

000 001 002 003 004 005 PROBING THE LIMITS OF EMBODIED SPATIAL PLAN- 006 NING IN LLMs 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Can the symbolic reasoning of Large Language Models (LLMs) extend to the
029 physical world, or do they lack a fundamental “mind’s eye” for grounded physical
030 reasoning? This paper investigates this question by probing the ability of LLMs
031 to reason about a dynamic physically-grounded environment. We introduce a
032 novel methodology centered on indoor bouldering, a task that demands spatial
033 imagination to (1) construct a mental environment from coordinates, (2) simulate
034 an embodied agent’s movement within that environment, and (3) adhere to physical
035 constraints from the agent. Using our purpose-built dataset, **EmbodiedPlan**, which
036 incorporates multiple agent profiles to test embodied reasoning, we challenge
037 state-of-the-art LLMs (e.g., GPT-4o, Gemini Pro) to generate plans for different
038 embodied agents. Our experiments reveal a consistent gap between syntactic
039 fluency and physical plausibility: models can generate plans that are syntactically
040 correct yet physically naive and poorly adapted to the agent’s body. The results
041 suggest that current LLMs possess a “brittle” mind’s eye, capable of manipulating
042 spatial symbols but lacking the grounded imagination required for true physical
043 reasoning.
044

1 INTRODUCTION

045 A key frontier for artificial intelligence is moving beyond abstract, symbolic manipulation and
046 toward physical grounding – the ability to connect reasoning to real-world physics, geometry, and
047 spatial constraints. While Large Language Models (LLMs) have shown remarkable performance on
048 reasoning and planning tasks (Wei et al., 2022; Kojima et al., 2024; Wei et al., 2024; Huang et al.,
049 2023; Bismay et al., 2025), where most existing benchmarks focus on abstract puzzles (Valmeekam
050 et al., 2023; Ding et al., 2024b; Chia et al., 2024), text-based games, or simulated environments (Puig
051 et al., 2018; Huang et al., 2022), their proficiency often stems from mastering syntactic and semantic
052 patterns in text, leaving their capacity for grounded physical reasoning an open question.
053

054 We argue that true physical intelligence requires a suite of fundamental cognitive capabilities that are
055 not adequately measured by existing benchmarks. We identify and investigate three such abilities:

- 056 • *Spatial Imagination*: The ability to construct an internal mental model of a physical environment
057 from symbolic descriptions and to dynamically simulate actions and their consequences.
- 058 • *Embodied Reasoning*: The ability to understand how an agent’s physical characteristics (e.g.,
059 height) fundamentally reshape the problem space and constrain possible actions.
- 060 • *Constraint-Aware Compositional Planning*: The ability to generate sequences of compositional
061 actions that accomplish a goal while respecting the physical limitations imposed by the agent
062 and environment.

063 To probe these abilities, we introduce a methodology centered on indoor bouldering, which serves
064 as a controlled environment for this challenge. Unlike a simple graph traversal problem like a
065 maze, a bouldering route is a sparse set of points in a 2D space, requiring an agent to perform
066 Constraint-Aware Path Creation by discovering a physically viable sequence of full-body movements.
067 Success depends critically on all three abilities: imagining the body in space, respecting its limits,
068 and planning trajectories under the constant constraint of gravity. To operationalize this probe, we
069 introduce **EmbodiedPlan**, a dataset and evaluation framework built on the standardized MoonBoard
070 system, each paired with annotated full-body symbolic action plans (Figure 1). A distinctive aspect

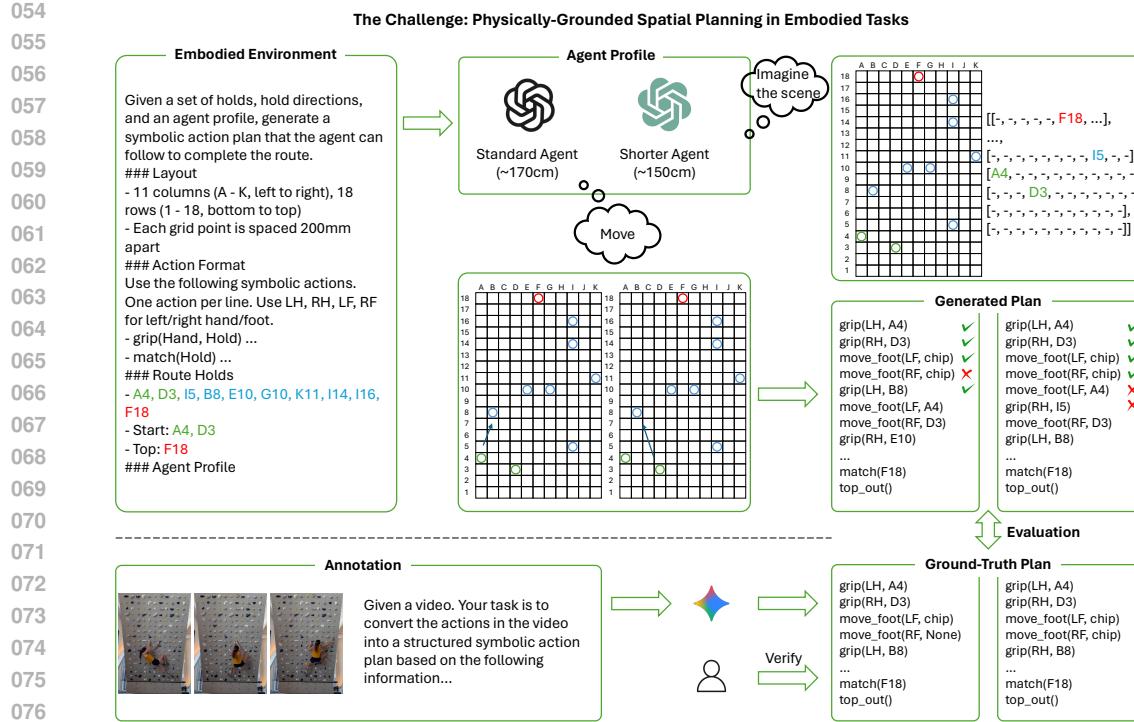


Figure 1: An overview of the EmbodiedPlan framework for probing the embodied spatial planning of LLMs. The process begins by providing the LLM with a bouldering problem (a set of specified holds: **start holds**, **intermediate holds**, and a final **top hold**) and an agent’s physical profile (e.g., height). The LLM’s task is to generate a plan as a sequence of symbolic actions to reach the final goal. The generated plan is then evaluated by comparing it against a human-in-the-loop annotated ground-truth plan to assess its symbolic correctness, semantic alignment, and its physical plausibility through center-of-gravity (CoG) trajectory simulation. Further implementation details are in the Appendix.

of EmbodiedPlan is the variation of agent embodiment to directly test for embodied reasoning. We model different agent profiles (e.g., short, medium, and tall climbers) and challenge models to adapt their plans to different physical abilities rather than generating a single, generic solution. For instance, a shorter agent may need an extra intermediate move that a tall agent can skip. This allows us to directly test whether an LLM can adapt its plan to an agent’s unique physical capabilities and limitations. To assess performance, we design a comprehensive evaluation suite including symbolic correctness, semantic plan alignment, and a center-of-gravity (CoG) simulation to quantitatively assess the physical plausibility of the LLM’s “imagined” trajectory.

Our experiments reveal that while LLMs can mimic the syntax of planning, their “mind’s eye” is often blind to physical reality. The generated plans frequently contain spatially naive movements and demonstrate a poor grasp of embodied constraints, highlighting a critical deficit in their foundational abilities of spatial imagination and embodied reasoning. By diagnosing these failures, we aim to guide future research toward building LLMs that can reason about the world, not just over the text that describes it. In summary, our contributions are as follows:

- We introduce EmbodiedPlan, the first benchmark designed to evaluate dynamic, physically-constrained, and embodied planning in LLMs. It directly tests an LLM’s ability to generate an actionable plan that respects geometric, physical, and bodily limitations.
- We incorporate physical variation of agent embodiment through agent profiles to test for adaptive, personalized planning.
- We design a validation framework including symbolic correctness, semantic plan alignment, and CoG trajectory simulation.
- We provide an extensive empirical study of state-of-the-art LLMs that highlights current limitations in physical reasoning and personalization, offering insights into how LLMs perform when grounded in embodied planning tasks.

