
Under review as a conference paper at ICLR 2018

IMPROVING CONDITIONAL SEQUENCE GENERATIVE
ADVERSARIAL NETWORKS BY STEPWISE EVALUA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Conditional sequence generation is a widely researched topic. One of the most
important tasks is dialogue generation, which is composed of input-output pairs
with the one-to-many property. Given the recent success of generative adversarial
networks (GANs), GANs have been used for sequence generation. However, there
is still limited work of its application on conditional sequence generation. We in-
vestigate the influence of GAN on conditional sequence generation with three ar-
tificial grammars and dialogue generation. Moreover, we propose stepwise GAN
(StepGAN) for conditional sequence generation, which predicts the reward at each
time-step. StepGAN can be seen as the general version of SeqGAN. It estimates
the expected returns predicted by Monte-Carlo Search in SeqGAN, but it has a
lower computational cost than Monte-Carlo Search. Experimental results show
that stepwise GAN can outperform other state-of-the-art algorithms in most tasks.

1 INTRODUCTION

Conditional sequence generation is the task of generating the correspondent response given an in-
put sequence. One of the most important applications is dialogue generation. Dialogue generation
is one-to-many; that is, there can be many acceptable responses for a specific input. In previous
work, the sequence-to-sequence based dialogue generation model is trained using maximum likeli-
hood estimation, and achieves promising results in terms of both meaning and coherence (Vinyals
& Le, 2015). Despite this success, the generated responses given the inputs are still sometimes
broken and are often general (for example, I don’t know). Reinforcement learning was therefore
proposed to preserve sequence-level quality as opposed to predicting each word given the sequence
history (Ranzato et al., 2015; Kandasamy et al., 2017; Bahdanau et al., 2016).

More recently, generative adversarial networks have been applied to sequence generation, especially
for natural language. The discrete nature of random variables for natural language precludes the use
of back-propagation. To solve this problem, several approaches have been proposed, such as policy
gradient (Yu et al., 2017; Li et al., 2017), Gumbel-Softmax (Kusner & Hernández-Lobato, 2016),
MaliGAN (Che et al., 2017), and directly connected WGAN-GP (Gulrajani et al., 2017; Rajeswar
et al., 2017; Press et al., 2017). In most previous work, multiple assistant methods are used to
stabilize training and often introduce improvements, for example, Monte-Carlo search (Yu et al.,
2017; Li et al., 2017; Che et al., 2017) and curriculum learning (Rajeswar et al., 2017; Press et al.,
2017). Furthermore, modifications of the GAN objective function have been proposed to improve
quality in text generation (Zhang et al., 2017; Lin et al., 2017).

SeqGAN has been successfully applied on dialogue generation (Li et al., 2017). Due to the high
variance of SeqGAN with 1-sample estimate REINFORCE algorithm, researchers use Marte-Carlo
search for variation reduction. This method costs extremely high computational resources, therefore
Reward for Every Generation Step (REGS) is proposed to replace Monte-Carlo search (Li et al.,
2017). Nonetheless, REGS results in a less accurate discriminator because it takes non-terminal
sequences into consideration.

To address the weaknesses of Monte-Carlo Search and REGS, we propose stepwise GAN (Step-
GAN). In this approach, the discriminator evaluates the generated sequences at every generation
step, and gives a score for every step. A final score for the whole sequence is the summation of the

1



Under review as a conference paper at ICLR 2018

scores for every time step. This training scheme makes StepGAN a general version of SeqGAN,
and can simulate the process of Monte-Carlo search with low extra computational cost. In the pro-
posed approach, both generator and discriminator include weighted factors that change the relative
importance of each time step. We find step-time-decreasing weight factors can facilitate the training.
This is because the set of hyper-parameters simulate curriculum learning by focusing on generating
the head of a sequence. After the first subsequence is fit, further improvement are found in later
subsequences.

We construct artificial grammars to assist our realization of GANs in conditional sequence gen-
eration. In these tasks, we calculate the accuracy and the coverage of the generated conditioned
sequence to evaluate the quality of the model. The coverage is the percentage of the conditioned
sequences sampled from the model distribution over all the probable responses. While accuracy
reflects coherence and meaningfulness, coverage measures the diversity of the responses. We fur-
ther compare the proposed approach with several conditional sequence generation approaches on
dialogue generation, and evaluate the results by humans. The proposed models are comparable with
or even outperform state-of-the-art algorithms.

2 RELATED WORK

Conditional sequence generation using the seq2seq model (Sutskever et al., 2014; Vinyals & Le,
2015) has been widely studied, and also for dialogue generation. The model can be learned by
maximum-likelihood estimation (MLE), which minimizes the word-level cross-entropy between the
true data distribution and the generated approximation. Although this method yields reasonable re-
sponses, it suffers from exposure bias and does not take into account sequence-level structure (Ran-
zato et al., 2015). Exposure bias is introduced because of inconsistent conditions between the train-
ing and testing stages: while the ground-truth words are fed to the seq2seq model in the training
stage, generated words are used in the testing stage.

