
Cascaded Transforming Multi-task Networks For
Abdominal Biometric Estimation from Ultrasound

Matthew D. Sinclair1, Juan Cerrolaza Martinez1, Emily Skelton2, Yuanwei Li1,
Christian F. Baumgartner3, Wenjia Bai1, Jacqueline Matthew2, Caroline L. Knight2,

Sandra Smith2, Jo Hajnal2, Andrew P. King2, Bernhard Kainz1, Daniel Rueckert1

Biomedical Image Analysis Group
Department of Computing, Imperial College London, UK

{m.sinclair, j.cerrolaza-martinez, yuanwei.li09}@imperial.ac.uk
{b.kainz, d.rueckert}@imperial.ac.uk

School of Biomedical Engineering and Imaging Sciences
King’s College London, UK

{emily.skelton, jacqueline.matthew, caroline.l.knight}@kcl.ac.uk
{sandra.smith, jo.hajnal, andrew.king}@kcl.ac.uk

Computer Vision Lab
ETH Zurich, Switzerland

baumgartner@vision.ee.ethz.ch

Abstract

Measurement of biometrics from fetal ultrasound (US) images is of key importance
in monitoring healthy fetal development. Under the time-constraints of a clinical
setting however, accurate measurement of relevant anatomical structures, including
abdominal circumference (AC), is subject to large inter-observer variability. To
address this, an automated method is proposed to annotate the abdomen in 2D
US images and measure AC using a shape-aware, multi-task deep convolutional
neural network in a cascaded model framework. The multi-task loss simultaneously
optimises both pixel-wise segmentation and shape parameter regression. We
also introduce a cascaded shape-based transformation to normalise for position
and orientation of the anatomy, improving results further on challenging images.
Models were trained using approximately 1700 abdominal images and compared
to inter-expert variability on 100 test images. The proposed model performs better
than inter-expert variability in terms of mean absolute error for AC measurements
(3.95mm vs 5.89mm), and Dice score (0.962 vs 0.955). We also show that on
the most challenging test images, the proposed method significantly improves on
the baseline model, and inference runs in near real-time which could aid clinical
workflow.

1 Introduction

Ultrasound (US) is a low-cost, non-ionising imaging modality used for clinical fetal screening. A
mid-trimester US scan, typically carried out between 18-22 weeks gestation, is used in most countries
as part of standard prenatal care. Specific imaging planes are acquired during the scan of different
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anatomies, referred to as standard planes. Biometric measurements of the head, abdomen and femur
are commonly used to estimate both fetal age and weight from these standard planes.

Pitfalls of US however include acoustic shadow, speckle noise, motion blurring and low signal-to-
noise ratio, making the identification of soft tissue and bony landmarks, and subsequent biometric
assessment, challenging tasks for sonographers. There is considerable inter-observer variability in the
measurement of different anatomical structures due to varying levels of sonographer expertise and
directed attention fatigue. Additionally, annotation of the abdomen is subject to greater variability
than the head for example, due to lower contrast soft tissue boundaries, shadow artefacts and boundary
ambiguities resulting from proximity to other anatomical structures such as the limbs and spine.

1.1 Related Work

In recent years, deep convolutional neural networks have demonstrated remarkable performance on
visual tasks such as image classification [15] and semantic segmentation [10]. Multi-task learning
(MTL) has also been shown to improve performance for networks trained simultaneously on multiple
related tasks [8, 5]. MTL updates hidden layers during training to simultaneously perform related
tasks, and is effective when the tasks are sufficiently related [12]. Additionally, the use of auto-context
schemes has led to improvements in network performance; the prediction probabilities from one
network are combined with the associated input image forming a new input for a second network,
thus providing additional cues [17, 18]. Appropriate image transformations can also improve network
performance, for example with spatial transformer networks [6].