108 **2 RELATED WORK**

110 The use of language models for planning in interactive and embodied environments has gained
 111 significant attention in recent years (Huang et al., 2022; Li et al., 2024; Du et al., 2024; Wu et al.,
 112 2023). Existing benchmarks provide structured evaluations of LLMs in planning tasks, but they often
 113 lack grounding in physical or embodied constraints. For instance, PlanBench (Valmeekam et al.,
 114 2023) focuses on reasoning about change via symbolic action sequences, while LoTa-Bench (Choi
 115 et al., 2024) benchmarks language-oriented task planners without fine-grained analysis of planning
 116 errors. The Embodied Agent Interface (Li et al., 2024) proposes a modular framework for evaluating
 117 LLMs across vision, action, and reasoning. While valuable, these benchmarks do not capture
 118 the complexities of domain-specific physical challenges. Recent work has also explored prompt
 119 engineering to mitigate hallucinations in path planning for LLMs (Deng et al., 2025), highlighting
 120 the challenges of grounding LLM outputs in spatial contexts.

121 A key challenge for LLMs is spatial reasoning. Several recent works have focused on benchmarking
 122 and improving this capability. “Mind the Gap” (Stogiannidis et al., 2025) and MANGO (Ding et al.,
 123 2024a) are benchmarks designed to evaluate spatial reasoning in vision-language models and the
 124 mapping and navigation abilities of LLMs, respectively. Other research has explored how to elicit
 125 spatial reasoning in LLMs through techniques like “Visualization-of-Thought” (Wu et al., 2024)
 126 and by studying how models can build spatial mental models from limited views Yin et al. (2025).
 127 These studies underscore the need for benchmarks that test spatial reasoning in complex, physically
 128 constrained scenarios.

129 In the domain of embodied AI, benchmarks in simulated domestic environments like ALFRED (Shrid-
 130 har et al., 2020), which evaluates agents on everyday tasks, and VirtualHome (Puig et al., 2018),
 131 which models household activities via structured action programs, have been influential. However,
 132 they do not focus on the fine-grained physical constraints of a specialized domain like climbing.
 133 In the climbing domain, CIMI4D (Yan et al., 2023) introduces a multi-modal dataset aiming at
 134 3D motion analysis. However, such datasets focus on physical movement reconstruction, rather
 135 than symbolic planning. EmbodiedPlan bridges this gap by introducing a benchmark for physically
 136 grounded, symbolic planning in the real-world domain of bouldering, offering a new dimension for
 137 assessing the embodied planning capabilities of LLMs and complementing existing benchmarks with
 138 a fresh challenge centered on physical plan feasibility.

139 **3 A BOULDERING TASK TO PROBE FUNDAMENTAL ABILITIES**

140 We designed a task environment and dataset, EmbodiedPlan, to serve as a rigorous testbed for the
 141 fundamental abilities of spatial imagination and embodied reasoning.

142 **3.1 THE BOULDERING ENVIRONMENT: A 2D SPATIAL ENVIRONMENT**

143 The environment for our task is the MoonBoard, a standardized training wall widely used in the
 144 climbing community, which is a 2D grid of bolt-on climbing holds arranged in 18 rows (numbered
 145 1 to 18 from bottom to top) and 11 columns (labeled A to K) and set at a 40-degree overhanging
 146 angle. Each problem is defined by a subset of these holds: designated start holds (marked by **green**
 147 in the MoonBoard app), intermediate holds (marked **blue**), and a final top hold (marked **red**). For
 148 EmbodiedPlan, we curated a diverse set of problems from the official MoonBoard database in 2017
 149 and 2019 settings, spanning difficulty grades from V3 to V9 in the V-grade, where higher numbers
 150 indicate greater complexity. Each hold’s location is mapped to both a grid coordinate (e.g., “C10”
 151 refers to the hold at column C, row 10) and a 2D spatial coordinate, providing the symbolic and
 152 geometric information for the LLM’s environment construction.

153 **3.2 SYMBOLIC ACTION SPACE: A GRAMMAR OF MOVEMENT**

154 To interface with LLMs, we developed a symbolic action space that functions as a compositional
 155 “grammar” of climbing movement. This vocabulary, informed by common climbing terminology,
 156 enables the model to deconstruct a continuous, full-body motion into a discrete, structured plan. The
 157 actions are: *grip(Hand, Hold)*: Move a specified hand (left or right) to a hold, e.g., *grip(LH, D4)*.
 158 *match(Hold)*: Move the other hand to the same hold, achieving two-hand control. *dynamic(Hand,*

162 *Hold*): Execute a dynamic move (jump or lunge) to a distant hold. Feet are considered detached
 163 during this move. *move_foot(Foot, Hold)*: Place a foot (left or right) on a hold. This is the counterpart
 164 to *grip* for the lower limbs. The target can also be *None* to indicate lifting the foot off a hold.
 165 *top_out()*: Signal successful completion by controlling the top hold with both hands. We include the
 166 *top_out()* action at the end of every plan to explicitly mark the completion. Agents must begin with
 167 both hands on the start holds (or one hand on each, if two starts) and finish by controlling the top
 168 hold with both hands.

169 3.3 AGENT PROFILES: TESTING EMBODIED IMAGINATION

170 Another unique feature of EmbodiedPlan is its modeling of agent embodiment through the use
 171 of multiple agent profiles to test embodied reasoning. We collected ground-truth data from three
 172 climbers with distinct physical attributes, representing our agents:

- 173 • Agent 1 (Standard): A female climber of average height (~170 cm).
- 174 • Agent 2 (Short): A shorter female climber (~150 cm).
- 175 • Agent 3 (Tall): A taller male climber (~180 cm).

176 These profiles are provided in the prompt to the LLM. As our analysis of human plans (§B.1) shows,
 177 these physical differences lead to measurably different climbing strategies. Plans differ across profiles
 178 to reflect physical feasibility – for example, a shorter agent may need to use an intermediate foothold
 179 to push up, where a taller agent can skip it. This setup challenges the LLM to condition its spatial
 180 imagination on the agent’s embodiment and correctly infer its unique action affordance space.

181 3.4 GROUND-TRUTH PLAN ANNOTATION

182 To construct a high-fidelity ground truth for our probe, we use a semi-automated, human-in-the-loop
 183 annotation pipeline designed for both efficiency and accuracy. This process begins by using a state-
 184 of-the-art vision-language model, Gemini 2.5 Pro, generating a first-pass annotation from YouTube
 185 videos processed at 5 frames per second (FPS). To ensure accuracy and consistency, we implement
 186 a two-stage verification process: (1) **Automatic Validation**: An automated script checks the plan
 187 for syntactic correctness and logical consistency. This included ensuring that all actions referenced
 188 valid holds within the problem set and that actions like *match* are used appropriately. (2) **Human**
 189 **Review**: The generated plans are further reviewed and corrected by our expert human annotators.
 190 The annotator’s role is to refine the entire sequence to accurately match the technical movements and
 191 strategic nuances observed in the video. This pipeline, with comprehensive refinement and validation
 192 from automated quality checks and human experts, produces a robust ground-truth dataset of 400
 193 problems annotated for the standard agent profile. From this collection, we create a specialized subset
 194 of 30 problems for which we have corresponding videos of three climbers with different physical
 195 characteristics. This subset is specifically used to evaluate personalized spatial planning and the
 196 models’ capacity for adaptive embodied reasoning. Further implementation details, such as prompts
 197 and model specifications, are provided in the Appendix. Code and data are available [here](#).

201 4 EVALUATION

202 Our experiments probe the fundamental abilities of LLMs by tasking them with generating a symbolic
 203 plan for a specific route problem and agent profile. To diagnose the quality and limitations of their in-
 204 ternal reasoning, our evaluation framework assesses generated plans across five dimensions: symbolic
 205 validity, plan-level characteristics, action overlap, sequence alignment, and spatial plausibility.