To solve these problems with MLE, besides beam search and scheduled sampling (Bengio et al.,
2015), (Ranzato et al., 2015) propose the REINFORCE and MIXER algorithms for sequence gen-
eration. By providing a task-specific score for the generated sequence, the REINFORCE algo-
rithm (Williams, 1992) guides the seq2seq model to reach higher scores. Because the score is
evaluated based on the whole generated sequence, both MLE problems are solved. However, as
the REINFORCE algorithm cannot easily train the model from scratch, the MIXER algorithm is
proposed to integrate MLE and REINFORCE. In this process, they first train the whole sequence
using MLE, after which they accumulate the number of last words trained by REINFORCE. For fur-
ther improvements, (Bahdanau et al., 2016) adopt another reinforcement learning (Sutton & Barto,
1998) based approach – the actor-critic architecture. They train a critic to predict the expected value
of each time step to guide the actor. These algorithms outperform the original MLE algorithm on
the task-specific score (BLEU) for text generation. Nonetheless, there is no evidence that these task-
specific scores are correlated with human prior knowledge. In particular, the relationship between
the scores and human evaluation has been proven weak for dialogue generation (Liu et al., 2016).

Recently, the significant success of generative adversarial networks (GAN) for image processing has
led researchers to use GANs for natural language. However, this has seen limited success because
of the difficulty of backpropagation through discrete random variables. To address this problem, (Yu
et al., 2017) use policy gradients on text generation. The reward is provided by a discriminator with
Monte-Carlo search. In addition, (Li et al., 2017) adopt the same idea for dialogue generation. They
also propose Reward for Every Generation Step (REGS), which is more time-efficient but is weaker
than Monte-Carlo search. Another way to use GAN for natural-language tasks is by using Gumbel-
Softmax (Kusner & Hernández-Lobato, 2016), which can simulate the discrete argmax outputs,
and be directly backpropagated from the discriminator. Also, MaliGAN (Che et al., 2017) directly
derives the gradient estimator for discrete data. More recently, the improved Wasserstein GAN
(WGAN-GP) (Gulrajani et al., 2017) has shown success for text generation by directly feeding the
softmax layer to the discriminator, even without pre-training. This breakthrough then inspired (Press
et al., 2017) and (Rajeswar et al., 2017) to further investigate WGAN-GP for better performance on
text generation.

We focus on the influence of different objective function in GANs on conditional sequence genera-
tion throughout this paper. We compare the state-of-the-art algorithms without additional assistance

2



Under review as a conference paper at ICLR 2018

such as teacher forcing, curriculum learning, etc. By this setting, we only consider the improvement
attributed by the intrinsic of different algorithms rather than other additional assistances.

3 CONDITIONAL SEQUENCE GENERATION

In conditional sequence generation, we generate an output sequence x ∈ X given an input condition
y ∈ Y . When the output sequence is generated from a model, it is denoted xG; when the output
sequence is from real data (training examples), it is instead denoted xR. In dialogue generation, both
x and y are sequences of words. They can be written as

x = {xt}Tt=1, xt ∈ V
y = {yt}Tt=1, yt ∈ V.

(1)

Words xt and yt represent the word at time step t in the interval T of the specific sequences x and
y. Set V is the vocabulary set from which the words are selected. In this paper, we generate xG
given y using the seq2seq model as the generator G (Sutskever et al., 2014; Vinyals & Le, 2015).
From Sections 3.1 to 3.3, we introduce maximum likelihood estimation, REINFORCE algorithm,
and GAN for sequence generation. In Section 4, we introduce the proposed approaches.

3.1 MAXIMUM LIKELIHOOD ESTIMATION

The basic idea of maximum likelihood estimation (MLE) for conditional sequence generation is to
find the parameters for model G that maximize the likelihood of generating the training data. When
using MLE to train the generator model G, the objective function is

G∗ = argmax
G

E(xR,y)∼PR(X,Y )[

T∑
t=1

log(PG(xRt |y, xR1...t−1))], (2)

where PR(X,Y ) is the joint distribution of the (x, y) pairs in the training data, and T is the length
of xR. In the training stage, in Eq. (2), the prediction is learned based on < y, xR1...t−1 >, but the
condition in the testing stage is < y, xG1...t−1 >. This is known as exposure bias, which can result
in accumulating error when testing. This is also due to the likelihood is estimated at the word
level (Ranzato et al., 2015) only as opposed to the whole sequence.

