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ABSTRACT

Recently, generative adversarial network is the hotspot in research areas and in-
dustrial application areas. Its application on data generation in computer vision is
most common usage. This paper extends its application to data hiding and securi-
ty area. In this paper, we propose the novel framework to integrate steganography
and steganalysis processes. The proposed framework applies generative adver-
sarial networks as the core structure. The discriminative model simulate the ste-
ganalysis process, which can help us understand the sensitivity of cover images
to semantic changes. The steganography generative model is to generate stego
image which is aligned with the original cover image, and attempts to confuse
steganalysis discriminative model. The introduction of cycle discriminative mod-
el and inconsistent loss can help to enhance the quality and security of generated
stego image in the iterative training process. Training dataset is mixed with in-
tact images as well as intentional attacked images. The mix training process can
further improve the robustness and security of new framework. Through the qual-
itative, quantitative experiments and analysis, this novel framework shows com-
pelling performance and advantages over the current state-of-the-art methods in
steganography and steganalysis benchmarks.

1 INTRODUCTION

Steganography literally means “covered writing” and is usually interpreted to hide information in
other information. As the counterpart, the main idea of steganalysis is to analyze whether the re-
ceived information contains any hidden information, and to recover the hidden information if possi-
ble (Volkhonskiy et al., 2017). Since their birth, steganography and steganalysis have complemen-
tary progress. Steganography is widely used in secret information transmission (Shi et al., 2017),
watermark (Yu, 2016), copyright certification (Mun et al., 2017), forgery detection (Wolfgang &
Delp, 1996) applications.

In this paper, we propose an integrated steganography and steganalysis framework with generative
adversarial networks, and use ISS-GAN to represent the method in this paper. (ISS is the acronym of
integrated steganography and steganalysis.) ISS-GAN combines the steganalysis’s evaluation met-
rics of secure steganography with the advantages in latest GAN principle, and integrate the counter-
parts into single framework. Firstly, we will simulate the steganalysis process with discriminative
model. It will help us to dynamically change the capacity of cover images, and understand their
sensitivity to semantic change. Then with the fine-tuning adversarial training process of steganog-
raphy generative model and steganalysis discriminative model, ISS-GAN can iteratively reduce the
consistent loss between original cover images and generated stego images. Finally, when ISS-GAN
gets the minimal consistent differences, the generated stego images can hardly be distinguished
from original cover images. In the training process, we also involve some intentional attacks (noise,
compression, etc.) in dataset. The mixture of training dataset can further improve the security of
ISS-GAN. By comparing ISS-GAN with the state-of-the-art steganography methods in benchmark
datasets, we can conclude that ISS-GAN has the advantages in improving the quality and security
of generated stego images.

In Figure 1, can you differentiate between Van Gogh’s paintings in (a) and (b)? Or Monet’s paintings
in (e) and (f)? Actually, the images in (a) and (e) are the original version of drawing masters’
works. The images in (b) and (f) are the stego version with ISS-GAN framework. The embedded
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secret images are emblems of painters’ nations: Netherland and France. The embedded info is kept
imperceptible to ensure there is no influence on audience to appreciate paintings from fidelity aspect.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Illustration of ISS-GAN framework’s steganographic experimental performance on the
world-renowned art paintings. (a) Original version of The Starry Night painted by Van Gogh. (b)
Stego version of The Starry Night. (c) Emblem of Netherland as the embedded secret image. (e)
Original version of The rose arches painted by Monet. (f) Stego version of The rose arches. (g)
Emblem of France as the embedded secret image. (d,h) Residual difference between original and
stego versions. (We inverse the color to emphasize the difference.)

2 RELATED WORK

State-of-the-art steganography approaches can be categorized into three types.

Least Significant Bit Steganography The main strength of this category is that algorithms are
theoretically simple and have low computational complexities. Secret information is embedded into
cover image with the operations like shifting or replacing of pixels. In typical Least Significant
Bit (LSB) algorithm, pixel values of cover image and secret messages are represented by binary
form. Stego image generation process is implemented by replacing the least significant bits of
cover image with the most significant bits of secret information. In (Das et al., 2018), authors
proposed to generate a LSB based hash function for image authentication process, which can provide
good imperceptibility between original image and stego image with hash bits. Moreover, it can
successfully identify tamper by a process of tamper localization.