For the task of automatic biometric measurement from standard plane images, a range of non-deep
learning methods have been used to estimate head circumference (HC) and biparietal diameter (BPD)
[2, 14, 9] as well as abdominal circumference (AC) [2] and femur length [14, 2]. None of these
methods have been shown to perform at a human level, nor has their robustness been thoroughly
demonstrated on challenging clinical images. More recently, deep convolutional neural networks have
been used for segmentation [18] and biometric annotation [11, 7] of the abdomen, as well as the head
[16, 18]. Both papers in which an AC measurement method was proposed were restricted by training
samples of just 70 [11] and 56 [7] images. Thus resulting Dice scores were considerably lower than
those reported in [18] in which a cascaded fully convolutional network (FCN) was trained to perform
abdominal segmentation using a training dataset of 900 images. In [16], it was demonstrated that
segmentation with an FCN followed by an ellipse fitting step [4] produced human-level performance
on biometric estimation of HC and BPD, and generated plausible annotations for even the most
challenging test images. As shown in this paper however, applying the same method to measure AC
from standard plane abdominal images, while producing state-of-the-art results, produces a number
of failure cases on the most challenging test images, which we improve with proposed methods.

1.2 Contributions

Given that the target annotation produced by a sonographer to measure AC is an ellipse, it is plausible
that a network would benefit from learning to predict ellipse parameters in parallel with semantic
segmentation. We hypothesise that training a network to learn both ellipse shape parameters and
semantic segmentation of the abdomen will improve the predicted biometric annotation, particularly
on more challenging cases where only partial anatomical information is visible due to various
artefacts. Furthermore, we hypothesise that due to a non-random distribution of abdominal anatomy
orientations and positions in the image data, shape-specific spatial transformations could be suitably
used to improve ellipse parameter estimation by providing an initial normalisation of ellipse location
and orientation.

In this work, we propose an approach to automatically and robustly annotate abdominal images
to measure AC from clinically acquired fetal US data. We propose and compare different deep
convolutional neural networks, with the primary improvements to the baseline FCN including: (1)
additional convolutional layers in the FCN-8 encoder [10] to increase receptive field for the given
task; (2) introduction of an ellipse parameter regression branch for a multi-task loss; (3) use of a
cascaded model framework; and (4) introduction of a shape-specific spatial transformation in the
cascaded model framework to improve ellipse parameter regression.

We assess the performance of our method by comparing to intra- and inter-expert errors with a 100
patient subset of the test data, demonstrating expert-level performance of the proposed method. The
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proposed method outperforms results of other methods reported in the literature [2, 11, 7], additionally
showing robustness on challenging cases and performing inference in near real-time.

2 Materials

The study population consists of 2,352 2D ultrasound examinations from volunteers at 18-22 weeks
gestation, which were acquired and labelled during routine screening by a team of 45 expert sono-
graphers according to UK FASP guidelines [3]. All volunteers gave written informed consent in
accordance with ethical committee approval. Eight different ultrasound systems, all of the same make
and model (GE Voluson E8), were used to perform the examinations. Each volunteer was examined
by a single sonographer, who identified all standard scan planes including the abdominal plane. From
the abdominal plane, the sonographer created an annotation to measure the abdominal circumference
during the examination using an ellipse tool available on the ultrasound system. Freeze-frame DICOM
images of the annotated abdominal plane were saved for all subjects. Screen-capture videos were
also saved for the ultrasound examinations of each subject, consisting of, on average, 13 minutes of
footage per subject at a frame rate of 30fps.

While each examination is performed according to the FASP guidelines, large variability is still
introduced by the variations in acoustic shadow artefacts, selected zoom level, fetal anomalies and
the position of the fetus, which determines the image content around the abdomen. No special
selection was made to remove cases with particular image artefacts or anatomical anomalies from the
dataset. Thus our dataset is a good representation of the variety of abdominal images expected in a
clinical setting. The mean, minimum and maximum AC measurements in the dataset were 156.8mm,
123.0mm and 203.7mm, respectively.

