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ABSTRACT

We propose a reparameterization of LSTM that brings the benefits of batch nor-
malization to recurrent neural networks. Whereas previous works only apply batch
normalization to the input-to-hidden transformation of RNNs, we demonstrate that
it is both possible and beneficial to batch-normalize the hidden-to-hidden transi-
tion, thereby reducing internal covariate shift between time steps.

We evaluate our proposal on various sequential problems such as sequence classi-
fication, language modeling and question answering. Our empirical results show
that our batch-normalized LSTM consistently leads to faster convergence and im-
proved generalization.

1 INTRODUCTION

Recurrent neural network architectures such as LSTM (Hochreiter & Schmidhuber, 1997) and
GRU (Cho et al., 2014) have recently exhibited state-of-the-art performance on a wide range of
complex sequential problems including speech recognition Amodei et al. (2015), machine transla-
tion (Bahdanau et al., 2015) and image and video captioning (Xu et al., 2015; Yao et al., 2015).
Top-performing models, however, are based on very high-capacity networks that are computation-
ally intensive and costly to train. Effective optimization of recurrent neural networks is thus an
active area of study (Pascanu et al., 2012; Martens & Sutskever, 2011; Ollivier, 2013).

It is well-known that for deep feed-forward neural networks, covariate shift (Shimodaira, 2000; Ioffe
& Szegedy, 2015) degrades the efficiency of training. Covariate shift is a change in the distribution
of the inputs to a model. This occurs continuously during training of feed-forward neural networks,
where changing the parameters of a layer affects the distribution of the inputs to all layers above it.
As a result, the upper layers are continually adapting to the shifting input distribution and unable
to learn effectively. This internal covariate shift (Ioffe & Szegedy, 2015) may play an especially
important role in recurrent neural networks, which resemble very deep feed-forward networks.

Batch normalization (Ioffe & Szegedy, 2015) is a recently proposed technique for controlling the
distributions of feed-forward neural network activations, thereby reducing internal covariate shift. It
involves standardizing the activations going into each layer, enforcing their means and variances to
be invariant to changes in the parameters of the underlying layers. This effectively decouples each
layer’s parameters from those of other layers, leading to a better-conditioned optimization problem.
Indeed, deep neural networks trained with batch normalization converge significantly faster and
generalize better.

Although batch normalization has demonstrated significant training speed-ups and generalization
benefits in feed-forward networks, it is proven to be difficult to apply in recurrent architectures (Lau-
rent et al., 2016; Amodei et al., 2015). It has found limited use in stacked RNNs, where the nor-
malization is applied “vertically”, i.e. to the input of each RNN, but not “horizontally” between
timesteps. RNNs are deeper in the time direction, and as such batch normalization would be most
beneficial when applied horizontally. However, Laurent et al. (2016) hypothesized that applying
batch normalization in this way hurts training because of exploding gradients due to repeated rescal-
ing.

Our findings run counter to this hypothesis. We show that it is both possible and highly beneficial to
apply batch normalization in the hidden-to-hidden transition of recurrent models. In particular, we
describe a reparameterization of LSTM (Section 3) that involves batch normalization and demon-
strate that it is easier to optimize and generalizes better. In addition, we empirically analyze the
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gradient backpropagation and show that proper initialization of the batch normalization parameters
is crucial to avoiding vanishing gradient (Section 4). We evaluate our proposal on several sequen-
tial problems and show (Section 5) that our LSTM reparameterization consistently outperforms the
LSTM baseline across tasks, in terms of both time to convergence and performance.

Liao & Poggio (2016) simultaneously investigated batch normalization in recurrent neural networks,
albeit only for very short sequences (10 steps). Ba et al. (2016) independently developed a variant
of batch normalization that is also applicable to recurrent neural networks and delivers similar im-
provements as our method.