206 4.1 EVALUATION METRICS

207 **(1) Validity (Syntactic & Semantic Correctness):** This metric serves as a baseline check for
 208 whether the LLM can adhere to the basic grammar of the task. We use a rule-based binary validator to
 209 check whether the generated plan adheres to the generation rules, symbolic action grammar, respects
 210 physical constraints, and is physically plausible. The validity check includes: **a. Format correctness**
 211 (**syntax check**): All actions must conform to the predefined symbolic vocabulary and follow proper
 212 syntax (e.g., valid hold IDs, correct use of *match()*), with no unknown actions or free-form text. **b.**

216 **Route goal match (soft semantic check):** The plan must begin with the designated start holds (start
 217 state) and end with a *top_out()* on the correct top hold (goal state). A plan is considered semantically
 218 correct if it starts on the correct start holds, uses only designated route holds, and ends with a *top_out()*
 219 on the goal hold – even if intermediate sequencing or foot placements differ. **c. Logical consistency:**
 220 The plan must respect physical common sense, such as only moving one limb at a time and avoiding
 221 unlikely sequences like more than two consecutive *grip()* actions without foot adjustments. We report
 222 the **validity rate** as the percentage of plans that satisfy all these constraints.

223 **(2) Plan-Level Characteristics:** To assess tendencies for under- or over-planning, we report the
 224 number of **actions** in each generated plan. We also compute the **normalized length**, defined as the
 225 number of actions divided by the number of holds in the problem, to account for route complexity.

226 **(3) Action Overlap (Compositional Accuracy):** To evaluate the correctness of the plan’s content
 227 irrespective of strict ordering, we treat each plan as a bag of *(action_type, hold)* tokens and compute:
 228 **a. Precision:** the percentage of generated actions that match the ground truth. **b. Recall:** the
 229 percentage of ground-truth actions generated by the model. **c. F1 Score:** the harmonic mean of
 230 precision and recall, which is a reasonable proxy for “how close in content” the plans are. This metric
 231 emphasizes action and hold correctness over strict ordering and accommodates alternate but plausible
 232 plans that use the same critical holds.

233 **(4) Sequence Alignment:** Considering the sequence order of generated actions and measuring core
 234 overlap, we follow (Puig et al., 2018; Huang et al., 2022) and use: **a. Longest Common Subsequence**
 235 (**LCS**): the length of the longest ordered subsequence of actions shared between the generated and
 236 ground-truth plans. **b. Normalized LCS:** The LCS divided by the length of the ground-truth plan,
 237 allowing for fair comparison across problems of varying sequence lengths.

238 **(5) Spatial Plausibility (CoG Simulation):** To quantitatively evaluate the quality of the LLM’s
 239 spatial imagination and assess physical plausibility of a generated plan, we simulate the trajectory
 240 of the agent’s center-of-gravity (CoG) over the action sequence. We approximate the CoG at each
 241 step as the average of the coordinates of two hand positions. Specifically, for each problem, we
 242 store the spatial coordinates of all holds using a 2D coordinate system aligned with the standardized
 243 grid. Each hold is uniquely identified by its grid label (e.g., “G8” refers to column G, row 8) and
 244 mapped to Cartesian coordinates (x, y) , which are used to calculate distances between holds. For
 245 each plan, we track the CoG movement step by step and visualize the CoG trajectory: as the sequence
 246 progresses, we see how the CoG moves. We compute the total CoG displacement and compare the
 247 CoG trajectory of the generated plan to that of the ground-truth plan. Large deviations from the
 248 ground-truth trajectory or excessive movement suggest an inefficient, unstable, and physically naive
 249 plan, indicating a flawed internal simulation.

251 5 EXPERIMENTS AND ANALYSIS

252 To systematically diagnose the fundamental abilities of LLMs in a physically-grounded context,
 253 we conduct an extensive empirical study across a diverse suite of state-of-the-art models. This
 254 includes open-source families such as Llama, Qwen, Minstral, and Gemma, spanning from 3B to
 255 70B parameters, as well as proprietary models like GPT, Gemini, Claude, and Grok. Our analysis,
 256 structured around our three central research questions, reveals that while models demonstrate basic
 257 syntactic fluency, they exhibit deficits in embodied reasoning and spatial imagination.

261 5.1 CAN LLMs DISTINGUISH SYNTACTIC CORRECTNESS FROM SPATIAL PLAUSIBILITY?

262 This question assesses whether LLMs are simply good at mimicking the format of a plan or if they
 263 understand its physical meaning. Our results, presented in Table 1, show a significant gap between a
 264 model’s ability to follow syntactic rules and generate a spatially plausible and accurate plan.

265 Most modern LLMs, both open-source and proprietary, have become proficient at adhering to a
 266 specified grammar. Several models achieve high Validity scores, demonstrating strong syntactic
 267 competence. For example, Qwen3-4B (0.995) and Gemma3-12B (0.988) can almost flawlessly
 268 produce plans that conform to our action format and basic logical rules. The largest model, Llama-
 269 3.3-70B, also shows excellent instruction following with a validity of 0.965. This trend is solidified

270 Table 1: Performance of various LLMs on EmbodiedPlan for standard agent (Agent 1). We report
 271 on several key metrics: *Validity* (the proportion of syntactically and logically correct plans), *Actions*
 272 (the number of steps in the generated plan, compared to a human average of 17.0), and plan accuracy
 273 measured by *F1 Score* (action overlap) and *Normalized LCS* (sequence alignment).

Model	Validity (\uparrow)	Actions	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)
Llama3.2-3B	0.723	27.6	0.291	0.438	0.339	5.96	0.233
Qwen2.5-3B	0.555	10.9	0.352	0.215	0.260	3.39	0.199
Qwen3-4B	0.995	21.5	0.380	0.463	0.406	6.63	0.303
Qwen2.5-7B	0.895	14.9	0.338	0.287	0.304	4.42	0.250
Llama3.1-8B	0.830	37.7	0.281	0.495	0.344	7.36	0.248
Minstral-8B	0.860	16.9	0.292	0.275	0.276	4.40	0.236
Gemma3-12B	0.988	35.4	0.236	0.465	0.307	7.14	0.214
Qwen3-30B	0.168	21.2	0.373	0.438	0.396	6.79	0.329
Llama3.3-70B	0.965	19.8	0.403	0.462	0.427	6.78	0.339
GPT-4o-mini	0.940	18.6	0.362	0.375	0.360	5.75	0.298
GPT-4.1-mini	0.988	19.3	0.470	0.524	0.491	7.57	0.388
GPT-5-mini	1.000	18.2	0.437	0.458	0.443	7.12	0.378
Gemini-2.5-flash	0.505	20.1	0.433	0.501	0.460	7.68	0.382

287 by the latest proprietary models, with GPT-5-mini achieving a 1.000 validity score. This indicates
 288 that the challenge is not simply one of formatting the output correctly.
 289

290 However, this syntactic proficiency does not translate to meaningful plan accuracy, which serves as
 291 our proxy for spatial plausibility. The plan accuracy scores, measured by F1 and Normalized LCS,
 292 are dramatically lower across the board. Among open-source models, Llama-3.3-70B achieves the
 293 highest F1 score (0.427) and normalized LCS (0.339). The proprietary models push this ceiling
 294 higher, with GPT-4.1-mini achieving an F1 score of 0.491 and a normalized LCS of 0.388. Despite
 295 this improvement, the fundamental gap persists: a plan that is 98.8% syntactically correct is still less
 296 than 50% accurate in its plan content and less than 40% aligned with a valid human sequence. This
 297 wide gap is the clearest evidence that the models can generate text that looks like a plan but lacks a
 298 deep understanding of the spatial and physical reasoning required to make the plan work.
 299

300 **Analysis of Scaling Effects.** The results suggest a general, though imperfect, positive correlation
 301 between model size and planning capability. This is most evident within the Llama model family.
 302 As the model size increases from 3B to 8B to 70B, performance consistently improves across all
 303 key metrics: Validity increases from 0.723 to 0.965, the F1 score rises from 0.339 to 0.427, and
 304 the normalized LCS grows from 0.233 to 0.339. This strong trend indicates that spatial planning
 305 and reasoning are complex abilities that benefit significantly from increased model scale. The 70B
 306 model’s better performance suggests it has developed a more sophisticated internal model.
 307

308 **Precision vs. Recall and Planning Styles.** With a ground-truth average of 17.0 actions, the data
 309 reveals distinct and often flawed planning strategies:
 310

- 311 • A “*Verbose*” *Strategy*: Models like Llama-3.1-8B (37.7 actions) and Gemma3-12B (35.4 actions)
 312 generate more than double the required number of steps. Their high recall (0.495 and 0.465,
 313 respectively) and very low precision (0.281 and 0.236) confirm they are employing an approach
 314 that produces an exhaustive list of moves in the hope of including the correct ones, which
 315 sacrifices the plan’s coherence and efficiency.
- 316 • A “*Conservative*” *Strategy*: Qwen2.5-3B (10.9 actions) exemplifies under-planning, producing
 317 overly simplistic plans that miss critical moves, as reflected by its low recall of 0.215.
- 318 • A “*Balanced*” *Strategy*: The top-performing open-source model, Llama-3.3-70B and proprietary
 319 models demonstrate a more advanced approach. Their action counts (ranging from 18.2 to
 320 20.1) are much closer to the human baseline. GPT-4.1-mini, for instance, has a well-balanced
 321 precision (0.470) and recall (0.524), leading to its top-performing F1 score (0.491).