3 Methods

3.1 Data Pre-processing

The image preprocessing steps followed are detailed in [16]. Briefly, dashed lines representing ellipse
annotations in the freeze-frame DICOM images were extracted with several image processing steps
and an ellipse was fitted using the method presented in [4] to provide the ground-truth (GT) abdominal
mask. Pixels inside the ellipse were given the value 1, and those outside the ellipse 0. A comparison
of the fitted ellipse diameter to that recorded on the US system indicated a match with < 0.2% error.

To obtain annotation-free images, the videos were parsed for the matching unannotated frame
corresponding to each freeze-frame DICOM image. A visual check was performed to ensure all
recovered video frames were unannotated and matched the corresponding annotated DICOM image
for all subjects. Images were cropped to remove on-screen text and scaled by 0.5 to a size of 320x384
pixels, small enough for efficient training and inference while introducing only a negligible error into
the AC measurement. The mean original pixel size was 0.13x0.13mm, so down-sampling introduced
an error of up to about 0.8mm in AC measurements, or approximately 0.5% of the mean AC value.

3.2 Networks

Deep convolutional neural networks (CNNs) designed for semantic segmentation such as the FCN
[10] and U-net [13] architectures learn a set of image filters at multiple spatial scales, producing
hierarchical feature maps of increasing coarseness. Further filters then learn to up-sample the coarse
feature maps to produce a pixel-wise label prediction at the resolution of the input image. The
baseline model used in this study is a FCN with 16 convolutional layers, which was used in [16]
producing human-level performance for head annotation. Section 3.2.1 describes the multi-task
network combining a segmentation loss and an ellipse parameter regression loss. Section 3.2.3
describes standard and proposed cascaded model frameworks.

3.2.1 Multi-task Network

Fully Convolutional Network Let x be an image and y be its corresponding pixel-wise label map,
where a training set S consists of pairs of images and label maps, S = {xi|i = 1, 2, . . . , N ; yi|i =
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1, 2, . . . , N}. Supervised learning is performed to estimate the network parameters, Θ, to predict
label map yi of image xi in the training set, by optimising the cross-entropy loss function

min
Θ

Ls(Θ) = −
∑
i

∑
j

logP (yi,j |xi,Θ), (1)

where j denotes the pixel index and P (yi,j |xi,Θ) denotes the softmax probability produced at pixel j
for image (and corresponding label map) i. The FCN-8 [10] used as the baseline model has a receptive
field of 196x196. An additional stride=2 convolutional layer together with 2 further convolutional
layers is added to the FCN-8 to increase the receptive field to 404x404, allowing for the deepest
encoder convolutional filters to act on the entire context of the input images.

Ellipse Parameter Regression An ellipse can be parameterised with 5 variables: the radii in the
directions of the two axes, a and b, the centroid coordinates, cx and cy , and angle of rotation of axis
with radius a from the horizontal plane, α. The equation defining the region inside an ellipse is

(cosϕ(px − cx) + sinϕ(py − cy))k

a2
+

(sinϕ(px − cx) + cosϕ(py − cy))k

b2
≤ 1, (2)

where px and py are image pixel coordinates. The GT ellipse parameters were derived from the
ellipses fitted to the DICOM annotations, as described in Section 3.1. The parameters a, b, cx and
cy are given in terms of pixels, while α is given in radians in the range of [−π/4, π/4] (we choose
that the axis with radius a is more parallel with the horizontal plane than the axis with radius b). A
squared error (SE) loss is used to regress the variables,

min
Θ

Lr(Θ) =
∑
i

(σP
i − σGT

i )2, (3)

where σp
i = {a, b, cx, cy, α}Pi are the predicted parameters and σGT

i = {a, b, cx, cy, α}GT
i are the

GT parameters of the ellipse in image i.
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Figure 1: Multi-task network with parameter regression and segmentation branches. In the key above,
3x3/2 = 3x3 filter with stride=2; BN = batch normalisation; ReLU = rectified linear unit activation.