2 PREREQUISITES

2.1 LSTM

Long Short-Term Memory (LSTM) networks are an instance of a more general class of recurrent
neural networks (RNNs), which we review briefly in this paper. Given an input sequence X =
(x1,Xa2,...,%x7), an RNN defines a sequence of hidden states h; according to

hy = ¢(Wrhy_1 + W x; + b), (D

where W), € R4 xdn W, € R%*d b € R% and the initial state hy € R% are model parame-
ters. A popular choice for the activation function ¢( - ) is tanh.

RNNSs are popular in sequence modeling thanks to their natural ability to process variable-length
sequences. However, training RNNs using first-order stochastic gradient descent (SGD) is notori-
ously difficult due to the well-known problem of exploding/vanishing gradients (Bengio et al., 1994;
Hochreiter, 1991; Pascanu et al., 2012). Gradient vanishing occurs when states h; are not influenced
by small changes in much earlier states h, t < 7, preventing learning of long-term dependencies in
the input data. Although learning long-term dependencies is fundamentally difficult (Bengio et al.,
1994), its effects can be mitigated through architectural variations such as LSTM (Hochreiter &
Schmidhuber, 1997), GRU (Cho et al., 2014) and {RNN/uRNN (Le et al., 2015; Arjovsky et al.,
2015).

In what follows, we focus on the LSTM architecture (Hochreiter & Schmidhuber, 1997) with recur-
rent transition given by

f,
(i; = Wuh_, + W,x; +b )
t
&
¢ = o(f) ®ci_1 +o(ir) © tanh(g;) 3)
h; = o(6;) ® tanh(c), 4)

where W), € R x4dn W _Rd=z*4dn b ¢ R%n and the initial states hy € R% ¢, € R are
model parameters. o is the logistic sigmoid function, and the ® operator denotes the Hadamard
product.

The LSTM differs from simple RNNs in that it has an additional memory cell c; whose update is
nearly linear which allows the gradient to flow back through time more easily. In addition, unlike
the RNN which overwrites its content at each timestep, the update of the LSTM cell is regulated by
a set of gates. The forget gate f; determines the extent to which information is carried over from the
previous timestep, and the input gate i; controls the flow of information from the current input x;.
The output gate o, allows the model to read from the cell. This carefully controlled interaction with
the cell is what allows the LSTM to robustly retain information for long periods of time.

2.2 BATCH NORMALIZATION

Covariate shift (Shimodaira, 2000) is a phenomenon in machine learning where the features pre-
sented to a model change in distribution. In order for learning to succeed in the presence of covari-
ate shift, the model’s parameters must be adjusted not just to learn the concept at hand but also to
adapt to the changing distribution of the inputs. In deep neural networks, this problem manifests as
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internal covariate shift (Ioffe & Szegedy, 2015), where changing the parameters of a layer affects
the distribution of the inputs to all layers above it.

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed network reparameterization
which aims to reduce internal covariate shift. It does so by standardizing the activations using
empirical estimates of their means and standard deviations. However, it does not decorrelate the
activations due to the computationally costly matrix inversion. The batch normalizing transform is
as follows:

~

— E[h]

BN(h;7,8) = f+70 —=
Var[h] + ¢

(&)

where h € R? is the vector of (pre)activations to be normalized, v € R% 3 € R? are model
parameters that determine the mean and standard deviation of the normalized activation, and € € R
is a regularization hyperparameter. The division should be understood to proceed elementwise.

At training time, the statistics E[h] and Var[h] are estimated by the sample mean and sample vari-
ance of the current minibatch. This allows for backpropagation through the statistics, preserving the
convergence properties of stochastic gradient descent. During inference, the statistics are typically
estimated based on the entire training set, so as to produce a deterministic prediction.