Content Adaptive Steganography In this category, some sophisticated steganographic algo-
rithms design a hand-crafted distortion function which is used for selecting the embedding local-
ization of the image. These algorithms are the most secure image steganography in spatial do-
main, such as Wavelet Obtained Weights (WOW), Highly Undetectable Steganography (HUGO),
S-UNIWARD, etc. WOW (Holub & Fridrich, 2012) embeds information into the cover image ac-
cording to textural complexity of regions. In WOW algorithm, the more texturally complex the
image region is, the more pixel values will be modified in this region. HUGO (Pevnỳ et al., 2010)
defines a distortion function domain by assigning costs to pixels based on the effect of embedding
some information within a pixel. It uses a weighted norm function to represent the feature space.
S-UNIWARD (Holub et al., 2014) proposes a universal distortion function that is independent of
the embedded domain. Despite the diverse implementation details, the ultimate goals are identical
in this category. They are all devoted to minimize distortion functions, to embed the secret into the
noisy area or complex textures, and to avoid the smooth regions of the cover images.

Deep Learning based Steganography As deep learning has brilliant capability in image process-
ing and generation, researchers also attempt to utilize it in steganography. (Volkhonskiy et al., 2017)
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introduces a new model for generating more steganalysis-secure cover images based on deep convo-
lutional generative adversarial networks. (Dong et al., 2018) proposes a steganography model which
can conceal a gray secret image into a color cover image with the same size, and generate stego
image which seems quite similar to cover image in semantics and color. (Shi et al., 2017) wants to
generate more secure covers for steganography. Based on Wasserstein GAN (Arjovsky et al., 2017),
the proposed algorithm is efficient to generate cover images with higher visual quality.

3 FRAMEWORK OF ISS-GAN

3.1 PRINCIPLE OF ISS-GAN

In the proposal, ISS-GAN is a steganography framework to embed secret message into the source
cover image. So here are two essential metrics to evaluate the steganographic algorithm.

• Secret info should remain imperceptible until it is extracted by specific authorized receiver.
• Stego image should be secure and intact to resist tampering and attacks.

In traditional state-of-the-art frameworks, the imperceptibility is achieved by carefully choosing the
LSB in pixel domain, or relied on hand-crafted distortion function in traditional steganography. So
the features and algorithms need meticulous artificial design. Moreover, these designs heavily re-
ly on the characteristics of target images. So it is very hard for these schemes to become general
solutions in various applications. The artificial designed features are also vulnerable to intention-
al and hybrid attacks. For deep learning based steganography, the main focus is to generate the
steganalysis-secure cover images. But in many real applications, the cover images are given. So
how to fully utilize the given images to hide secret, and to improve the security of generated stego
images are not answered.

After analysing the drawbacks of state-of-the-art algorithms, we find GAN is very suitable for in-
tegrated steganography and steganalysis framework. Instead of artificial design, the generative net-
work can learn from training samples and generate the suitable imperceptible features by itself. The
discriminative network can simulate the function of steganalysis. The iterative adversarial train-
ing process can strength the capability if steganalysis model as well as steganography model. The
stronger steganalysis model will stimulate the boost of steganography model, and vice versa. More-
over, how to resist the tampering can also be learned from attacked training samples.

For the first evaluation metric, let’s imagine the following situation. An eavesdropper wants to check
whether the image he obtained from public media contains secret info. So he needs to discriminate
the original cover image and received stego image. If these two images are perceptibly same, then
the eavesdropper can hardly differentiate the stego image from the cover image.

For the purpose of steganography, we can accumulate the visual and statistic differences between
cover and stego images. If the difference for each evaluation metric is small enough, we can re-
gard this stego image as a high-quality steganography result. This aligns with the imperceptible
evaluation criterion of steganography.

For the second evaluation metric, let’s imagine the following situation. The eavesdropper wants
to destroy the secret communication. So he makes intentional changes to the stego image, like
rotate, clip, add noises and JPEG compression. Because he assume that even the image he obtained
contains secret, these intentional changes will make the secret extraction method disabled. If the
steganography framework is secure, and steganalysis algorithm is robust enough, the intentional
changes are in vain. This aligns with the secure evaluation criterion of steganography.