The multi-task loss combining Eq.’s 1 and 3 is simply given by

Lm = wrLr + wsLs, (4)
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where wr and ws control the weighting of the two losses. The network combining these losses is
shown in Fig. 1. Differences to the baseline FCN (which was used in [16]) are: (1) the additional
scale of feature maps (blue-filled boxes) which enlarges the receptive field of the associated filters to
the whole input image; and (2) the two fully-connected layers for ellipse parameter regression, the
input to which is the coarsest set of feature maps.

3.2.2 Biometric Estimation

To obtain an annotation, an ellipse is (1) fitted [4] to the segmentation contours of the abdominal
region produced by the FCN, referred to as Elseg in the text, and/or (2) retrieved from the regressed
ellipse parameters from Eq. 2, referred to as Elpar in the text. AC is estimated using the Ramanujan
approximation II [1],

AC ≈ π(a+ b)

(
1 +

3h

10 +
√

4− 3h

)
sxy, (5)

where a and b are axes radii, sxy is the isotropic pixel size of a given image, and h = (a−b)2
(a+b)2 . This

approximation results in an error of O(h10) [1], meaning for more circular ellipses like those for the
fetal abdomen, the error is negligible.

3.2.3 Cascaded Models

Auto-context has recently been used to segment the fetal head and abdomen from 2D US images,
demonstrating an improvement over a baseline FCN-8 model [18]. Motivating factors in [18] were to
avoid over-fitting on a limited sized dataset (≈ 900 training images) annotated by a single expert,
and to overcome prediction boundary ambiguities achieved with the baseline FCN-8 by providing
additional cues to cascaded networks. In [16], a considerably larger dataset (≈ 2000 training
images) annotated by multiple experts was used to train an FCN-8 model to perform fetal head
segmentation, demonstrating human-level performance and results on par with the cascaded model
in [18]. Additionally, no mention was made of data augmentation in [18], while in [16] on-the-fly
horizontal flipping was employed.
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Figure 2: The two cascaded model frameworks: (a) a standard auto-context approach, and (b) the
proposed ellipse-based transformation auto-context approach.

Fig. 2 illustrates a standard auto-context framework (a) as well as a proposed framework (b). In the
standard auto-context framework, the prediction probability mask, y′i, produced by the first network
from input image xi is concatenated as an additional channel producing a new input {xi, y′i} to train
a second network. Our rationale is that the auto-context approach should aid the direct regression of
ellipse parameters by providing a more explicit representation of an ellipse region as an additional
input channel to the second network.
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In the proposed framework (b) an ellipse is fitted [4] to the segmentation contours produced by the
first network. The ellipse parameters are then used to rigidly transform the input image, xi, as well as
the output probability map, y′i, from the first network producing a transformed input to the second
network, {xti, y′ti }, in which the ellipse centroid is centre-aligned with the image, and the ellipse axes
are aligned with the image axes (see Fig. 2(b)). Specifically, the axis of radius a is rotated by α (if
a 6= b) to introduce a minimal image rotation; this avoids significant changes in shadow orientation,
which also varies naturally w.r.t. the abdomen depending on abdomen location in the image. Since
the regression branch of the network determines 5 parameters based on the whole image, we expect
this normalisation will provide a simpler task for the second network’s regression branch.