3 BATCH-NORMALIZED LSTM

This section introduces a reparameterization of LSTM that takes advantage of batch normalization.
Contrary to Laurent et al. (2016); Amodei et al. (2015), we leverage batch normalization in both
the input-to-hidden and the hidden-to-hidden transformations. We introduce the batch-normalizing
transform BN( - ; v, ) into the LSTM as follows:

£y
Il = BN(Wihio1im,B) + BN(Waxii9, 42) + b ©
¢
8t
¢ = ofy) ©ci1 +0(iy) © tanh(g;) )
h, = O‘((N)t) © tanh(BN(Ct; Ve /80)) ®)

In our formulation, we normalize the recurrent term Wyh,_; and the input term W, x; separately.
Normalizing these terms individually gives the model better control over the relative contribution
of the terms using the 7, and 7, parameters. We set 8, = 8, = 0 to avoid unnecessary redun-
dancy, instead relying on the pre-existing parameter vector b to account for both biases. In order to
leave the LSTM dynamics intact and preserve the gradient flow through c;, we do not apply batch
normalization in the cell update.

The batch normalization transform relies on batch statistics to standardize the LSTM activations. It
would seem natural to share the statistics that are used for normalization across time, just as recurrent
neural networks share their parameters over time. However, we find that simply averaging statistics
over time severely degrades performance. Although LSTM activations do converge to a stationary
distribution, we observe that their statistics during the initial transient differ significantly (see Fig-
ure 5 in Appendix A). Consequently, we recommend using separate statistics for each timestep to
preserve information of the initial transient phase in the activations.'

Generalizing the model to sequences longer than those seen during training is straightforward thanks
to the rapid convergence of the activations to their steady-state distributions (cf. Figure 5). For our
experiments we estimate the population statistics separately for each timestep 1,...,T},q, Where

! Note that we separate only the statistics over time and not the v and 3 parameters.
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T'naz 18 the length of the longest training sequence. When at test time we need to generalize beyond
Tinaz», We use the population statistic of time 7},,4, for all time steps beyond it.

During training we estimate the statistics across the minibatch, independently for each timestep. At
test time we use estimates obtained by averaging the minibatch estimates over the training set.

4 INITIALIZING 7y FOR GRADIENT FLOW

Although batch normalization allows for easy control of the pre-activation variance through the ~y
parameters, common practice is to normalize to unit variance. We suspect that the previous difficul-
ties with recurrent batch normalization reported in Laurent et al. (2016); Amodei et al. (2015) are
largely due to improper initialization of the batch normalization parameters, and « in particular. In
this section we demonstrate the impact of  on gradient flow.

10° RNN gradient propagation derivative through tanh
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(a) We visualize the gradient flow through a batch- (b) We show the empirical expected derivative and

normalized tanh RNN as a function of . High interquartile range of tanh nonlinearity as a func-

variance causes vanishing gradient. tion of input variance. High variance causes satura-
tion, which decreases the expected derivative.

Figure 1: Influence of pre-activation variance on gradient propagation.

In Figure 1(a), we show how the pre-activation variance impacts gradient propagation in a simple
RNN on the sequential MNIST task described in Section 5.1. Since backpropagation operates in
reverse, the plot is best read from right to left. The quantity plotted is the norm of the gradient
of the loss with respect to the hidden state at different time steps. For large values of ~, the norm
quickly goes to zero as gradient is propagated back in time. For small values of -y the norm is nearly
constant.

To demonstrate what we think is the cause of this vanishing, we drew samples x from a set of
centered Gaussian distributions with standard deviation ranging from O to 1, and computed the
derivative tanh’(z) = 1 — tanh?(x) € [0, 1] for each. Figure 1(b) shows the empirical distribution
of the derivative as a function of standard deviation. When the input standard deviation is low, the
input tends to be close to the origin where the derivative is close to 1. As the standard deviation
increases, the expected derivative decreases as the input is more likely to be in the saturation regime.
At unit standard deviation, the expected derivative is much smaller than 1.

We conjecture that this is what causes the gradient to vanish, and recommend initializing v to a
small value. In our trials we found that values of 0.01 or lower caused instabilities during training.
Our choice of 0.1 seems to work well across different tasks.