3.2 REINFORCE

Conditional sequence generation can be formulated as reinforcement learning. Similar to (Ranzato
et al., 2015), we describe it as a Markov decision process (MDP), where state s consists of the
condition and previous word sequence – in our case, s = < y, xG1...t−1 > – and an action a is the
generated word conditioned on the current state – in our case, a = xGt is a word in the vocabulary.
Each action is generated according to the policy, which is determined by the parameters of generator
model G. In typical reinforcement learning, the agent obtains a reward rt at each time step t. In
sequence generation, rt is zero except for rT , which evaluates the goodness of the whole generating
xG1...T given y. The generator G learns to maximize the expected reward

G∗ = argmax
G

Ey∼PR(Y ),xG∼PG(X|y)[rT ], (3)

where PR(Y ) is the probability distribution of condition y in the training data, PG(X|y) is the
probability of generating the sequence xG given the generator G and condition y. Note that the
main difference between Equations (2) and (3) is that the condition sequence here is xG1...t−1 rather
than xR1...t−1. Moreover, each xGt here is sampled using softmax rather than argmax over vocabulary
set V . The parameters of the generator θG are updated as

θG ← θG + η(rT − bt)∇ log(pG(x
G
t |y, xG1...t−1)), (4)

where bt is the baseline to reduce training variance (Sutton & Barto, 1998; Ranzato et al., 2015),
and η is the learning rate.

3



Under review as a conference paper at ICLR 2018

3.3 GENERATIVE ADVERSARIAL NETWORK

A generative adversarial network (GAN) is composed of a generator and a discriminator (Goodfel-
low et al., 2014). The discriminator differentiates between real data and data from the generator,
and the generator attempts to generate plausible data that will deceive the discriminator. Here we
use GAN for conditional sequence generation by considering our model G as the generator and
constructing a discriminator D sequentially fed with input-output pairs y and x (Mirza & Osindero,
2014; Li et al., 2017).

3.3.1 SEQGAN

Since the vocabulary V in the generated sequence is a discrete variable, we cannot backpropagate
through the generator. In SeqGAN (Yu et al., 2017; Li et al., 2017), the generation task is formulated
as a reinforcement learning scenario, similar to that described in Section 3.2, and the reward function
is replaced with the discriminator in regular GAN. The discriminator D is then updated through
backpropagation, while the generator G is updated using policy gradient with a reward evaluated
over x given y by D. The optimization functions for D and G are

D∗ = argmax
D

Ey∼PR(Y ),xR∼PR(X|y)[log(D(xR|y))] + Ey∼PR(Y ),xG∼PG(X|y)[log(1−D(xG|y))]

G∗ = argmax
G

Ey∼PR(Y ),xG∼PG(X|y)[D(xG|y)].
(5)

In the basic SeqGAN, G in Equation (5) is optimized using the REINFORCE algorithm. The for-
mulation for optimizing G in Equation (5) is the same as Equation (3), except that rT is replaced
with D(xG|y).
Due to the sparse reward that only given at the terminal state, this basic setting will cause high
training variance. For example, when questioning ”What ’s your name ?”, ”I ’m sorry.” is a wrong
answer, while ”I ’m John.” is a correct answer. Although they share the same prefix ”I ’m”, the basic
SeqGAN will give the prefix different reward in different sentences. The solution in (Yu et al., 2017;
Che et al., 2017) is Monte Carlo search. For each prefix x1...t, N possible sequences xt+1...T

are samples according to the current policy, and the N final rewards are averaged as the reward for
current time step. In practice, we have to complete every prefixes for each training data in a batch,
and evaluate all of the mTN episodes, where m is the batch size. This method costs extremely
high computational resource. For time efficiency, (Li et al., 2017) proposes Reward for Every
Generation Step (REGS) to replace Monte Carlo search. Because they train the discriminator in
REGS with prefixes without considering whether the episode is terminated, REGS causes a less
accurate discriminator.

3.3.2 WASSERSTEIN GAN WITH GRADIENT PENALTY (WGAN-GP)

In recent work, WGAP-GP has been successfully used for sequence generation (Gulrajani et al.,
2017; Rajeswar et al., 2017; Press et al., 2017). Instead of using more complicate methods such as
policy gradient, they directly feed the softmax layer into the discriminator. The generator can there-
fore be updated through backpropagation. We then formulate the conditional version of WGAN-GP
as

D∗ = argmax
D

Ey∼PR(y),xR∼PR(X|y)[D(xR|y)]− Ey∼PR(y),xG∼PG(X|y)[D(xG|y)]

G∗ = argmax
G

Ey∼PR(Y ),xG∼PG(X|y)[D(xG|y)].
(6)

4 PROPOSED APPROACH: STEPWISE GAN

The basic idea of stepwise GAN (see Fig. 1), or StepGAN, is to construct a sequence-to-sequence
model as discriminator D. At each time step of D’s decoder, the hidden vector is passed to a
fully-connected layer. The discriminator D then outputs the evaluation score for each subsequence
〈y, x1...t〉, denoted as D(x1...t|y). With discriminator D, we seek to minimize the summation of
D(xG1...t|y) over the time steps when input the generated sequences xG. Simultaneously, D maxi-
mizes the summation of D(xR1...t|y) when the input is real data xR. The optimization of D and G is