4 Experiments

4.1 Network Training

The image data was randomly separated into train/test splits of 80%/20%, and then the train data
split separated into a train/validation split 90%/10%, resulting in train, test and validation sets of
1698, 466 and 188 images, respectively. Models were trained for a maximum of 100 epochs, or until
no improvement on the validation set for 5 epochs in terms of either (a) segmentation Dice or (b)
Elpar Dice. Networks trained with a multi-task loss used criterion (b), as the parameter regression
branch tended to over-fit before the maximum segmentation Dice was achieved, although very little
improvement was seen for segmentation Dice after (b) was reached. The Adam optimiser with an
initial learning rate of 1e-5 was used, which was halved for every 3 epochs with no improvement in
validation Dice. A mini-batch size of 5 images was used, with on-the-fly data augmentation including
random left-right flipping, and small rotations, translations and scaling. Experiments showed that
data augmentation was important to maximise performance, particularly for the regression branch.

Several models were trained under different configurations in order to assess the performance of
the proposed methods. Namely, experiments were conducted to assess the impact of (1) adding
deeper layers in the FCN encoder (prefix: d); (2) multi-task loss (prefix: MT); (3) standard cascaded
framework (prefix: cas); (4) cascaded transforming framework (prefix: tr-cas). In all experiments,
pretrained weights of a VGG-16 classifier trained on ImageNet were used to initialise the weights
of the encoder (first 13) layers as this was found to generally improve results. Finally, based on
tests, loss weights were set to ws = 1.0 and wr = 0.001 for all experiments with MT, while for
regression-only experiments ws = 0 and wr = 1.0, and for segmentation-only experiments ws = 1.0
and wr = 0.

4.2 Evaluation

Inference was performed on the 466 image test set, and ellipse annotations and AC were obtained
as detailed in Section 3.2.2. Mean error (ME) and mean absolute error (MAE) were used to assess
AC estimation performance; Dice score was used to assess overlap with GT ellipses; and Hausdorff
distance (HDF) was used to assess contour proximity. For the multi-task networks, the two ellipse
predictions Elseg and Elpar are assessed. Mean and standard deviation (SD) were computed over the
whole test set comparing the model-derived ellipses and the GT ellipses in the dataset annotated by
the 45 expert sonographers.

In order to further assess the performance of the biometric estimation against human experts, an intra-
and inter-observer variability study was performed using 100 images sampled randomly from the
test set. Two experts (Expert 1: an engineer with substantial ultrasound experience, and Expert 2: a
trained sonographer) used the ellipse tool in MITK1 to generate two annotations for each image. The
images were randomly sampled from the 100-sample set until each was seen twice by both experts.
Intra-expert, inter-expert, and model-expert performance was assessed.

Inter-expert error was computed for each image from the differences between each of Expert 1’s
measurements to each of Expert 2’s measurements (i.e. 4 differences per image). Model-expert
error was computed from the differences between the model-derived measurement and each expert’s
measurements (i.e. also 4 differences per image). ME and MAE of the AC measurements were
computed along with Dice scores across the 100-sample set.

1The Medical Imaging Toolkit (MITK), website: mitk.org
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Table 1: Model results on all test data, with best metrics shown in bold. Elpar = ellipse from regressed
parameters; Elseg = ellipse fitted to segmentation contours; Seg. Dice = segmentation Dice; Dice =
Elpar or Elseg Dice. Elpar and Elseg are obtained from separate models in columns FCN and d-FCN.

FCN d-FCN MT-d-FCN cas-MT-d-FCN tr-cas-MT-d-FCN

Elpar
Dice, % 91.0±5.5 95.0±3.8 95.4±3.2 96.3±1.9 96.4±1.9
HDF, mm 4.72±2.66 2.76±1.92 2.58±1.63 2.07±1.06 2.09±1.03
AC ME, mm 0.19±9.66 0.88±6.29 1.16±5.77 0.42±4.48 1.29±4.44
AC MAE, mm 7.59±5.98 4.47±4.51 4.26±4.06 3.42±2.91 3.49±3.02