5 EXPERIMENTS

This section presents an empirical evaluation of the proposed batch-normalized LSTM on four dif-
ferent tasks. Note that for all the experiments, we initialize the batch normalization scale and shift
parameters v and (3 to 0.1 and O respectively.
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Figure 2: Accuracy on the validation set for the pixel by pixel MNIST classification tasks. The
batch-normalized LSTM is able to converge faster relatively to a baseline LSTM. Batch-normalized
LSTM also shows some improve generalization on the permuted sequential MNIST that require to
preserve long-term memory information.

5.1 SEQUENTIAL MNIST

We evaluate our batch-normalized LSTM on a sequential version of the MNIST classification
task (Le et al., 2015). The model processes each image one pixel at a time and finally predicts
the label. We consider both sequential MNIST tasks, MNIST and permuted MNIST (pMNIST). In
MNIST, the pixels are processed in scanline order. In pMNIST the pixels are processed in a fixed
random order.

Our baseline consists of an LSTM with 100 hidden units, with a softmax classifier to produce a
prediction from the final hidden state. We use orthogonal initialization for all weight matrices,
except for the hidden-to-hidden weight matrix which we initialize to be the identity matrix, as this
yields better generalization performance on this task for both models. The model is trained using
RMSProp (Tieleman & Hinton, 2012) with learning rate of 10~3 and 0.9 momentum. We apply
gradient clipping at 1 to avoid exploding gradients.

The in-order MNIST task poses a unique problem for our model: the input for the first hundred or so
timesteps is constant across examples since the upper pixels are almost always black. This causes the
variance of the hidden states to be exactly zero for a long period of time. Normalizing these zero-
variance activations involves dividing zero by a small number at many timesteps, which does not
affect the forward-propagated activations but causes the back-propagated gradient to explode. We
work around this by adding Gaussian noise to the initial hidden states. Although the normalization
amplifies the noise to signal level, we find that it does not hurt performance compared to data-
dependent ways of initializing the hidden states.

Model MNIST pMNIST
TANH-RNN (Le et al., 2015) 35.0 35.0
iRNN (Le et al., 2015) 97.0 82.0
uRNN (Arjovsky et al., 2015) 95.1 91.4
STANH-RNN (Zhang et al., 2016) 98.1 94.0
LSTM (ours) 98.9 90.2
BN-LSTM (ours) 99.0 95.4

Table 1: Accuracy obtained on the test set for the pixel by pixel MNIST classification tasks

In Figure 2 we show the validation accuracy while training for both LSTM and batch-normalized
LSTM (BN-LSTM). BN-LSTM converges faster than LSTM on both tasks. Additionally, we ob-
serve that BN-LSTM generalizes significantly better on pMNIST. It has been highlighted in Ar-
jovsky et al. (2015) that pMNIST contains many longer term dependencies across pixels than in
the original pixel ordering, where a lot of structure is local. A recurrent network therefore needs to
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Model Penn Treebank
LSTM (Graves, 2013) 1.262
HF-MRNN (Mikolov et al., 2012) 1.41
Norm-stabilized LSTM (Krueger & Memisevic, 2016) 1.39
ME n-gram (Mikolov et al., 2012) 1.37
LSTM (ours) 1.38
BN-LSTM (ours) 1.32
Zoneout (Krueger et al., 2016) 1.27
HM-LSTM (Chung et al., 2016) 1.24
HyperNetworks (Ha et al., 2016) 1.22

Table 2: Bits-per-character on the Penn Treebank test sequence.

characterize dependencies across varying time scales in order to solve this task. Our results suggest
that BN-LSTM is better able to capture these long-term dependencies.

Table 1 reports the test set accuracy of the early stop model for LSTM and BN-LSTM using the pop-
ulation statistics. Recurrent batch normalization leads to a better test score, especially for pMNIST
where models have to leverage long-term temporal depencies. In addition, Table 1 shows that our
batch-normalized LSTM achieves state of the art on both MNIST and pMNIST.