322 Performance is not purely a function of size, and certain models exhibit unique behaviors. The Qwen
 323 family shows notable inconsistencies. The Qwen3-4B model is a standout performer for its size,
 324 achieving an F1 score (0.406) and normalized LCS (0.303) that are highly competitive. Conversely,
 325 the Qwen3-30B model presents a significant anomaly: despite achieving a strong normalized LCS
 326 (0.329), its validity score is catastrophically low at 0.168. This highlights that reasoning capabilities
 327 must be matched by reliable instruction-following.

324 Table 2: Personalized planning performance of LLMs on EmbodiedPlan across three agent profiles:
 325 Agent 1 (standard), Agent 2 (short), and Agent 3 (tall). Plan divergence is measured by *Norm. LCS* →
 326 *Agent 1*, where a lower score indicates stronger personalization, with the human baselines for Agent
 327 2 (0.641) and Agent 3 (0.754) serving as a reference for effective adaptation. Colored subscripts on
 328 the *F1* and *Norm. LCS* scores indicate the change in plan accuracy relative to Agent 1 (green for
 329 improvement, red for decline).

331 Agent	332 Model	333 Validity (↑)	334 Actions	335 Precision	336 Recall	337 F1 (↑)	338 LCS	339 Norm. LCS (↑)	340 LCS → Agent 1	341 Norm. LCS → Agent 1
332 Agent 1	Human	1.0	21.7	—	—	—	—	—	—	—
	Llama-3.2-3B	0.4	24.7	0.255	0.266	0.255	4.8	0.183	—	—
	Qwen2.5-3B	0.7	11.7	0.323	0.165	0.210	3.3	0.150	—	—
	Qwen3-4B	0.7	23.4	0.294	0.305	0.292	5.6	0.214	—	—
	Qwen2.5-7B	0.7	19.8	0.254	0.229	0.240	4.1	0.180	—	—
	Llama-3.1-8B	0.7	31.5	0.274	0.374	0.310	7.3	0.235	—	—
	Minstral-8B	0.7	22.7	0.300	0.286	0.289	5.9	0.241	—	—
	Gemma3-12B	0.7	32.1	0.367	0.510	0.417	9.1	0.297	—	—
	Qwen3-30B	0.2	18.8	0.424	0.350	0.381	7.1	0.313	—	—
	Llama-3.3-70B	0.7	18.5	0.426	0.358	0.388	6.4	0.288	—	—
	GPT-4o	0.8	18.7	0.628	0.531	0.574	9.5	0.438	—	—
	Gemini	0.6	23.0	0.611	0.636	0.619	9.7	0.407	—	—
	Claude	0.4	19.6	0.547	0.493	0.516	9.0	0.411	—	—
	Grok	0.8	20.6	0.652	0.613	0.628	9.2	0.408	—	—
342 Agent 2	Human	1.0	24.9	—	—	—	—	16.0	0.641	—
	Llama-3.2-3B	0.6	26.4	0.259	0.260	0.254 <small>-0.001</small>	5.0	0.175 <small>-0.008</small>	18.9	0.737
	Qwen2.5-3B	0.7	12.8	0.338	0.171	0.223 <small>+0.013</small>	3.8	0.153 <small>+0.003</small>	11.1	0.894
	Qwen3-4B	0.7	24.9	0.291	0.292	0.282 <small>-0.009</small>	5.7	0.190 <small>-0.024</small>	22.7	0.930
	Qwen2.5-7B	0.7	19.4	0.258	0.210	0.229 <small>-0.011</small>	4.6	0.183 <small>+0.003</small>	17.7	0.886
	Llama-3.1-8B	0.7	31.7	0.317	0.386	0.340 <small>+0.029</small>	8.6	0.263 <small>+0.028</small>	27.4	0.874
	Minstral-8B	0.7	22.7	0.331	0.285	0.303 <small>+0.014</small>	6.6	0.254 <small>+0.012</small>	21.7	0.958
	Gemma3-12B	0.7	33.7	0.360	0.451	0.394 <small>-0.024</small>	9.1	0.284 <small>-0.013</small>	28.9	0.864
	Qwen3-30B	0.2	21.0	0.408	0.343	0.368 <small>-0.012</small>	7.4	0.284 <small>-0.029</small>	11.9	0.575
	Llama-3.3-70B	0.7	16.8	0.435	0.301	0.351 <small>-0.037</small>	6.0	0.241 <small>-0.046</small>	12.2	0.667
	GPT-4o	0.8	19.0	0.645	0.485	0.551 <small>-0.023</small>	10.0	0.408 <small>-0.030</small>	13.9	0.722
	Gemini	0.6	23.5	0.649	0.608	0.620 <small>+0.001</small>	11.4	0.439 <small>+0.032</small>	11.4	0.463
	Claude	0.4	20.8	0.581	0.486	0.527 <small>+0.011</small>	9.8	0.396 <small>-0.015</small>	15.0	0.706
	Grok	0.8	18.5	0.680	0.503	0.576 <small>-0.052</small>	10.9	0.438 <small>+0.030</small>	14.9	0.729
351 Agent 3	Human	1.0	19.9	—	—	—	—	16.5	0.754	—
	Llama-3.2-3B	0.4	20.2	0.278	0.250	0.258 <small>+0.004</small>	4.8	0.221 <small>+0.038</small>	15.3	0.632
	Qwen2.5-3B	0.7	12.8	0.288	0.174	0.213 <small>+0.003</small>	3.2	0.159 <small>+0.009</small>	10.9	0.871
	Qwen3-4B	0.7	25.7	0.255	0.325	0.279 <small>-0.013</small>	5.6	0.202 <small>-0.012</small>	22.4	0.884
	Qwen2.5-7B	0.7	19.7	0.237	0.233	0.234 <small>-0.006</small>	4.3	0.204 <small>+0.024</small>	18.0	0.896
	Llama-3.1-8B	0.7	31.8	0.275	0.418	0.326 <small>+0.016</small>	7.6	0.246 <small>+0.011</small>	25.9	0.787
	Minstral-8B	0.7	23.3	0.267	0.291	0.276 <small>-0.013</small>	5.7	0.242 <small>0.000</small>	21.5	0.924
	Gemma3-12B	0.7	32.5	0.320	0.488	0.381 <small>-0.036</small>	8.0	0.254 <small>-0.043</small>	29.9	0.922
	Qwen3-30B	0.2	19.5	0.417	0.380	0.396 <small>+0.015</small>	7.0	0.330 <small>+0.017</small>	14.4	0.738
	Llama-3.3-70B	0.7	18.4	0.403	0.372	0.381 <small>-0.007</small>	5.6	0.265 <small>-0.023</small>	13.2	0.688
	GPT-4o	0.7	19.4	0.602	0.571	0.583 <small>+0.009</small>	9.8	0.473 <small>+0.035</small>	13.4	0.679
	Gemini	0.7	21.0	0.626	0.661	0.641 <small>+0.022</small>	9.9	0.460 <small>+0.053</small>	12.2	0.510
	Claude	0.4	20.2	0.498	0.500	0.497 <small>-0.019</small>	8.8	0.416 <small>+0.005</small>	14.0	0.686
	Grok	0.6	18.7	0.579	0.538	0.557 <small>-0.071</small>	9.0	0.439 <small>+0.031</small>	13.4	0.653

5.2 CAN LLMs ADAPT PLANS TO AN AGENT'S EMBODIMENT?

362 The capacity for embodied reasoning – adapting a plan to an agent’s physical form – is a critical
 363 test of grounded intelligence. Our analysis reveals that this is a nuanced capability, largely absent in
 364 most open-source models but emerging at scale, with only the most advanced closed-source models
 365 demonstrating it robustly. To establish a benchmark for this task, we first analyzed the human ground
 366 truth, which confirms that physical embodiment dictates strategy. The shorter human agent requires a
 367 significantly different plan than the standard agent, with a plan divergence (Norm. LCS → agent 1)
 368 of 0.641.