4



Under review as a conference paper at ICLR 2018

Figure 1: Illustration of stepwise GAN

thus

D′(x|y) =
T∑

t=1

αD
t D(x1...t|y)

D∗ =argmax
D

Ey∼PR(y),xR∼PR(X|y)[log(D
′(xR|y))]

+ Ey∼PR(y),xG∼PG(X|y)[log(1−D′(xG|y))],
G∗ =argmax

G
Ey∼PR(Y ),xG∼PG(X|y)[D(xG|y)],

(7)

where αD
t is a weighted factor with

∑T
t=1 α

D
t = 1. In practice, we set αD

t = 1
T , but it is possible

to give different steps different weights. StepGAN not only considers terminated episodes but also
assign scores for each prefix. Although we only use one way to trainD, we think there are two ways
to interpret the D’s scores, and different view points lead to different update formulations for G:

• D(x1...t|y) evaluates the extra benefit of adding the word xt into the sequence. The formu-
lation for G’s parameter update is

θG ← θG + ηαG
t (

T∑
t′=t

D(x1...t′ |y))∇ log(pG(x
G
t |y, xG1...t−1)). (8)

G has to increase the summation
∑T

t′=tD(x1...t′ |y). We call this stepGAN-Seq.

• D(x1...t|y) evaluates the average goodness of all the sequences beginning with x1...t. The
update formulation for θG is

θG ← θG + ηαG
t D(x1...t|y)∇ log(pG(x

G
t |y, xG1...t−1)). (9)

The G only needs to learn to increase D(x1...t|y). We call this stepGAN in following.

5



Under review as a conference paper at ICLR 2018

Using factor αG
t , we diversify training by arbitrarily weighting the importance of each time step1.

We explore the influence of different values of αG
t and compare the two update formulations in

section 5 and appendix B.

StepGAN-Seq is a generalized version of SeqGAN. If we set αD
T = 1, αD

t = 0 for t < T , and
αG
t = 1 for all t, then stepGAN-Seq is equivalent to SeqGAN without Monte Carlo search. Also,

REGS (Li et al., 2017) can be induced by set αD
t = 1 at a randomly chosen time step.

StepGAN is similar to the actor-critic architecture in (Bahdanau et al., 2016). Instead of the assigned
task-specific score, we learn the score by adversarial learning. Because D’s scores are the expected
return in this setting, we would like StepGAN to approximate the expected return obtained by Seq-
GAN or MaliGAN with Monte Carlo search. This approach only need to add a set of weight factors,
and therefore much time efficient than Monte Carlo search. For more details of the algorithm, please
refer to appendix A for pseudo-code.

5 EXPERIMENTS

We use a recurrent neural network for both the discriminator and generator due to its strong sequen-
tial correlation (Press et al., 2017; Rajeswar et al., 2017). Specifically, we use gated recurrent units
(GRUs) (Chung et al., 2014) in our experiments. We view the noise feature in GAN as the random
process of sampling from the softmax layer distribution.

5.1 ARTIFICIAL GRAMMARS

To better evaluate GANs for conditional sequence generation, we define three artificial grammars:
sequence, counting, and addition. The three grammars are described in Table 1. For the sequence
grammar, the aim is to generate a continued consecutive number sequence behind the input Y . For
example, for input 〈1, 2, 3〉, the answer would be a consecutive number sequence of any length
starting with 4, such as 〈4, 5, 6, 7, 8〉. The counting grammar is more complicated. The generated
sequence should contain exactly 3 words, where the median is a randomly selected word from the
input sequence. The first generated word should be the number of words on the left-hand side of the
selected median, while the last generated word should be the number of words on the right-hand side.
For example, when the input is 〈5, 9, 2, 8, 3, 2, 9, 1〉, one permissible generated sequence is 〈0, 5, 7〉.
Last, for the addition grammar we generate the addition of two numbers randomly segmented from
the input sequence. That is, for input 〈8, 1, 3, 4〉, then one permissible output is the addition of 8 and
134 – thus 〈1, 4, 2〉. Note that both the input and output numbers for this grammar are represented
in terms of their corresponding digits.

The purpose of these design is to imitate major properties in dialogue generation, such as variable-
length, repeated prefixes, the same sequence space, one-to-many, and many-to-one. The variable-
length property means there is no fixed length for the input and output sequences. The repeated
prefixes property means the beginning subsequences are usually shared by many data, for instance
What and I am in natural language. The same sequence space here means that the input and output
have the same structure and as such are sampled from the same space. Finally, one-to-many and
many-to-one are quite common in dialogue generation. For example, when asking How are you?,
responses vary from I’m fine to Great! How are you?. Also, the same response can be paired with
multiple questions, such as for My name is Paul in response to What’s your name? and Who are
you?.