5.2 CHARACTER-LEVEL PENN TREEBANK

We evaluate our model on the task of character-level language modeling on the Penn Treebank
corpus (Marcus et al., 1993) according to the train/valid/test partition of Mikolov et al. (2012). For
training, we segment the training sequence into examples of length 100. The training sequence does
not cleanly divide by 100, so for each epoch we randomly crop a subsequence that does and segment
that instead.

Our baseline is an LSTM with 1000 units, trained to predict the next character using a softmax
classifier on the hidden state h;. We use stochastic gradient descent on minibatches of size 64, with
gradient clipping at 1.0 and step rule determined by Adam (Kingma & Ba, 2014) with learning rate
0.002. We use orthogonal initialization for all weight matrices. The setup for the batch-normalized
LSTM is the same in all respects except for the introduction of batch normalization as detailed in 3.

We show the learning curves in Figure 3(a). BN-LSTM converges faster and generalizes better than
the LSTM baseline. Figure 3(b) shows the generalization of our model to longer sequences. We
observe that using the population statistics improves generalization performance, which confirms
that repeating the last population statistic (cf. Section 3) is a viable strategy. In table 2 we report
the performance of our best models (early-stopped on validation performance) on the Penn Treebank
test sequence. Follow up works havd since improved the state of the art (Krueger et al., 2016; Chung
et al., 2016; Ha et al., 2016).

5.3 TEXTS8

We evaluate our model on a second character-level language modeling task on the much larger
text8 dataset (Mahoney, 2009). This dataset is derived from Wikipedia and consists of a sequence
of 100M characters including only alphabetical characters and spaces. We follow Mikolov et al.
(2012); Zhang et al. (2016) and use the first 90M characters for training, the next SM for validation
and the final SM characters for testing. We train on nonoverlapping sequences of length 180.

Both our baseline and batch-normalized models are LSTMs with 2000 units, trained to predict the
next character using a softmax classifier on the hidden state h,. We use stochastic gradient descent
on minibatches of size 128, with gradient clipping at 1.0 and step rule determined by Adam (Kingma
& Ba, 2014) with learning rate 0.001. All weight matrices were initialized to be orthogonal.
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We early-stop on validation performance and report the test performance of the resulting model in
table 3. We observe that BN-LSTM obtains a significant performance improvement over the LSTM
baseline. Chung et al. (2016) has since improved on our performance.

Model text8
td-LSTM (Zhang et al., 2016) 1.63
HEF-MRNN (Mikolov et al., 2012) 1.54
skipping RNN (Pachitariu & Sahani, 2013)  1.48
LSTM (ours) 1.43
BN-LSTM (ours) 1.36
HM-LSTM (Chung et al., 2016) 1.29

Table 3: Bits-per-character on the text8 test sequence.

5.4 TEACHING MACHINES TO READ AND COMPREHEND

Recently, Hermann et al. (2015) introduced a set of challenging benchmarks for natural language
processing, along with neural network architectures to address them. The tasks involve reading
real news articles and answering questions about their content. Their principal model, the Atten-
tive Reader, is a recurrent neural network that invokes an attention mechanism to locate relevant
information in the document. Such models are notoriously hard to optimize and yet increasingly
popular.

To demonstrate the generality and practical applicability of our proposal, we apply batch normaliza-
tion in the Attentive Reader model and show that this drastically improves training.

We evaluate several variants. The first variant, referred to as BN-LSTM, consists of the vanilla At-
tentive Reader model with the LSTM simply replaced by our BN-LSTM reparameterization. The
second variant, termed BN-everywhere, is exactly like the first, except that we also introduce batch
normalization into the attention computations, normalizing each term going into the tanh nonlin-
earities.