369 **Embodied Reasoning is Largely Absent in Most Open-Source Models.** The majority of the
 370 open-source models tested fail the embodied reasoning task. As shown in Table 2, models like
 371 Minstral-8B and Qwen3-4B show almost no adaptation to the agent’s profile. Their divergence
 372 scores (Norm. LCS → Agent 1) for the shorter Agent 2 are 0.958 and 0.930, respectively. This means
 373 the plans they generate are over 90% identical to their plans for the standard agent a, indicating they
 374 largely ignore the embodiment information in the prompt. In addition, their low plan accuracy scores
 375 remain stagnant across all profiles. This indicates not just a failure to personalize, but a general
 376 inability to form accurate plans for any agent.

377 **Adaptation Appears as an Emergent but Flawed Capability at Scale.** This critical reasoning
 378 ability appears to be an emergent property at scale, though its implementation in the largest open-

source models remains flawed. Qwen3-30B and Llama-3.3-70B show a remarkable ability to adapt their plan structure, with divergence scores for Agent 2 of 0.575 and 0.667, respectively, closely mirroring the human baseline of 0.641. However, this adaptation is not effective. When Llama3.3-70B personalizes its plan for the more difficult shorter agent, its accuracy significantly decreases, with the F1 score dropping from 0.388 to 0.351. Furthermore, it fails a simple physical heuristic, incorrectly generating fewer actions for the shorter agent (16.8) than for the taller agent (18.4). This suggests the model knows it must change its plan but lacks the grounded understanding to change it correctly, e.g., it fails to grasp the basic physical implication that a shorter agent often needs more intermediate moves, resulting in a different but objectively worse plan.

Closed-Source Models Show More Robust, but Still Imperfect, Adaptation. In contrast, state-of-the-art closed-source models consistently demonstrate a more robust capacity for embodied reasoning, although their performance reveals different levels of sophistication and their own set of imperfections. While all four models adapt their plan structures, models like GPT-4o and Grok do so ineffectively. While clearly personalizing their plans (divergence scores of 0.722 and 0.729 for Agent 2, respectively), they produce adapted plans that are less accurate than their standard ones. GPT-4o’s F1 score drops from 0.574 for Agent 1 to 0.551 for Agent 2; Grok’s drops from 0.628 to 0.576. Furthermore, they both fail the same plan length heuristic as Llama3.3-70B, incorrectly generating fewer actions for the shorter agent. Like the largest open-source models, they adapt, but the adaptation is not fully grounded in physical reality. Gemini, however, stands out as the only model that demonstrates true, effective embodied reasoning across all metrics. It exhibits the strongest adaptation signal (with a divergence score of 0.463 for Agent 2), correctly intuits the need for a longer plan for Agent 2 (generating more actions for Agent 2 (23.5) than Agent 1 (23.0) or Agent 3 (21.0)), and, most importantly, its adapted plans become more accurate. The F1 score increases from 0.619 for Agent 1 to 0.620 for Agent 2 and 0.641 for Agent 3. The normalized LCS shows a similar trend, improving from 0.407 to 0.439 for Agent 2. This indicates that Gemini can consistently translate a change in embodiment into a different and objectively better plan.

5.3 CAN THE FLAWS IN AN LLM’S SPATIAL IMAGINATION BE QUANTIFIED?

By treating the generated plan as an external projection of the LLM’s internal simulation, we use center-of-gravity (CoG) analysis to quantitatively and qualitatively probe the flaws in its implicit physical world model, providing a window into the LLM’s “mind’s eye”. Quantitatively, the CoG path lengths (Figure 2) reveal flawed reasoning: for standard and tall agents, most LLM-generated paths result in a greater total CoG displacement than the human ground-truth plans, indicating physically inefficient and redundant imagined movements. In contrast, for the shorter Agent 2, all models generate shorter CoG trajectories than the human reference, indicating that the models may generate plans that the agent finds hard to execute. Among the evaluated models, Gemini 2.5 Pro generates the CoG path length most closely aligned with the human trajectory for Agent 3, demonstrating a better ability to produce physically realistic plans. Overall, these results suggest that while current LLMs show signs of agent embodiment adaptation, there is still room for improvement in generating movement plans that align with natural, human-like body mechanics.



Figure 2: Comparison of center-of-gravity (CoG) trajectory lengths between LLM-generated plans (bars) and the human ground-truth (dashed line) across three agent profiles. For Agents 1 and 3, most LLM plans are less efficient (longer path) than the human benchmark. Conversely, for the shorter Agent 2, all LLMs generate overly simplistic plans with shorter paths, suggesting a failure to account for necessary stabilizing movements.

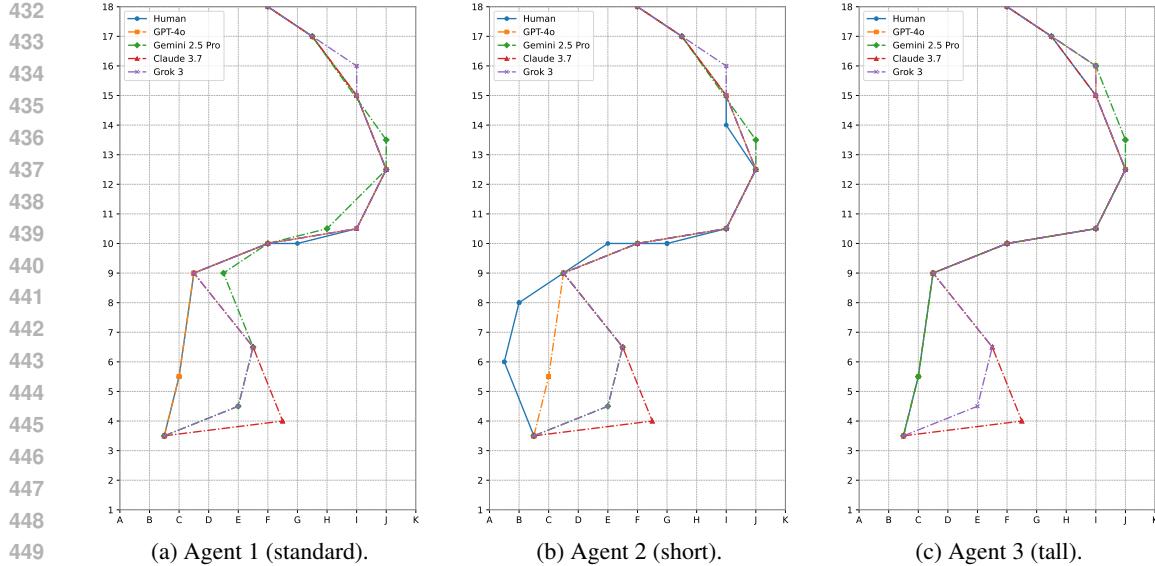


Figure 3: Visualization of Center-of-Gravity (CoG) trajectories for a single complex problem, comparing the planning strategies of various LLMs against the human ground-truth (solid line). Each panel corresponds to a different agent profile.

Table 3: A case study of model performance on a single challenging route, comparing proprietary LLMs to the human ground truth across the three agent profiles.