GAN (Goodfellow et al., 2014) consists of the generative model and the discriminative model. The
purpose of the generative model is to generate new samples which are very similar to the real sam-
ples, and attempts to confuse the discriminator. While the purpose of the discriminative model is to
classify samples synthesized by the generative model and the real ones. The discriminative model
will also estimate the probability that a specific sample comes from the generative model rather than
the real ones. When the whole GAN model achieves Nash Equilibrium, that is to say, the genera-
tive model can generate the samples which exactly align with the character and distribution of real
samples. And at the same time, the discriminative model returns the classification probability 0.5
for each pair of generated and real samples. Then this GAN model is well-trained and converged.
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Figure 2: Framework and workflow chart of ISS-GAN

To combine the purpose of steganography, steganalysis and GAN model, we propose novel ISS-
GAN framework. ISS-GAN also consists of the steganography generative and steganalysis discrim-
inative model. The purpose of steganography generative model is to generate stego image which
is aligned with the original cover image, and attempts to confuse steganalysis discriminative mod-
el. While the purpose of the discriminative model is to distinguish generated stego image from the
cover image. When ISS-GAN achieves Nash Equilibrium, i.e., the generative model can generate
stego image which exactly aligns with the character and distribution of cover image. And at the
same time, the discriminative model returns the classification probability 0.5 for each pair of stego
and cover image. This also aligns with the evaluation criterion of steganography and steganalysis.
In conclusion, designing steganography and steganalysis framework is equal to make the ISS-GAN
model well-trained and converged. The overall framework of ISS-GAN is shown in Figure. 2.

In ISS-GAN, there are two generative models and two discriminative models. Because steganogra-
phy and steganalysis framework should contain secret info embedding and extraction processes, so it
needs to learn the bijective mapping relationship between two image collections. For ISS-GAN, one
image collection contains the original cover images, the other collection contains the secret images
for embedding.

In the left part of Figure 2, the original cover image (CI) and the original secret image (STI) go
through the stego image generative model GSOI , to produce the stego image (SOI). This is the
secret embedding and stego image generation process, which can be expressed as follows.

SOI = GSOI(CI, STI) (1)

In the right part of Figure 2, the stego image (SOI) go through the secret image generative model
GSTI , to get the extracted secret image (ESTI). This is the secret image extraction process, which
can be expressed as follows.

ESTI = GSTI(SOI) (2)

The cover image discriminative model DCI ensures that the distribution of images from CI is in-
distinguishable from the distribution SOI using an adversarial loss. This is the guarantee of the
imperceptible evaluation criterion in steganography.

For the purpose of refining secret extraction, we introduce the secret image cycle discriminative
model DSTI . Because generative model is learned to transform from a source image domain to a
target image domain. Take the secret image generative model GSTI as an example, the learned map-
ping relation is highly under-constrained, and cannot ensure the generated ESTI is indistinguishable
from original STI (Zhu et al., 2017). So we couple this mapping relation with its inverse mapping
GSOI , and introduce a cycle adversarial loss:

DSTI(STI,ESTI)→ 0 (3)
That is equal to

GSTI(SOI) = GSTI(GSOI(CI, STI)) ≈ STI (4)
Its goal is to ensure that the distribution of images from ESTI is indistinguishable from the distribu-
tion STI using cycle adversarial loss DSTI . This is the guarantee of the secure and robust extraction
criterion in steganography and steganalysis.
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To refine steganalysis scheme, we introduce the extra inconsistent loss. To make the whole ISS-
GAN framework useable, we should ensure the secret can only be extracted from SOI. If we apply
the secret extraction process to CI, secret image should not be recovered. The inconsistent loss can
be expressed as follows:

max
GSTI

|GSTI(CI)− GSTI(SOI)| (5)

3.2 LOSS FUNCTION DEFINITION

The overall loss function of ISS-GAN consists of three parts: the adversarial loss LGAN (GSOI ,
DCI ), the cycle adversarial loss LGAN (GSTI , DSTI ) and the inconsistent loss LIC . So the loss
function is written as follows:

LOverall = LGAN (GSOI ,DCI) + LGAN (GSTI ,DSTI) + λLIC [GSTI(CI),GSTI(SOI)], (6)

where λ is the parameter to adjust the percentages between adversarial loss and inconsistent loss.
The inconsistent loss needs to change to the minimization format as follows.

min
GSTI

1

|GSTI(CI)− GSTI(SOI)|
(7)

In ISS-GAN framework, the quality of generated stego image SOI and extracted secret image ESTI
is judged by the difference from original cover image CI and original secret image STI, respectively.
In this paper, two quantitative image effect indicators are applied to measure the differences (Yu,
2017). Peak Signal to Noise Ratio (PSNR) indicator is applied to assess the effect difference from
the gray-level fidelity aspect. Structural Similarity (SSIM) (Wang et al., 2004) indicator which is an
image quality assessment indicator based on the human vision system is applied to assess the effect
difference from the structure-level fidelity aspect. The definitions of these two evaluation indicators
are as follows.

PSNR(x, y) = 10 log10

(
(MAXI )2

MSE (x, y)

)
, (8)

where MAXI is the maximum possible pixel value of images: x and y. MSE(x,y) represents the
Mean Squared Error (MSE) between images: x and y.

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2

x + σ2
y + C2

) , (9)

where µx and µy represent the average grey values of images. Symbol σx and σy represent the vari-
ances of images. Symbol σxy represents covariance between images. C1 and C1 are two constants
which are used to prevent unstable results when either µ2

x + µ2
y or σ2

x + σ2
y is very close to 0.

3.3 ISS-GAN NETWORK STRUCTURE

For ISS-GAN, the resolution of cover image CI and secret image STI is 256×256. The network
structure of stego image generative model GSOI includes a convolution layer (kernel size = 7, stride
= 0, pad = 0), two convolution layers (kernel size = 3, stride = 2, pad = 1), nine residual blocks (He
et al., 2016), and two deconvolution layers (kernel size = 3, stride = 2, pad = 1, outside pad = 1),
and a convolution layer (kernel size = 7, stride = 0, pad = 0). Each convolution and deconvolution
layer follows with an instance normalization layer and a ReLU layer. The structure of secret image
generative model GSTI is identical with GSOI .

The network structure of cover image discriminative model DCI is similar with PatchGAN mod-
el (Isola et al., 2017). Each time, it operates a image patch with 70×70 size, and classifies whether
this patch is real or fake. The model will run across the whole image, and average all results in the
70×70 overlapping patches to provide the ensemble output. The architecture of such a patch-level
discriminative model requires fewer parameters and runs faster than a full-image discriminator (Yi
et al., 2017). Moreover, it has no constraints over the size of the input image. DC contains a convo-
lution layer (kernel size = 4, stride = 2, pad = 1) follows with a leaky ReLU layer, three convolution
layers (kernel size = 4, stride = 2, pad = 1) follows with an instance normalization layer and a leaky
ReLU layer, a convolution layer (kernel size = 4, stride = 1, pad = 1) follows with an instance nor-
malization layer and a leaky ReLU layer, a convolution layer (kernel size = 4, stride = 1, pad = 1)
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follows with a sigmoid layer to output a scalar output between [0, 1]. The structure of secret image
cycle discriminative model DSTI is identical with DCI .

Moreover, to improve the convergence performance, we use Adam optimizer (Kinga & Adam, 2015)
instead of stochastic gradient descent (SGD) optimizer. In practice, Adam optimizer can be adaptive
to the training of ISS-GAN. It is computationally efficient and has little memory requirements. The
hyper-parameters of Adam optimizer are: β1=0.5, β2=0.999. The base learning rate is 0.0002.

4 EXPERIMENTAL RESULTS

4.1 STEGANOGRAPHY PERFORMANCE EXPERIMENTS

In the secret embedding and stego image generation performance experiments, we adopt the bench-
mark images as the cover images CI shown in the first row of Figure 3 to test the performance of
proposed ISS-GAN framework. The embedded secret image used is the Barbara benchmark image.
We use PyTorch as the framework and train ISS-GAN with 150 epochs.