We then randomly generate 100,000 samples as training data, 10,000 as development data, and
10,000 samples as testing data. The architectures are set to one layer with 128 hidden units. We
evaluate our results using the three measures in Table 2. The first is the accuracy of samples gen-
erated from the argmax policy (Acc), the second is that generated from the softmax probability
(AccS), and the last is the coverage of softmax samples over all the permissible answers of the spe-
cific grammar (Cov). We report them to ensure whether the one-to-many property is being learned.
AccS and Cov are important because they can indicate if the model can learn the underlying dis-
tribution of answers. When mode collapse happens, which means the model only know a specific

1αG
t needs not be equivalent to αD

t .

6



Under review as a conference paper at ICLR 2018

Table 1: Grammar definitions and examples

Grammar Definition Examples
Sequence Continue the sequence for a random length 123: 4, 45, ...

Counting Randomly choose a digit, and then calculate the 123: 012, 121, 230left- and right-hand lengths
Addition Randomly partition, and then add the two numbers 123: 15, 24

Table 2: Results of artificial grammars with different algorithms. Evaluation label Acc (%) is the
accuracy of argmax samples, AccS (%) is the accuracy of softmax samples, and Cov (%) is the
coverage of softmax samples over permissible answers. The dash (-) here indicates that the algorithm
introduced no improvements based on the pre-trained model.

Sequence Counting Addition
Acc AccS Cov Acc AccS Cov Acc AccS Cov

MLE 97.43 81.32 53.77 73.48 68.89 70.63 44.57 32.28 31.79
REINFORCE 99.81 97.30 4.54 99.97 99.36 16.99 79.98 75.60 18.32
WGAN-GP - - - - - - - - -
basic-MaliGAN 97.34 81.66 54.19 74.12 70.35 70.15 44.27 32.05 31.92
basic-SeqGAN 97.20 80.28 57.61 74.59 70.56 70.39 44.87 32.30 31.90
MC-SeqGAN 97.20 80.98 55.49 72.96 68.10 70.54 44.72 32.28 31.83
REGS 97.42 81.36 53.82 75.99 70.93 69.40 44.64 32.32 32.01
StepGAN-Seq 97.11 74.85 67.49 75.47 70.64 69.82 45.55 32.49 32.01
StepGAN 97.19 75.92 66.08 81.98 72.24 69.02 44.94 32.19 31.67

type of answers, it will obtain high AccS and low Cov scores. To ensure a fair comparison, all the
algorithms are based on the same pre-trained model: the MLE model listed in Table 2.

We discuss the results of MLE, REINFORCE, and state-of-the-art GAN algorithms on Sequence,
Counting, and Addition in Table 2. REINFORCE has higher Acc and AccS than MLE2, but it
results in strong mode-collapse (very low Cov). We have a very strong MLE baseline for Sequence.
Therefore we cannot pretrain discriminator well based on this baseline MLE model. Every GAN
algorithms cannot outperform MLE by this setting. StepGAN improves Acc on both Counting and
Addition without heavily trade-off with Cov. That is, training model using StepGAN enhances and
maintains the knowledge of underlying distribution rather than resulting in strong mode-collapse as
REINFORCE.

To investigate the trade-off between AccS and Cov, we plot the accuracy-coverage curve in Fig. 2.
The trade-off between accuracy and coverage is controlled by sharpening the softmax layer. Besides
Fig. 2a, of which the GANs do not obtain good results, StepGAN improves the accuracy-coverage
curves in Fig. 2b and Fig. 2c. This is consistent with our realization of Table 2 that StepGAN fits
model to the underlying distribution better.

5.2 DIALOGUE GENERATION

We split OpenSubtitles (Tiedemann, 2009) into training set, development set, and testing set with a
vocabulary of the top 4,000 most frequently occurring words. Both the generator and discriminator
are 1-layer GRUs with a hidden dimension set to 5123. To compare the improvements introduced by
all the algorithms, we first pre-trained the generator using MLE, after which we further trained the
model for 1-epoch by different GANs. SeqGAN, MaliGAN, REGS, and StepGAN were compared.
We do not compare Monte Carlo search with other approaches because its time complexity is much
larger. All discriminators of SeqGAN, MaliGAN, REGS, and StepGAN were pre-trained on real

2Since the given reward of REINFORCE is the true accuracy, the Acc and AccS of REINFORCE here are
taken as the upper bounds.

3We trained another value network with the same seq2seq architecture to estimate the baseline. This is
similar to (Li et al., 2017).