Model	Agent 1				Agent 2				Agent 3			
	Actions	F1 (\uparrow)	Norm. LCS (\uparrow)	CoG Length	Actions	F1 (\uparrow)	Norm. LCS (\uparrow)	CoG Length	Actions	F1 (\uparrow)	Norm. LCS (\uparrow)	CoG Length
Human	26	—	—	22.2	28	—	—	23.3	26	—	—	22.1
GPT-4o	25	0.667	0.500	22.1	25	0.604	0.464	22.1	26	0.615	0.500	22.4
Gemini 2.5 Pro	29	0.473	0.345	22.8	27	0.473	0.321	24.6	28	0.630	0.464	22.4
Claude 3.7 Sonnet	24	0.440	0.269	26.5	24	0.500	0.393	26.5	26	0.423	0.423	26.5
Grok 3	27	0.604	0.259	24.8	27	0.655	0.571	24.8	24	0.600	0.538	24.8

Case Study: Visualizing Route-Specific Planning. To qualitatively illustrate the models’ planning behaviors, we present a case study on a single, complex problem featuring an above-average number of holds: [A4](#), [D3](#), [I5](#), [B8](#), [E10](#), [G10](#), [K11](#), [I14](#), [I16](#), [F18](#). The problem begins with two hands split on [A4](#) and [D3](#) and ends with matched hands on [F18](#) (visualized in Figure 3.) The human trajectories (solid lines) demonstrate effective embodied reasoning: the path for the shorter Agent 2 is visibly more gradual and longer, reflecting the necessary adaptations for their physical profile. While most CoG trajectories generated by LLMs are visibly divergent from the human baseline, providing visual proof of a poor mental simulation that fails to account for embodied reasoning, GPT-4o’s plan for Agent 1 closely mirrors the human’s trajectory. This is also supported by its high F1 score (0.667), normalized LCS (0.500), and a nearly identical CoG path length (Table 3), highlighting the performance gap between it and other models.

6 LIMITATIONS AND NEXT STEPS

In this work, we probe the fundamental limits of LLMs on physically grounded tasks using our EmbodiedPlan benchmark. Our findings reveal a critical gap between the models’ syntactic fluency and the embodied spatial reasoning required for real-world interaction. The combined evidence suggests that simply scaling current architectures on more text data may be insufficient to achieve true physical intelligence. Research into architectures that can learn and maintain more explicit and robust world models is critical. Furthermore, training methodologies that better ground language in geometric and spatial principles could help bridge the gap we have identified. A more advanced paradigm would be to develop interactive refinement loops, where a plan generated by an LLM is executed in a simulator and the model uses success, failure, and feedback signals to iteratively correct its strategy, like reinforcement learning. By providing a challenging and quantifiable testbed, EmbodiedPlan can serve as a valuable tool for driving and measuring progress in these future explorations of embodied intelligence in AI.

486 REFERENCES
487

488 Millennium Bismay, Xiangjue Dong, and James Caverlee. ReasoningRec: Bridging personalized
489 recommendations and human-interpretable explanations through LLM reasoning. In Luis Chiruzzo,
490 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL*
491 2025, pp. 8132–8148, Albuquerque, New Mexico, April 2025. Association for Computational
492 Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.454. URL <https://aclanthology.org/2025.findings-naacl.454/>.

493

494 Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. Puzzlevqa:
495 Diagnosing multimodal reasoning challenges of language models with abstract visual patterns. In
496 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 16259–16273, 2024.

497

498 Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jaehong Kim, and Minsu Jang. Lota-bench: Bench-
499 marking language-oriented task planners for embodied agents. In *The Twelfth International*
500 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=ADSxCpCu9s>.

501

502 Hourui Deng, Hongjie Zhang, Jie Ou, and Chaosheng Feng. Can llm be a good path planner based on
503 prompt engineering? mitigating the hallucination for path planning. In *International Conference*
504 *on Intelligent Computing*, pp. 3–15. Springer, 2025.

505

506 Peng Ding, Jiading Fang, Peng Li, Kangrui Wang, Xiaochen Zhou, Mo Yu, Jing Li, Hongyuan
507 Mei, and Matthew Walter. MANGO: A benchmark for evaluating mapping and navigation
508 abilities of large language models. In *First Conference on Language Modeling*, 2024a. URL
<https://openreview.net/forum?id=6vEfyp0o68>.

509

510 Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan
511 Rajmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose
512 triangle for thought generation. In *Findings of the Association for Computational Linguistics ACL*
2024, pp. 1638–1662, 2024b.

513

514 Yilun Du, Sherry Yang, Pete Florence, Fei Xia, Ayzaan Wahid, brian ichter, Pierre Sermanet, Tianhe
515 Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Andy Zeng, and Jonathan
516 Tompson. Video language planning. In *The Twelfth International Conference on Learning*
517 *Representations*, 2024. URL <https://openreview.net/forum?id=9pKtCJcMP3>.

518

519 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
520 planners: Extracting actionable knowledge for embodied agents. In *International conference on*
521 *machine learning*, pp. 9118–9147. PMLR, 2022.

522

523 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
524 Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In *Conference on Robot Learning*, pp. 1769–1782. PMLR, 2023.

525

526 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
527 language models are zero-shot reasoners. In *Proceedings of the 36th International Conference on*
528 *Neural Information Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates
Inc. ISBN 9781713871088.

529

530 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
531 Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
532 embodied decision making. *Advances in Neural Information Processing Systems*, 37:100428–
100534, 2024.

533

534 Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
535 Virtualhome: Simulating household activities via programs. In *Proceedings of the IEEE conference*
536 *on computer vision and pattern recognition*, pp. 8494–8502, 2018.

537

538 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
539 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
recognition, pp. 10740–10749, 2020.

540 Ilias Stogiannidis, Steven McDonagh, and Sotirios A. Tsaftaris. Mind the gap: Benchmarking
 541 spatial reasoning in vision-language models. In *Greeks in AI Symposium 2025*, 2025. URL
 542 <https://openreview.net/forum?id=BM18OyGfo5>.

543 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
 544 pati. Planbench: An extensible benchmark for evaluating large language models on planning and
 545 reasoning about change. *Advances in Neural Information Processing Systems*, 36:38975–38987,
 546 2023.

547 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 548 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
 549 Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
 550 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 551 <https://openreview.net/forum?id=yzkSU5zdwD>. Survey Certification.

552 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 553 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 554 models. In *Proceedings of the 36th International Conference on Neural Information Processing
 555 Systems*, NIPS '22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

556 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s
 557 eye of LLMs: Visualization-of-thought elicits spatial reasoning in large language models. In
 558 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 559 <https://openreview.net/forum?id=CEJ1mYPgWw>.

560 Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. Embodied task planning with large
 561 language models. *arXiv preprint arXiv:2307.01848*, 2023.

562 Ming Yan, Xin Wang, Yudi Dai, Siqi Shen, Chenglu Wen, Lan Xu, Yuexin Ma, and Cheng Wang.
 563 Cimi4d: A large multimodal climbing motion dataset under human-scene interactions. In *Proceed-
 564 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12977–12988,
 565 2023.

566 Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
 567 Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, et al. Spatial mental modeling
 568 from limited views. *arXiv preprint arXiv:2506.21458*, 2025.

571 **APPENDIX**

572 **A EXPERIMENTAL SETUP**

576 Our experimental framework, EmbodiedPlan, is designed to probe the fundamental abilities of LLMs
 577 in a controlled setting, as illustrated in Figure 1. We evaluate a diverse suite of state-of-the-art models
 578 on this benchmark.

580 **A.1 MODELS EVALUATED**

582 We evaluate a wide range of LLMs to understand how these capabilities vary across different
 583 architectures and scales. This includes open-source families (Llama, Qwen, Minstral, and Gemma)
 584 spanning from 3B to 70B parameters, as well as proprietary models like GPT-4o, Gemini Pro, Claude,
 585 and Grok. A detailed list of all open-source models, their sources, and licenses is provided in Table 4.

586 **A.2 LLM PROMPT FOR EMBODIED REASONING**

588 For each problem, the LLM is tasked with generating a complete, symbolic climbing plan based
 589 on a given route and a specific agent profile. To guide the models, we use a detailed prompt that
 590 encodes the route’s spatial configuration and the agent’s physical profile, explicitly conditioning
 591 the model to reason under embodiment constraints. The full prompt is shown in Box A.2. This
 592 prompt encodes the route’s spatial configuration and agent profile, ensuring the model reasons under
 593 embodiment constraints. For all open-source LLMs, we set the temperature to 0 for reproducibility
 and max_new_token to 1024 to ensure complete outputs.