Our third variant, BN-e*, is like BN-everywhere, but improved to more carefully handle variable-
length sequences. Throughout this experiment we followed the common practice of padding each
batch of variable-length data with zeros. However, this biases the batch mean and variance of x;
toward zero. We address this effect using sequencewise normalization of the inputs as proposed
by Laurent et al. (2016); Amodei et al. (2015). That is, we share statistics over time for normalization
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= BN-LSTM a4l = BN-LSTM, population statistics

== BN-LSTM, batch statistics

1.42
.

=
»
S

bits per character
-
"
&

mean bits per character

1.36

2000 4000 6000 8000 10000 12000 14000 16000 foo 200 300 400 500 600 700 800 900 1000
training steps sequence length

(a) Performance in bits-per-character on length- (b) Generalization to longer subsequences of Penn
100 subsequences of the Penn Treebank validation Treebank using population statistics. The subse-
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Figure 3: Penn Treebank evaluation
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tive Reader models on a variant of the CNN QA QA task from Hermann et al. (2015).

task (Hermann et al., 2015). As detailed in Ap-

pendix C, the theoretical lower bound on the error

rate on this task is 43%.

Figure 4: Training curves on the CNN question-answering tasks.

of the input terms W, x,, but not for the recurrent terms W h, or the cell output c;. Doing so avoids
many issues involving degenerate statistics due to input sequence padding.

Our fourth and final variant BN-e** is like BN-e* but bidirectional. The main difficulty in adapting
to bidirectional models also involves padding. Padding poses no problem as long as it is properly
ignored (by not updating the hidden states based on padded regions of the input). However to
perform the reverse application of a bidirectional model, it is common to simply reverse the padded
sequences, thus moving the padding to the front. This causes similar problems as were observed
on the sequential MNIST task (Section 5.1): the hidden states will not diverge during the initial
timesteps and hence their variance will be severely underestimated. To get around this, we reverse
only the unpadded portion of the input sequences and leave the padding in place.

See Appendix C for hyperparameters and task details.

Figure 4(a) shows the learning curves for the different variants of the attentive reader. BN-LSTM
trains dramatically faster than the LSTM baseline. BN-everywhere in turn shows a significant im-
provement over BN-LSTM. In addition, both BN-LSTM and BN-everywhere show a generalization
benefit over the baseline. The validation curves have minima of 50.3%, 49.5% and 50.0% for the
baseline, BN-LSTM and BN-everywhere respectively. We emphasize that these results were ob-
tained without any tweaking — all we did was to introduce batch normalization.

BN-e* and BN-e** converge faster yet, and reach lower minima: 47.1% and 43.9% respectively.

Model CNN valid CNN test
Attentive Reader (Hermann et al., 2015) 38.4 37.0
LSTM (ours) 45.5 45.0
BN-e** (ours) 37.9 36.3

Table 4: Error rates on the CNN question-answering task Hermann et al. (2015).

We train and evaluate our best model, BN-e**, on the full task from (Hermann et al., 2015). On
this dataset we had to reduce the number of hidden units to 120 to avoid severe overfitting. Training
curves for BN-e** and a vanilla LSTM are shown in Figure 4(b). Table 4 reports performances of
the early-stopped models.
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6 CONCLUSION

Contrary to previous findings by Laurent et al. (2016); Amodei et al. (2015), we have demonstrated
that batch-normalizing the hidden states of recurrent neural networks greatly improves optimiza-
tion. Indeed, doing so yields benefits similar to those of batch normalization in feed-forward neural
networks: our proposed BN-LSTM trains faster and generalizes better on a variety of tasks in-
cluding language modeling and question-answering. We have argued that proper initialization of
the batch normalization parameters is crucial, and suggest that previous difficulties (Laurent et al.,
2016; Amodei et al., 2015) were due in large part to improper initialization. Finally, we have shown
our model to apply to complex settings involving variable-length data, bidirectionality and highly
nonlinear attention mechanisms.
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A CONVERGENCE OF POPULATION STATISTICS
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Figure 5: Convergence of population statistics to stationary distributions on the Penn Treebank task.
The horizontal axis denotes RNN time. Each curve corresponds to a single hidden unit. Only a
random subset of units is shown. See Section 3 for discussion.