7



Under review as a conference paper at ICLR 2018

(a) Sequence (b) Counting (c) Addition

Figure 2: Sampled accuracy and coverage curves

Table 3: Human evaluation and BLEU score for dialogue generation. CoHS (%) is coherence human
score. SHS (%) is sentence structure human score.

CoHS (%) SHS (%) BLEU
Argmax BS MMI Argmax BS MMI Argmax BS MMI

MLE 44.89 54.22 60.44 15.11 1.33 7.56 0.222 0.281 0.272
SeqGAN 41.33 53.33 63.55 30.67 6.22 10.22 0.202 0.267 0.251
MaliGAN 35.56 51.11 45.33 20.89 5.78 8.00 0.180 0.271 0.263
REGS 36.44 54.67 53.78 36.44 9.33 9.78 0.180 0.256 0.246
StepGAN 47.56 63.56 61.33 40.89 3.56 8.89 0.171 0.254 0.248

data and generated data from the pre-trained generator. Note that these models were all trained
without MIXER, curriculum learning, or teacher forcing, etc. Both the generator and discriminator
are optimized by SGD. We used grid search in the experiments with learning rate={1e-1,1e-2,1e-3},
discriminator iteration step={1,5}, and used batchsize=64.

For human evaluation, we randomly selected 25 inputs from the testing set, and decoded using
argmax policy, beam search, and MMI (Li et al., 2015)4. We presented both an input and the
generated outputs to 8 and 4 judges respectively, and we asked them to do Turing test (correct or
not) of the coherence and sentence structure. Coherence is the rationality of the generated responses
given inputs. Sentence structure is the correctness and complexity of grammar. The sentences
provide specific information would be considered as having better sentence structure rather than the
general ones (egs. I don’t know.) due to more complex grammar. In Table 3, the two measures are
labeled as CoHS (Coherence Human Score) and SHS (Sentence structure Human Score). We also
show the BLEU score of each algorithm. It was already found that BLEU score is inconsistent with
human evaluation (Liu et al., 2016), we also observe the same phenomenon it in our experiments.

We show the CoHS and SHS of 15 different results (5 different algorithms and 3 different decoding
methods) in Table 3. First, we can see decoding using beam search or MMI improve CoHS. Step-
GAN obtains the best performance in terms of CoHS when using argmax policy or beam search,
but StepGAN cannot further increase the performance using MMI. When using MMI, the CoHS of
MLE, SeqGAN and StepGAN are comparable. Second, argmax policy has higher SHS than beam
search and MMI in all cases. In the meantime, GANs have higher SHS than MLE, and StepGAN
has the highest score with argmax. The inconsistency of improvement between argmax policy, beam
search and MMI is very likely because that the GANs are learned with the softmax policy and do not
consider beam search and MMI during training. Additionally, we know beam search and MMI max-
imize the probability of response given an input without maintaining the probability of the response
itself. This makes them prefer a coherence response rather than a good sentence structure. These
statistics show that SeqGAN, MaliGAN, and REGS cannot consistently improve both coherence
and sentence structure, whereas StepGAN outperforms MLE in terms both CoHS and SHS with all
decoding methods.5

4We use MMI-p(x) in our experiments.
5To see the generated examples, please refer to appendix D.

8



Under review as a conference paper at ICLR 2018

(a) positive example. (b) negative example.

(c) positive example. (d) negative example.

Figure 3: The variation of discriminators’ scores using different GAN algorithms during training
iterations. The printed color is normalized throughout the generation steps (x-axis) for each algo-
rithm. (a)(b) are given “how are you ?” as input, and (c)(d) are given “what ’s your name ?” as
input.

To understand what the discriminators learn, we measure the variance throughout the training itera-
tions at each generation step. In adversarial learning, discriminator’s scores oscillate during training
according to the current performance of generator. We argue that discriminator’s score for the most
crucial generation step is the most easy to oscillate. This is because the generation step is the most
important one for discriminator to identify whether it’s real or fake. In Fig. (3), we show four exam-
ples. Fig. (3a) and Fig. (3b) are respectively true response and wrong response given input question
”how are you ?”, and Fig. (3c) and Fig. (3d) are given input question ”what ’s your name ?. The
darker color indicates the higher variance on the generation step.

In Fig. (3), the colors for SeqGAN is always the same. Because the disriminator of SeqGAN only
evaluate the whole sequence, the generation steps means no difference to discriminator. Second,
REGS and StepGAN both aim to approximate Monte-Carlo search on SeqGAN, but in practice,
we can clearly see that the variance of REGS is very different from Monte Carlo search. This is
because REGS considers non-terminated episodes, which makes REGS has to spend extra effort on
the generation maximum length to check whether there’s a terminal state (< EOS >). The results
of StepGAN and Monte Carlo search (MC-SeqGAN) are quite similar. Based on MC-SeqGAN
and StepGAN, the important parts (with darker colors) in the sentences for discriminating the true
ones from fake correspond to human knowledge. For example, ”fine , thank you ” are the most
important region in Fig. (3a), ”sorry , i ’m sorry” are the most important region in Fig. (3b) when
answering ”how are you ?”. When given ”what ’s your name ?”, MC-SeqGAN and StepGAN focus
on ”’m john” in Fig. (3c) and ”sorry” in Fig. (3d). We believe the success of StepGAN comes from
estimating the goodness of a sequence at every generation step as Monte Carlo search, but with little
extra computation.