594
595
596 Table 4: Open-source Models.
597
598
599
600
601
602

Model	Link	License
LLAMA-3.2-3B	https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct	Llama 3.2 Community License
QWEN2.5-3B	https://huggingface.co/Qwen/Qwen2.5-3B-Instruct	qwen-research
QWEN3-4B	https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507	Apache license 2.0
QWEN2.5-7B	https://huggingface.co/Qwen/Qwen2.5-7B-Instruct	Apache license 2.0
LLAMA-3.1-8B	https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct	Llama 3.1 Community License
MINISTRAL-8B	https://huggingface.co/mistralai/Minstral-8B-Instruct-2410	mrl
GEMMA3-12B	https://huggingface.co/google/gemma-3-12b-it	Gemma
QWEN3-30B	https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507	Apache license 2.0
LLAMA-3.3-70B	https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct	Llama 3.3 Community License

603
604 Agent 1 Agent 2 Agent 3
605
606
607
608609
610 Figure 4: Agent profiles which are corresponding to the climber physical characteristics in the video.
611
612
613

A.3 AGENT PROFILES

614 To directly test for embodied reasoning, our benchmark incorporates three distinct agent profiles
 615 with varying physical characteristics, which are based on the climbers in our source videos. These
 616 profiles, detailed in Figure 4, are defined by structured metadata including height, arm span (ape
 617 index), and gender. This metadata is explicitly included in the model’s prompt, conditioning the LLM
 618 to generate a plan that respects the agent’s body-specific limitations and unique action affordances.
 619 This experimental design allows us to evaluate whether an LLM can perform true personalization –
 620 for instance, by correctly generating extra intermediate moves for a shorter agent that a taller agent
 621 could skip.

622
623 A.4 VLM PROMPT FOR DATA ANNOTATION
624

625 As part of our semi-automated data annotation pipeline, we utilize a Vision-Language Model (VLM),
 626 Gemini 2.5 Pro, to generate an initial draft of the symbolic plans. The model is prompted to produce a
 627 sequence of symbolic actions directly from the visual input of our source videos, which are processed
 628 at 5 frames per second (FPS). The complete prompt used for this task is provided in Box A.4, and a
 629 sample of the video annotation is shown in Figure 5. All source videos were obtained from YouTube
 630 and are licensed under Creative Commons CC BY.

631
632 B MORE RESULTS
633

634 B.1 ANALYSIS OF PERSONALIZED HUMAN PLANS

635 An analysis of the ground-truth data from the three human agents confirms that embodiment is not a
 636 minor detail but a primary driver of planning strategy. As shown in Table 5, agents with different
 637 physical profiles produce measurably different plans to solve the same problems.

638 The most significant factor is the agent’s height, which directly impacts their reach and the number of
 639 actions required. The shorter agent (Agent 2) consistently takes more steps, with the highest average
 640 total actions (24.9) and normalized actions (3.5) per route. This aligns with the intuition that shorter
 641 climbers must perform additional, granular foot placements to reach the same handholds as their
 642 taller counterparts. In contrast, the taller agent (Agent 3) leverages greater reach to complete routes
 643 with the fewest actions on average (19.9).

644 These differences go beyond simple plan length and reflect fundamentally different strategies. By
 645 comparing the action sequences of the shorter and taller agents to the standard agent using the
 646 Normalized Longest Common Subsequence (LCS), we can quantify this strategic divergence. The
 647 shorter agent’s plans show the most significant variation, with a normalized LCS of just 0.641 when

648
649**Prompt for LLM planning**650
651
652

You are a climbing expert. Given a set of MoonBoard climbing holds, hold directions, and a climber profile, generate a symbolic action plan that the agent can follow to complete the route.

653
654
655**### MoonBoard Layout**

- 11 columns (A - K, left to right), 18 rows (1 - 18, bottom to top)
- Each grid point is spaced 200mm apart

656
657
658**### Rules**

- The climb starts with both hands on the designated start hold(s). If only one start hold is provided, the agent starts with both hands matched on it.
- The climb ends on the designated finish hold(s). If there is only one finish hold, both hands must match on it.
- Feet may start on any kickboard chips.
- During the climb, feet follow hands and must only use marked holds or the board.
- The climb always ends with the action top_out().

663
664

Action Format Use the following symbolic actions. One action per line. Use LH, RH, LF, RF for left/right hand/foot.

- grip(Hand, Hold): Move a hand (LH or RH) to a hold and grip it. Example: grip(LH, D4)
- match(Hold): Bring the other hand to the same hold currently held by one handhold. Example: match(D4)
- dynamic(Hand, Hold): Make a dynamic (jump/lunge) move to a far hold with one hand. Both feet are temporarily removed from the holds. Example: dynamic(RH, F15)
- move_foot(Foot, Hold): Move a foot (LF or RF) to a specific hold or kickboard chip or None to indicate free foot or smear. Example: move_foot(RF, F8), move_foot(LF, chip), move_foot(LF, None)
- top_out() – Mark the completion of the climb.

673

Route Holds

- F4, I8, H12, I15, J18
- Start: F4
- Top: J18

677
678
679
680
681**### Hold Directions**

- F4: N
- I8: N
- H12: N
- I15: N
- J18: W

682
683
684
685**### Climber Profile**

- Height: 172 cm
- Ape index: +0
- Gender: Female

686
687
688
689
690
691

Using the provided holds, rules, and agent profile, generate a step-by-step symbolic beta plan.

- Begin with a valid dual-hand starting position
- End with top_out()
- Include one action per line
- Do not include any commentary or explanation

692
693

694 compared to the standard agent's plans. This indicates that nearly 36% of the actions are different, 695 reflecting the major modifications needed to compensate for a more limited Action Affordance Space. 696

697
698**B.2 ABLATION: HAND-ONLY PERFORMANCE**699
700
701

To better isolate the challenge of full-body coordination, we conducted an analysis on a simplified, hands-only version of the task, where all foot-placement actions are ignored (Tables 6, 7, and 8). Overall, LLMs perform significantly better on hand-only evaluations. This is expected, as hand actions are fewer, more visually salient, and follow clearer sequential patterns, making them easier

702
703**Prompt for VLM planning**704
705
706

You are a climbing expert. You are given a climbing video. Your task is to convert the climbing actions in the video into a structured symbolic action plan based on the following information:

707
708
709
710**### MoonBoard Layout**

- 11 columns (A - K, left to right), 18 rows (1 - 18, bottom to top)
- Each grid point is spaced 200mm apart

Rules

- The climb starts with both hands on the designated start hold(s). If only one start hold is provided, the agent starts with both hands matched on it.
- The climb ends on the designated finish hold(s). If there is only one finish hold, both hands must match on it.
- Feet may start on any kickboard chips.
- During the climb, feet follow hands and must only use marked holds or the board.
- The climb always ends with the action `top_out()`.

Action Format Use the following symbolic actions. One action per line. Use LH, RH, LF, RF for left/right hand/foot.

- `grip(Hand, Hold)`: Move a hand (LH or RH) to a hold and grip it. Example: `grip(LH, D4)`
- `match(Hold)`: Bring the other hand to the same hold currently held by one handhold. Example: `match(D4)`
- `dynamic(Hand, Hold)`: Make a dynamic (jump/lunge) move to a far hold with one hand. Both feet are temporarily removed from the holds. Example: `dynamic(RH, F15)`
- `move_foot(Foot, Hold)`: Move a foot (LF or RF) to a specific hold or kickboard chip or None to indicate free foot or smear. Example: `move_foot(RF, F8)`, `move_foot(LF, chip)`, `move_foot(LF, None)`
- `top_out()` – Mark the completion of the climb.

Route Holds

- A2, B5, B8, E11, C14, F16, D18
- Start: A2, B5
- Top: D18

Using the provided holds, rules, and agent profile, generate a step-by-step symbolic beta plan.

- Begin with a valid dual-hand starting position
- End with `top_out()`
- Include one action per line

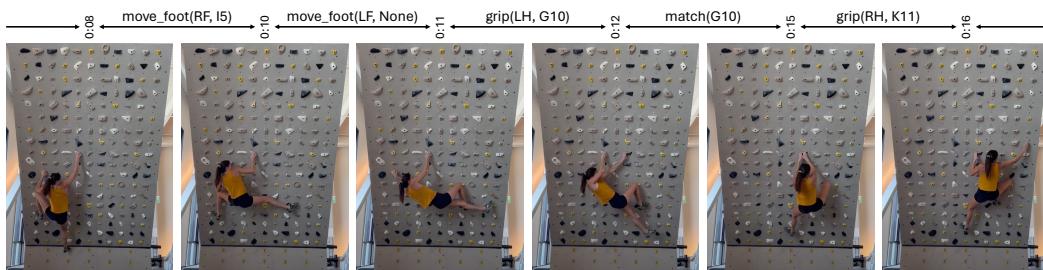


Figure 5: Example of video annotation: climbing videos are converted into structured action sequences, serving as ground-truth for evaluating LLM plans.

for models to predict. For instance, GPT-4o consistently achieves higher F1 and normalized LCS scores when evaluated on hand-only plans compared to full-body plans. However, this also highlights a critical limitation: real-world climbing heavily depends on footwork, which plays a central role in maintaining balance, reach, and efficient transitions.