Elseg
Seg. Dice, % 95.7±2.5 96.5±1.8 96.6±1.7 96.7±1.7 96.7±1.7
Dice, % 96.0±2.7 96.6±1.9 96.7±1.7 96.7±1.8 96.8±1.7
HDF, mm 2.39±1.82 1.94±1.05 1.90±1.04 1.87±1.00 1.93±0.98
AC ME, mm 1.23±5.57 0.69±4.71 1.01±4.29 0.42±4.48 0.14±4.26
AC MAE, mm 1.23±5.57 3.52±3.21 3.53±3.05 3.23±2.82 3.23±2.80

5 Results

Table 1 shows the results of the proposed improvements to the baseline FCN on the test dataset.
There was a significant improvement in performance between the baseline FCN and all other methods
for Elseg and Elpar metrics. Results for Elpar using a regression-only network (where wr = 1 and
ws = 0) are shown in the upper section in the columns titled FCN and d-FCN. We observe that the
regression-only networks under-perform compared to the segmentation-only networks, but in the
multi-task setting they perform more similarly, becoming almost on par with tr-cas-MT-d-FCN.

The addition of deeper convolutional layers (d) leads to the largest performance increase, while the
multi-task loss adds only a small improvement, and the cascaded models boost the Elpar metrics to
be comparable to the Elseg metrics without considerably improving Elseg metrics. However, even
the baseline FCN is able to produce expert-level annotations for most of the test images, since most
images do not contain very severe artifacts, thus masking improvements in metrics on the test data.

We therefore examine the effects of the proposed methods on the worst 10% of predictions in terms
of Elseg Dice produced by the baseline FCN, consisting of 47 test images with a Dice < 93.8%. Fig.
3 shows the improvements in Elseg and Elpar Dice with the proposed models on these test images.
Mean±SD for Elseg Dice is 90.5±4.0% for the baseline FCN. This increases to 93.4±2.9% with
d-FCN and improves to 94.0±2.9% with MT-d-FCN. While the cascaded models do not affect Elseg
Dice, Elpar Dice is 90.5±5.5% with MT-d-FCN, improving to 93.2±3.3% with cas-MT-d-FCN, and
94.2±3.2% with tr-cas-MT-d-FCN, on par with Elseg Dice for this highest performing model.

FCN
d-FCN

MT-d-FCN

cas-MT-d-FCN

tr-cas-MT-d-FCN

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Elseg

Elpar

Figure 3: Dice score boxplots of models on the
10% of the worst FCN test cases.

Fig. 4 in the Appendix illustrates the annotations
produced by the different models on some of the
most challenging cases. The poor annotations pro-
duced by the baseline FCN (left-most column) are
progressively improved with the addition of the pro-
posed model components. Finally, Table 2 shows
the results of the intra- and inter-expert variability
study in comparison to cas-MT-d-FCN predictions
of Elseg and Elpar (which performs similarly to
tr-cas-MT-d-FCN across the whole test set). The
AC error is higher (and Dice lower) for the inter-
expert compared to the model-expert results with
both Elseg and Elpar. Very low intra-expert errors
indicate high consistency within experts’ repeated
annotations. Inter-expert AC MAE and AC ME
are also very close, indicating that Expert 1 consis-
tently created smaller ellipses than Expert 2.
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Table 2: Intra- and inter-expert variability results. Elseg and Elpar are predicted from cas-MT-d-FCN.

Intra-Expert 1 Intra-Expert 2 Inter-Expert Elseg-Expert Elpar-Expert

AC ME, mm 0.47±3.09 0.46±3.11 5.71±2.92 -0.31±3.46 0.21±3.63
AC MAE, mm 2.43±1.96 2.36±2.08 5.89±2.61 3.95±1.90 3.99±1.94
Dice, % 97.4±1.2 97.3±1.3 95.5±1.6 96.2±1.6 96.0±1.5