The generated stego images SOI are shown in the second row of Figure 3. For illustration purpose,
the residual differences between cover and stego images are shown in the third row of Figure 3.
The PSNR and SSIM metrics for generated stego images SOI versus cover images CI are shown in
Table 1. (SOI is used as image x, and CI is used as image y for PSNR and SSIM metrics calculation
equations (8) and (9).) The results shown in Figure 3 and Table. 1 can prove the high quality and
difference imperceptibility of SOI in qualitative and quantitative aspects.

Figure 3: Stego images SOI generation performance of ISS-GAN. Row 1: Original cover images:
Lena, Airplane, Baboon, Fruits and Peppers, Row 2: Corresponding generated stego images, Row
3: Residual difference between original and stego images. (We inverse the color to emphasize the
difference. Because the differences are inconspicuous. Please magnify to see the differences which
mainly on the marginal parts of objects.)

Table 1: Evaluation metrics of generated stego images SOI
Metrics/Images Lena Airplane Baboon Fruits Peppers
PSNR 33.0170 33.0065 29.1163 33.9085 30.5124
SSIM 0.9390 0.9589 0.9335 0.9510 0.9034

Let’s have a further analysis of the obtained results. If we magnify Figure 3 to see the residual
differences, we can find they are mainly on the marginal and textural parts of objects. For example,
the hat of Lena, the edges of F16 plane, the skin and whiskers of baboon, the profile of fruits and
peppers, etc. It means ISS-GAN tends to hide the secret info into marginal parts of the object in
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original cover images. In information theory, textures and edges represent the high frequency parts
of the image, while smooth regions represent the low frequency parts of the image. If we change
the low frequency parts, it is easy to be detected by steganalysis method. So many state-of-the-
art steganography algorithms transform the cover image from spatial domain to frequency domain.
Change the tiny part in high frequency parts, and transform it back to spatial domain. Moreover,
when we discuss the state-of-the-art content adaptive steganography algorithms, we find the ultimate
goal is trying to embed the secret image into the parts with complex edges and textures, and avoiding
the smooth regions of the cover images. The behavior of ISS-GAN is very similar to the state-of-
the-art steganography algorithms. But the state-of-the-art algorithms need to design a hand-crafted
distortion function to achieve the goal, while ISS-GAN learns from the discriminative network which
simulates the behaviors of steganalysis. From the learning process, the generative network in ISS-
GAN finds steganalysis method are very sensitive to the low frequency parts, and not so sensitive
to the high frequency parts. So the stego images generated by ISS-GAN generative network mainly
hide their secret info into marginal and textural parts to ensure the best imperceptibility.

4.2 STEGANALYSIS QUALITATIVE PERFORMANCE EXPERIMENTS

In the steganalysis qualitative experiments, we adopt the world-renowned art paintings shown in
Figure 1 to test the performance of proposed ISS-GAN and its robustness to different patterns of
noise attack. Several patterns of noises are adopted respectively to imitate real-world noise attacks.
We use PyTorch as the framework and train ISS-GAN with 200 epochs. The extracted secret image
ESTI are shown in Figure 4 and Appendix Figure 8. The results shown in Figure 4 and 8 can prove
the high quality of ESTI in qualitative aspect.

Figure 4: Extracted secret images if stego images are attacked by noise. Column 1: Multiplicative
noise, Column 2: Salt and pepper noise, Column 3: Gaussian white noise, Column 4: Poisson noise.
Row 2 and 4: Residual difference between embedded secret images and extracted secret images.
(We inverse the color to emphasize the difference.)