B SENSITIVITY TO INITIALIZATION OF y

In Section 4 we investigated the effect of initial v on gradient flow. To show the practical implica-
tions of this, we performed several experiments on the pMNIST and Penn Treebank benchmarks.
The resulting performances are shown in Figure 6.

The pMNIST training curves confirm that higher initial values of ~y are detrimental to the optimiza-
tion of the model. For the Penn Treebank task however, the effect is gone.

We believe this is explained by the difference in the nature of the two tasks. For pMNIST, the model
absorbs the input sequence and only at the end of the sequence does it make a prediction on which it
receives feedback. Learning from this feedback requires propagating the gradient all the way back
through the sequence.

In the Penn Treebank task on the other hand, the model makes a prediction at each timestep. At
each step of the backward pass, a fresh learning signal is added to the backpropagated gradient.
Essentially, the model is able to get off the ground by picking up short-term dependencies. This fails
on pMNIST wich is dominated by long-term dependencies (Arjovsky et al., 2015).

C TEACHING MACHINES TO READ AND COMPREHEND: TASK SETUP

We evaluate the models on the question answering task using the CNN corpus (Hermann et al.,
2015), with placeholders for the named entities. We follow a similar preprocessing pipeline as Her-
mann et al. (2015). During training, we randomly sample the examples with replacement and shuffle
the order of the placeholders in each text inside the minibatch. We use a vocabulary of 65829 words.

We deviate from Hermann et al. (2015) in order to save computation: we use only the 4 most relevant
sentences from the description, as identified by a string matching procedure. Both the training and
validation sets are preprocessed in this way. Due to imprecision this heuristic sometimes strips the
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Figure 6: Training curves on pMNIST and Penn Treebank for various initializations of .

answers from the passage, putting an upper bound of 57% on the validation accuracy that can be
achieved.

For the reported performances, the first three models (LSTM, BN-LSTM and BN-everywhere) are
trained using the exact same hyperparameters, which were chosen because they work well for the
baseline. The hidden state is composed of 240 units. We use stochastic gradient descent on mini-
batches of size 64, with gradient clipping at 10 and step rule determined by Adam (Kingma & Ba,
2014) with learning rate 8 x 1075,

For BN-e* and BN-e**, we use the same hyperparameters except that we reduce the learning rate to

8 x 10~* and the minibatch size to 40.

D HYPERPARAMETER SEARCHES

Table 5 reports hyperparameter values that were tried in the experiments.

Learning rate:

RMSProp momentum:
Hidden state size:

Initial v:

Learning rate:

Hidden state size:

(a) MNIST and pMNIST
le-2, 1le-3, le-4

0.5,0.9

100, 200, 400

le-1, 3e-1, Se-1, 7e-1, 1.0

(c) Text8

le-1, le-2, 1e-3
500, 1000, 2000, 4000

Learning rate:
Hidden state size:

(b) Penn Treebank

Learning rate:
Hidden state size:
Batch size:
Initial v:

(d) Attentive Reader

Table 5: Hyperparameter values that have been explored in the experiments.

le-1, le-2, 2e-2, 1e-3

800, 1000, 1200, 1500, 2000
32, 64, 100, 128

le-1, 3e-1, 5e-1, 7e-1, 1.0

8e-3, 8e-4, 8e-5, 8e-6
60, 120, 240, 280

For MNIST and pMNIST, the hyperparameters were varied independently. For Penn Treebank, we
performed a full grid search on learning rate and hidden state size, and later performed a sensitivity
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analysis on the batch size and initial . For the text8 task and the experiments with the Attentive
Reader, we carried out a grid search on the learning rate and hidden state size.

The same values were tried for both the baseline and our BN-LSTM. In each case, our reported
results are those of the model with the best validation performance.
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