6 Discussion and Conclusions

Several improvements to a baseline FCN are introducted for biometric annotation of fetal abdominal
images. Firstly, the addition of deeper convolutional layers increased the receptive field of the network
to the whole image (and added capacity), boosting performance of Elseg and Elpar metrics. The
introduction of a multi-task loss further improved results, particularly on the more challenging test
images. The inter-relatedness of the segmentation and regression tasks is self-evident given that
the GT mask is derived from an ellipse. The ellipse regression branch of the multi-task network
introduces a form of shape regularisation, where the relationship between the size, shape, location and
orientation of the ellipse relative to anatomical features in the image is more explicitly enforced, thus
regularising the learned filters in the hidden layers shared with the segmentation branch. Similarly,
the segmentation branch learns to identify the abdominal region and its boundaries, assisting the
regression branch. Compared to the d-FCN, the multi-task network MT-d-FCN improved boundary
localisation in regions of severe shadow artefacts (see bottom two rows of Fig. 4 in Appendix),
possibly by using cues from visible boundaries to determine the correct ellipse shape.

The cascaded framework provides the second multi-task network with a more explicit representation
of an ellipse. The cascaded transforming network further simplifies the task of the second network by
normalising for orientation and location of the ellipse fitted to the initial abdominal segmentation.
This produces ellipses from the parameter regression branch with similar accuracy to those generated
from the segmentation branch and improves inference for the most challenging test images. The best
test data AC MAE, produced from Elseg using the tr-cas-MT-d-FCN model, is about a quarter of that
reported in [2] (3.2±2.8mm versus 12.6±9.5mm), and the corresponding Dice score of 96.7% is
comparable to the cascaded FCN model in [18], where a Dice score for abdominal segmentation of
96.4% was achieved (although with only a single annotator and for non-ellipse segmentations).

Finally as illustrated in Table 2, the model-expert AC errors and Dice scores produced from both the
regression and segmentation branches of the cas-MT-d-FCN are better than inter-expert AC errors
and Dice scores. The predicted annotations typically lie in between the 2 experts’ annotations (both
of whom have very low intra-observer errors), and suggests that the network is producing low bias
annotations, leveraging the expertise of 45 different sonographers in the training data. Inter- and
intra-observer variability from more annotators in future could further corroborate this. Our multi-task
framework produces 2 expert-level annotations with an inference frame rate of 30fps (or 15fps for the
cascaded models) on a Titan Xp GPU, and can be used in conjunction with a scan-plane classification
model to automatically find and annotate relevant frames2.

The cascaded transforming multi-task network explicitly normalises image position and orientation
w.r.t. a fitted ellipse, although the ellipse axes are not consistently aligned to anatomical features
in the abdomen. In future, a comparison could be made to a spatial transformer network which
would learn appropriate transformations end-to-end [6]. The terms wr and ws could also be weighted
automatically using uncertainty as introduced in [8]. A loss between the ellipse parameters generated
from the regression and segmentation branches of the multi-task network could be explored too.
Finally our models could be applied to other US probe data using fine-tuning or domain adaptation.
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2see demo: https://www.youtube.com/watch?v=PTSLH6yZWaI
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Appendix

FCN d-FCN MT-d-FCN tr-cas-MT-d-FCNcas-MT-d-FCN

Figure 4: Comparison of results from different models (in columns) on some of the most challenging
test cases (one per row). In the images, yellow line = GT annotation; green line = segmentation; red
line = Elseg; blue line = Elpar (drawn only in columns for MT models). Orange box (top row): case
with low signal-to-noise and ambiguous boundaries - addressed effectively with all proposed models.
Blue box (rows 2-3): strong shadow artefacts and low boundary intensities - addressed with d-FCN,
and improved with subsequent models; green box (rows 4-5): large shadow artefacts - not addressed
with d-FCN, but addressed with subsequent models. (Zoom to see Dice scores in PDF.)

10


	Introduction
	Related Work
	Contributions

	Materials
	Methods
	Data Pre-processing
	Networks
	Multi-task Network
	Biometric Estimation
	Cascaded Models


	Experiments
	Network Training
	Evaluation

	Results
	Discussion and Conclusions