6 CONCLUSION

In this paper we propose StepGAN to approximate Monte Carlo search with a much lower compu-
tational cost.We show that the proposed StepGAN performs equally to or outperforms the state-of-
the-art GAN algorithms on artificial grammars. On a representative real-world conditional sequence
generation task–dialogue generation, StepGAN also outperforms other approaches on both coher-
ence and sentence structure.

9



Under review as a conference paper at ICLR 2018

Our proposed artificial grammars not only accurately reflect model coverage and accuracy but also
boast clearly distinguishable styles. For example, the sequence style can be the length, the counting
style can be the selected digit position, and the addition style can be the selected partition position.
This property lends itself to investigating style transfering for sequences generation, which is one of
our aims for future work.

REFERENCES

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, pp. 1171–1179, 2015.

Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
Bengio. Maximum-likelihood augmented discrete generative adversarial networks. arXiv preprint
arXiv:1702.07983, 2017.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, and David Carter.
Batch policy gradient methods for improving neural conversation models. arXiv preprint
arXiv:1702.03334, 2017.

Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete elements with
the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051, 2016.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural
dialogue generation. arXiv preprint arXiv:1701.06547, 2017.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking for
language generation. arXiv preprint arXiv:1705.11001, 2017.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle
Pineau. How not to evaluate your dialogue system: An empirical study of unsupervised eval-
uation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language generation with re-
current generative adversarial networks without pre-training. arXiv preprint arXiv:1706.01399,
2017.

Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, and Aaron Courville. Adver-
sarial generation of natural language. arXiv preprint arXiv:1705.10929, 2017.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

10



Under review as a conference paper at ICLR 2018

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Jörg Tiedemann. News from OPUS - A collection of multilingual parallel corpora with tools
and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov (eds.), Recent Ad-
vances in Natural Language Processing, volume V, pp. 237–248. John Benjamins, Amster-
dam/Philadelphia, Borovets, Bulgaria, 2009. ISBN 978 90 272 4825 1.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, pp. 2852–2858, 2017.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin.
Adversarial feature matching for text generation. arXiv preprint arXiv:1706.03850, 2017.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016.

11



Under review as a conference paper at ICLR 2018

A APPENDIX: PSEUDO CODE OF STEPWISE GAN

Table 4: Pseudo code of stepwise GAN

Algorithm 1 Stepwise GAN (StepGAN) Training
1 for number of training iterations do
2 for i=1, D-steps do
3 Sample (y, xR) from real data
4 Sample xG ∼ PG(.|y)
5 Update D using equation (7)
6 D′(x|y) =

∑T
t=1 α

D
t D(x1...t|y)

7 D∗ = argmaxD Ey∼PR(y),xR∼PR(X|y)[log(D
′(xR|y))]

+Ey∼PR(y),xG∼PG(X|y)[log(1−D′(xG|y))]
8 end for
9 for i=1, G-steps do

10 Sample y from real data
11 Sample xG ∼ PG(.|y)
12 Update G using equation (9)
13 θG ← θG + ηαG

t D(x1...t|y)∇log(pG(xGt |y, xG1...t−1))
14 end for
15 end for

B WEIGHTED FACTORS SEARCH OF STEPGAN AND STEPGAN-SEQ

Table 5: StepGAN and StepGAN-Seq with different weight factors. The dash (-) here notes that the
weight factors yield neither improvements nor deterioration.

StepGAN StepGAN-Seq
Acc AccS Cov Acc AccS Cov

Sequence
Uniform 97.19 75.92 66.08 97.11 74.85 67.49
Increase 97.17 75.33 66.75 97.18 73.30 68.19
Decrease 97.16 74.73 67.14 97.09 74.34 67.48

Counting
Uniform 77.23 71.43 70.18 74.91 70.70 69.84
Increasing 74.50 69.66 70.86 74.54 70.74 70.11
Decreasing 81.98 72.24 69.02 75.47 70.64 69.82

Addition
Uniform 44.26 32.39 31.91 44.77 32.34 31.65
Increasing - - - - - -
Decreasing 44.94 32.19 31.67 45.55 32.49 32.01

We compare different weighted factors αG for StepGAN and StepGAN-Seq, with αD
t = 1

T for all
the presented cases. As depicted in Table 5, the three grammars are trained using three sorts of
weighted factors: uniform (αG

t = 1), increasing (αG
t = t), and decreasing (αG

t = T − t + 1).
The results clearly show that the time-step-decreasing weight factors positively affect training. We
believe this is because the training spirit of decreased weighted factor start from first correcting
prefix. After correcting prefix, it becomes easier to correct the suffix. Please refer to section 5 if you
are interested in the details of Acc, AccS, and Cov.