4.3 STEGANALYSIS QUANTITATIVE COMPARATIVE EXPERIMENTS

We compare ISS-GAN with the state-of-the-art steganography methods in various image bench-
marks. Here we use steganalysis process to extract secret images from stego images, and evaluate
the security criteria of steganography algorithms. For LSB steganography algorithms, we choose
LSB-TLH Das et al. (2018). For content adaptive steganography algorithms, we choose WOW Hol-
ub & Fridrich (2012), HUGO (Pevnỳ et al., 2010) and S-UNIWARD (Holub et al., 2014). For deep
learning based steganography algorithms, we choose ISGAN Dong et al. (2018) and SSGAN Shi
et al. (2017) for comparation. We make two group experiments. In the first group experiment, we
use Lena as the original cover image, and the trolleybus image as the secret image. The results are
shown in Figure 5. In the second group experiment, we use Lena as the original cover image, and the
headline of ICLR conference as the secret image. The results are shown in Figure 6. In quantitative
experiments, we add the JPEG compression to simulate the coding and decoding processes in real

7



Under review as a conference paper at ICLR 2019

secure information transmission system. We need to ensure ISS-GAN can work well against coding
and decoding algorithms.

Figure 5: Extracted secret image of trolleybus after adding certain attacks. Row 1: Gaussian white
noise, Row 2: Poisson noise, Row 3: Salt and pepper noise, Row 4: Speckle noise, Row 5: JPEG
compression. (Results of separate Salt noise and Pepper noise are in Appendix.) Column 1-7 are
ESTI obtained by LSB-TLH, WOW, HUGO, S-UNIWARD, ISGAN, SSGAN and proposed ISS-GAN
algorithms.

Table 2: PSNR metric for extracted secret images of trolleybus
Images/Algorithms LSB-TLH WOW HUGO S-UNIWARD ISGAN SSGAN ISS-GAN
Gaussian noise 21.9184 22.5196 25.4038 23.6964 21.0874 22.0219 28.5659
Possion noise 28.0956 28.1163 28.1097 28.1035 28.0996 28.1182 28.1181
Salt & Pepper noise 20.6125 22.3013 22.3739 22.1683 20.2038 21.0407 23.3684
Salt noise 19.7074 20.2493 22.0935 20.4663 19.6455 19.7446 22.8699
Pepper noise 21.8021 22.4331 22.5555 24.2972 21.7754 21.8409 25.0980
Speckle noise 27.9778 33.8242 32.7279 30.5234 28.8135 29.6587 37.5805
JPEG Compression 26.6862 30.4574 31.0763 29.7196 27.9319 28.8819 31.6285

Table 3: SSIM metric for extracted secret images of trolleybus
Images/Algorithms LSB-TLH WOW HUGO S-UNIWARD ISGAN SSGAN ISS-GAN
Gaussian noise 0.6548 0.6802 0.7885 0.7271 0.6182 0.6589 0.8772
Possion noise 0.8876 0.8878 0.8878 0.8877 0.8874 0.8880 0.8880
Salt & Pepper noise 0.7338 0.8224 0.8220 0.8110 0.7190 0.7584 0.8464
Salt noise 0.7147 0.7384 0.8096 0.7476 0.7127 0.7156 0.8352
Pepper noise 0.8119 0.8295 0.8333 0.8780 0.8100 0.8124 0.8941
Speckle noise 0.8955 0.9635 0.9542 0.9304 0.9062 0.9206 0.9836
JPEG Compression 0.8909 0.9425 0.9487 0.9343 0.9304 0.9245 0.9538

The PSNR and SSIM metrics for extracted secret image of trolleybus and ICLR conference headline
are shown in Table 2∼ 5, respectively. In Table 2∼ 5, extracted secret image is used as image x,
and original secret image is used as image y for PSNR and SSIM metrics calculation equations (8)
and (9). According to these metrics, the security of ISS-GAN outperforms all other state-of-the-art
steganography algorithms in quantitative aspect.

In these two group experiments, PSNR and SSIM metrics, the closest competitors are content adap-
tive steganography algorithms. WOW, HUGO and S-UNIWARD have quite good performance on
steganography security. But for PSNR metric, ISS-GAN can still achieve 1.01X∼1.12X relative im-
provement over the second highest PSNR algorithms with trolleybus secret image embedded, and
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Figure 6: Extracted secret image of ICLR conference headline after adding certain attacks. Row 1:
Gaussian white noise, Row 2: Poisson noise, Row 3: Salt and pepper noise, Row 4: Speckle noise,
Row 5: JPEG compression. (Results of separate Salt noise and Pepper noise are in Appendix.)
Column 1-7 are ESTI obtained by LSB-TLH, WOW, HUGO, S-UNIWARD, ISGAN, SSGAN and
proposed ISS-GAN algorithms.

