thus making direct comparisons to previous
methods difficult. As previously mentioned, we trained our method on 70% of the data (14 scans),
validated on (10%) of the data (2 scans) and tested it on 20% of the data (4 scans). We also include
results that post-processes the output segmentation maps (maximum class probability at each voxel),
by applying a simple filter that only retains the largest connected binary object for each organ, thus
removing small misclassified objects.

5 Discussion

From the experiments of our proposed method AutoLR and hand tuned schedules, we find that
AutoLR is highly competitive with fine tuned learning rate schedules that took many weeks of ex-
perimentation to arrive at. We also experimented using the adaptive optimization algorithm ADAM
[10] without decaying the learning rate, but could only achieve poor generalisation performance.
We also confirm previous findings that show adaptive sampling can significantly speed up training
time [1, 2].

Further, in practice we found that it was very difficult and took large amounts of time and computa-
tion to design an optimal handcrafted learning rate schedule, as it is extremely challenging to predict
the end generalisation performance during the start of training (first 3 days). Although reducing the
learning rate can result in immediate performance gains, in the long run the reduced amount of
noise injected into the SGD evolution can result in poor generalization, which is in line with recent
results, that encourage to train for longer [24], to allow the SGD process to move away from its ini-
tialization and enable wider minima. However training for a long time at a set learning rate, before
reducing the learning rate, significantly increases the time of training and therefore debugging and
development, yielding this approach impractical, for fast development iteration. We also found that
training at a too large of a learning rate also does not result in good generalization, therefore further
highlighting the importance of choosing a the right initial learning rate. Re-tuning these parameters
every time changes to the remaining architectures, or sampling procedure are made, therefore results
in a very laborious, time consuming and computational expensive process. However this process is
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important to ensure that changes made during model development are improving end generalization
performance and are not due to unknowingly correcting for an arbitrarily chosen learning rate.

The proposed method circumvents much of this learning rate schedule tuning. We also found that by
reviewing the available theory of SGD dynamics as described in section (2), alongside experimental
findings helped with gaining insight and intuition into this complex hyperparameter tuning process.

5.1 Limitations and Future work

One clear limitation of AutoLR is that to run the genetic algorithm more than one training run
(three in our experiments) needed to be run in parallel resulting in extra and redundant computation.
We argue that this can be justified as overall much computation and time is saved by avoiding
repeated hyperparameter tuning. Also, clearly the proposed algorithm introduces new hyper-hyper
parameters itself. In future we work plan to test our method on a wider range of medical imaging
datasets, and show that the new hyperparameters introduced by our method are robust, and do not
require any tuning between tasks.

5.2 Conclusion

We proposed and evaluated an adaptive learning rate scheduling algorithm combined with adap-
tive sampling, to avoid having to hand tune learning rate schedules. As shown in section 4 the
algorithm enables fast training, and our results indicate that the final generalization performance is
reliable and competitive with handcrafted schedules. Our experimental results suggests that our al-
gorithm achieves state of the art performance on the VISCERAL anatomy CT dataset, for the aorta,
lung, kidney, rectus abdominis, spleen, sternum, trachea and bladder, on the VISCERAL anatomy
benchmark, and beats human inter-annotator agreement scores on the following organs: aorta, lung,
kidney, psoas major, rectus abdominis, spleen, sternum, trachea and bladder. These encouraging re-
sults pave the way for using CNNs for robust automatic segmentation within clinical practice, such
as surgical planning.
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