C ENERGY-BASED STEPWISE GAN (EBSTEPGAN)

We propose energy-based stepwise GAN (EBStepGAN) that only change the form of objective
function of StepGAN. This is mainly inspired by energy-based GAN (Zhao et al., 2016). As depicted
in Fig. 4, the discriminator D here has the same architecture as generator G, and its energy function
is cross-entropy. Discriminator assigns low energy to real samples and high enery to generated

12



Under review as a conference paper at ICLR 2018

Figure 4: Illustration of energy-based stepwise GAN

samples. The advantage of EBStepGAN is that we can initialize both generator and discriminator
with the same pre-trained model using MLE. The optimization functions are written as

D∗ =argmax
D

E(xR,y)∼PR(X,Y )[

T∑
t=1

log(PD(xRt |y, xR1...t−1))]

+maximum(0, β − Ey∼PR(Y ),xG∼PG(X|y)[

T∑
t=1

log(PD(xGt |y, xG1...t−1))])

(10)

G∗ =argmax
G

Ey∼PR(Y ),xG∼PG(X|y)[

T∑
t=1

log(PD(xGt |y, xG1...t−1))], (11)

where PD(xGt |y, xG1...t−1) in Equation (11) is the probability of generating xGt given< y, xG1...t−1 >
based on the current model D, and β in Equation (10) is the threshold for preventing the discrim-
inator from distinguishing generated samples from real samples too easily. When the energy of
generated samples is too high, the threshold turns off the second term in (10). The results of EB-
StepGAN is shown in Table 6. According to Table 6, EBStepGAN does not show better performance
than StepGAN in our current experiments.

Table 6: Results of artificial grammars by EBStepGAN. Please check Table 2 for other results.

Sequence Counting Addition
Acc AccS Cov Acc AccS Cov Acc AccS Cov

EBStepGAN 97.32 80.09 57.12 79.78 71.52 68.44 45.74 32.68 32.11

13



Under review as a conference paper at ICLR 2018

D APPENDIX: EXAMPLES OF NEURAL DIALOGUE GENERATION

Table 7: Examples of neural dialogue generation trained on OpenSubtitles

Input hello , i ’m senator snatch .
MLE i ’m sorry .

SeqGAN i ’m sorry , i ’m sorry .
MaliGAN i ’m a good man .

REGS i ’m here to see you again
StepGAN sorry you ’re late .

Input i got the money right here .
MLE i ’m sorry .

SeqGAN i ’m here to help .
MaliGAN i can .

REGS i can ’t do it .
StepGAN i ’ll take you home .

Input hope you enjoyed your pee ... because it ’s your last on this trip .
MLE it ’s not a problem .

SeqGAN it ’s not your fault .
MaliGAN it doesn ’t matter .

REGS it ’s not a dream .
StepGAN it ’s the only thing i can do .

Input he say ... if you want to be an actor , he has something to show you .
MLE you ’re not .

SeqGAN you can ’t do that .
MaliGAN what ’s he mean ?

REGS he ’s a very good guy , you know .
StepGAN you ’re not gonna be a liar .

Input thank you , thank you .
MLE i ’m sorry .

SeqGAN i ’m sorry , sir .
MaliGAN thank you .

REGS i ’ll be right back .
StepGAN you ’re welcome .

Input i feel like a paris princess .
MLE i know it .

SeqGAN i know that you ’re not there .
MaliGAN i feel like ...

REGS i can ’t see it .
StepGAN you ’re not a child anymore .

Input i ’m tired of all your questions .
MLE i ’m gonna have to ask you to come .

SeqGAN i ’m gonna call you .
MaliGAN i ’m a friend .

REGS i ’m going to have to ask you to come in
StepGAN i ’m going to be a friend of you .

Input it ’s great .
MLE yeah .

SeqGAN it ’s great , huh ?
MaliGAN it ’s great .

REGS i was just thinking about it .
StepGAN you ’re so sweet .

14


	Introduction
	Related Work
	Conditional Sequence Generation
	Maximum Likelihood Estimation
	REINFORCE
	Generative Adversarial Network
	SeqGAN
	Wasserstein GAN with Gradient Penalty (WGAN-GP)


	Proposed Approach: Stepwise GAN
	Experiments
	Artificial Grammars
	Dialogue Generation

	Conclusion
	Appendix: pseudo code of stepwise GAN
	Weighted factors search of StepGAN and StepGAN-Seq
	Energy-based Stepwise GAN (EBStepGAN)
	Appendix: examples of neural dialogue generation