Table 4: PSNR metric for extracted secret images of ICLR conference headline
Images/Algorithms LSB-TLH WOW HUGO S-UNIWARD ISGAN SSGAN ISS-GAN
Gaussian noise 25.6366 24.5133 27.9945 25.8188 22.8196 23.6139 30.0088
Possion noise 27.2302 27.2400 27.2332 27.2281 27.2352 27.2242 27.2497
Salt & Pepper noise 19.4886 20.8146 24.3997 21.5674 19.5006 20.7629 36.4338
Salt noise 30.3170 31.8986 34.0030 32.3590 31.3167 31.7378 49.0843
Pepper noise 17.3986 17.8621 18.3596 19.8744 16.4737 17.7617 35.9698
Speckle noise 26.8375 27.6863 27.8516 34.0109 24.5629 25.3830 42.8481
JPEG Compression 30.1590 32.1941 32.6464 31.8712 30.9326 31.1552 32.7724

achieve 1.01X∼1.81X relative improvement over the second highest PSNR algorithms with ICLR
conference headline secret image embedded. For SSIM metric, ISS-GAN can achieve 1.01X∼1.11X
relative improvement over the second highest SSIM algorithms with trolleybus secret image embed-
ded, and achieve 1.01X∼1.46X relative improvement over the second highest SSIM algorithms with
ICLR conference headline secret image embedded.

To have a further analysis of the obtained results, we can find the performance of state-of-the-
art deep learning steganography algorithms is not as good as expected. The main reason is the
authors are more focus on generating the new cover images which are steganalysis-secure. But in
our experiments, the cover images are fixed. So we can see the performance of state-of-the-art deep
learning steganography algorithms is just at the same level of LSB steganography algorithms, and is
worse than content adaptive steganography algorithms.

Compare the results of first and second group experiments, we find ISS-GAN has better performance
with the ICLR conference headline secret image. The amount of meaningful pixels and semantic
info in ICLR conference headline image is much less than trolleybus image. This aligns with the
principle of steganography, i.e., if more pixels are concealed into the cover image, then the security
of stego image will be worse.

To further illustrate the effect of embedding secret info amount on the security and imperceptibility
of stego image, we make the curve plots to show the quantitative experiment results of generated
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Table 5: SSIM metric for extracted secret images of ICLR conference headline
Images/Algorithms LSB-TLH WOW HUGO S-UNIWARD ISGAN SSGAN ISS-GAN
Gaussian noise 0.7163 0.6647 0.8084 0.7228 0.5808 0.6200 0.8682
Possion noise 0.7706 0.7707 0.7710 0.7709 0.7709 0.7703 0.7716
Salt & Pepper noise 0.6566 0.7352 0.8839 0.7664 0.6569 0.7362 0.9912
Salt noise 0.9900 0.9927 0.9951 0.9931 0.9918 0.9924 0.9998
Pepper noise 0.5160 0.5455 0.5834 0.6775 0.4464 0.5428 0.9900
Speckle noise 0.7422 0.7718 0.7790 0.9340 0.6461 0.6752 0.9904
JPEG Compression 0.9841 0.9888 0.9892 0.9880 0.9863 0.9877 0.9897

stego images SOI versus cover images CI as shown in Figure 7. Here, we use the pixel-ratio to
control the amount of embedding secret info. It is defined as the ratio of valid pixels amount in
secret image versus those in cover images. For example, if the amount of valid pixels in 256×256
size cover image is 63000, and the amount of valid pixels in secret image is 15000, then pixel-ratio
is 0.2381.

Figure 7: PSNR and SSIM metrics for generated stego images SOI versus cover images CI with
different pixel-ratio and attacks.

From the curve plots shown above, we can see PSNR and SSIM metrics decline with the increase
of pixel-ratio. Under the noise attack or image compression, PSNR and SSIM metrics are worse
than the situations without attack, and also decline with the increase of pixel-ratio. The detailed
results further prove the inherent contradiction between embedded secret amount and security of
stego image. So in the real applications, ISS-GAN should make the trade-off between embedding
capacity, imperceptibility and security according to real requirements, just like all state-of-the-art
steganography methods. This curve can tell user the largest embedded secret capacity at certain
imperceptibility and security level. So it is helpful for user to choose the most suitable embedded
secret image in real secure information transmission systems. For example, if the user want to gen-
erate a stego image with no less than 25dB PSNR and 0.97 SSIM versus cover image. Considering
the noise attacks and image compression possibility, the largest embedded secret pixel-ratio should
be less than 0.5.

5 CONCLUSION AND FUTURE WORKS

In this paper, we integrate steganography and steganalysis into single framework. The good perfor-
mance of ISS-GAN derives from the following factors.

• The discriminative network simulates the features of steganalysis. It helps to understand
the sensitivity of cover images to semantic changes.

• The introduction of cycle discriminative model and inconsistent loss helps to enhance the
quality and security of generated stego image.

• The mixture training dataset can further improve the robustness and security of ISS-GAN
framework. How to resist the tampering can be learned from attacked training samples.

• The iterative adversarial training process can strength the capability if steganalysis model
and steganography model at the same time. The stronger steganalysis model will stimulate
the improvement of steganography model, and vice versa.

In the future, we will study the influence of color cover/secret image and gray cover/secret image to
the proposed ISS-GAN framework.
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6 APPENDIX

6.1 INTRODUCTION OF STEGANOGRAPHY AND STEGANALYSIS

Imagine that you are an enthusiastic shutterbug. You are on trip to New Orleans and took a nice photo
of St. Louis Cathedral. You want to send the beautiful photo and reveal the romantic feelings to your
girlfriend. As your girlfriend is the Ph.D candidate of computer vision, so you want to share the
romantic words in her professional manner. You embed the words by changing the least significant
bits of the photograph, because this method can hide the romantic words in nearly invisible way. As
a social media network fan, you share this photo on Facebook. Many friends leave the messages to
express their love of this photo. And your girlfriend write the following sentence under your photo.
“Wonderful photo. By the way, I like the clever idea. I think I am the first audience who have
read the hidden words. I love you, too.” You will be in a cheerful mood, and appreciate the clever
communication method that only you and your girlfriend can “see” the secret information inside the
photograph.

This is a simple scenario to show the basic workflow of steganography and steganalysis. Steganog-
raphy is defined as the art and science of hiding information in ways that prevent the detection of
hidden messages (Obaid, 2015). Steganography literally means “covered writing” and is usually
interpreted to hide information in other information. In the simple scenario aforementioned, you
apply steganography to hide the romantic information into the photo of New Orleans. The romantic
information is called the secret message, while the original photo of New Orleans is called the cover
image. As the counterpart, the main idea of steganalysis is to analyze whether the received informa-
tion contains any hidden information, and to recover the hidden information if possible (Volkhonskiy
et al., 2017). In the simple scenario aforementioned, the social network plays the role of the public
channel (Hayes & Danezis, 2017), and the posted photo is called stego image (Dong et al., 2018),
which contains the secret message. Your girlfriend applies steganalysis to discover and recover the
secret information you embedded. Since their birth, steganography and steganalysis have comple-
mentary progress.

6.2 EXPERIMENT RESULTS

Figure 8: Extracted secret images if stego images are attacked by noise. Column 1: Multiplicative
noise, Column 2: Salt and pepper noise, Column 3: Gaussian white noise, Column 4: Poisson noise.
Row 2 and 4: Residual difference between embedded secret images and extracted secret images.
(We inverse the color to emphasize the difference.)

13



Under review as a conference paper at ICLR 2019

Figure 9: Extracted secret image of trolleybus after adding certain attacks. Row 1: Salt noise, Row
2: Pepper noise. Column 1-7 are ESTI obtained by LSB-TLH, WOW, HUGO, S-UNIWARD, ISGAN,
SSGAN and proposed ISS-GAN algorithms.

Figure 10: Extracted secret image of ICLR conference headline after adding certain attacks. Row
1: Salt noise, Row 2: Pepper noise. Column 1-7 are ESTI obtained by LSB-TLH, WOW, HUGO,
S-UNIWARD, ISGAN, SSGAN and proposed ISS-GAN algorithms.
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