While hand prediction serves as a useful lower bound on LLM capability, closing the gap between hand-only and full-body planning remains an open challenge. To fully model embodied reasoning in

756 Table 5: Personalized performance on EmbodiedPlan across different difficulty levels and agents.
757

758 759 Level	Holds	Agent 1		Agent 2		Agent 3		Agent 2 → 1		Agent 3 → 1	
		Actions	Norm.	Actions	Norm.	Actions	Norm.	LCS	Norm.	LCS	Norm.
V3	6.3	19.3	3.2	23.5	3.9	17.8	2.9	15.3	0.649	14.0	0.716
V4	7.5	23.0	3.1	27.0	3.6	21.0	2.8	19.0	0.714	19.5	0.848
V5	7.5	23.0	3.1	26.5	3.5	20.5	2.7	16.0	0.609	16.0	0.696
V6	8.5	24.0	2.9	24.0	2.8	22.5	2.7	14.5	0.581	19.0	0.794
Total	7.2	21.7	3.1	24.9	3.5	19.9	2.8	16.0	0.641	16.5	0.754

765
766 Table 6: Personalized performance on EmbodiedPlan across different difficulty levels and agents
767 (hands-only).

768 769 Level	Holds	agent 1		agent 2		agent 3		agent 2 → 1		agent 3 → 1	
		Actions	Norm.	Actions	Norm.	Actions	Norm.	LCS	Norm.	LCS	Norm.
V3	6.3	9.3	1.5	10.8	1.8	10.0	1.6	7.3	0.675	8.0	0.806
V4	7.5	9.5	1.3	11.0	1.5	9.5	1.3	9.0	0.817	9.5	1.000
V5	7.5	11.0	1.5	12.5	1.7	11.0	1.5	10.0	0.801	10.5	0.955
V6	8.5	11.0	1.3	12.5	1.5	10.0	1.2	8.5	0.683	10.0	0.908
Total	7.2	10.0	1.4	11.5	1.6	10.1	1.4	8.4	0.730	9.2	0.895

776 climbing – and similar physically grounded tasks – future LLMs need to improve their understanding
777 of lower-body coordination and its interaction with hand movements to achieve the goal.

780 C MORE CASE STUDIES

782 To better understand the strengths and limitations of LLM-generated plans, we present qualitative
783 case studies comparing model outputs to ground-truth annotations. Figure 6 shows a side-by-side
784 visualization of symbolic action sequences for one selected route, comparing plans generated for
785 Agent 1, Agent 2, and Agent 3 against the human-annotated ground truth. Complementing this
786 visualization, Table 9, 10, and 11 present the full data that is summarized in the main paper’s case
787 study (Table 3).788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811 Table 7: Performance of various LLMs on EmbodiedPlan for standard agent (Agent 1) (hands-only).
812

Level	Model	Validity (\uparrow)	Actions	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)
V3	GPT-4o	0.5	9.0	0.708	0.688	0.697	6.3	0.688
	Gemini 2.5 Pro	0.5	10.3	0.564	0.598	0.577	5.5	0.545
	Claude 3.7 Sonnet	0.3	9.0	0.565	0.548	0.556	5.0	0.548
	Grok 3	0.8	9.0	0.708	0.685	0.696	6.3	0.685
V4	GPT-4o	1.0	9.5	0.744	0.744	0.744	6.5	0.694
	Gemini 2.5 Pro	1.0	9.5	0.783	0.783	0.783	7.5	0.783
	Claude 3.7 Sonnet	1.0	9.5	0.644	0.644	0.644	6.0	0.644
	Grok 3	1.0	9.5	0.672	0.672	0.672	6.5	0.672
V5	GPT-4o	1.0	10.5	0.809	0.773	0.790	8.5	0.773
	Gemini 2.5 Pro	0.0	9.5	0.789	0.682	0.731	7.5	0.682
	Claude 3.7 Sonnet	0.0	10.5	0.568	0.545	0.556	6.0	0.545
	Grok 3	1.0	10.5	0.714	0.682	0.697	7.5	0.682
V6	GPT-4o	1.0	10.0	0.944	0.858	0.899	9.5	0.858
	Gemini 2.5 Pro	1.0	11.0	0.592	0.592	0.592	6.5	0.592
	Claude 3.7 Sonnet	0.5	11.0	0.367	0.367	0.367	4.0	0.367
	Grok 3	0.5	11.0	0.752	0.733	0.741	8.0	0.708
Total	GPT-4o	0.8	9.6	0.783	0.750	0.766	7.4	0.740
	Gemini 2.5 Pro	0.6	10.1	0.658	0.651	0.652	6.5	0.629
	Claude 3.7 Sonnet	0.4	9.8	0.542	0.530	0.536	5.2	0.530
	Grok 3	0.8	9.8	0.711	0.692	0.700	6.9	0.687

831
832 Table 8: Personalized planning performance of LLMs on EmbodiedPlan for Agent 2 and 3 (hands-
833 only).
834

agent	Model	Validity (\uparrow)	Actions	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)	LCS \rightarrow agent 1	Norm. LCS \rightarrow agent 1
agent 2	GPT-4o	0.8	9.6	0.746	0.624	0.679	7.0	0.616	9.1	0.946
	Gemini 2.5 Pro	0.6	10.3	0.677	0.614	0.640	6.9	0.597	6.4	0.610
	Claude 3.7 Sonnet	0.4	10.1	0.518	0.459	0.486	5.2	0.459	8.6	0.852
	Grok 3	0.8	9.8	0.642	0.545	0.589	6.3	0.545	8.5	0.869
agent 3	GPT-4o	0.7	9.8	0.769	0.744	0.754	7.4	0.720	8.7	0.886
	Gemini 2.5 Pro	0.7	9.7	0.764	0.744	0.749	7.3	0.699	6.9	0.663
	Claude 3.7 Sonnet	0.4	9.8	0.502	0.486	0.493	4.9	0.479	8.1	0.815
	Grok 3	0.6	10.1	0.615	0.605	0.607	6.2	0.580	7.7	0.764

842
843 Table 9: A case study of model performance on a single challenging route (Agent 1).
844

Model	Actions (Human: 26)	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)	CoG Length (Human: 22.2)
GPT-4o	25	0.680	0.654	0.667	13	0.500	22.1
Gemini 2.5 Pro	29	0.448	0.500	0.473	10	0.345	22.8
Claude 3.7 Sonnet	24	0.458	0.423	0.440	7	0.269	26.5
Grok 3	27	0.593	0.615	0.604	7	0.259	24.8

850
851 Table 10: A case study of model performance on a single challenging route (Agent 2).
852

Model	Actions (Human: 28)	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)	CoG Length (Human: 23.3)	
GPT-4o	25	0.640	0.571	0.604	13	0.464	16	0.640
Gemini 2.5 Pro	27	0.481	0.464	0.473	9	0.321	15	0.517
Claude 3.7 Sonnet	24	0.542	0.464	0.500	11	0.393	13	0.542
Grok 3	27	0.667	0.643	0.655	16	0.571	19	0.704

858
859 Table 11: A case study of model performance on a single challenging route (Agent 3).
860

Model	Actions (Human: 26)	Precision	Recall	F1 (\uparrow)	LCS	Norm. LCS (\uparrow)	CoG Length (Human: 22.1)	
GPT-4o	26	0.615	0.615	0.615	13	0.500	16	0.615
Gemini 2.5 Pro	28	0.607	0.654	0.630	13	0.464	17	0.586
Claude 3.7 Sonnet	26	0.423	0.423	0.423	11	0.423	17	0.654
Grok 3	24	0.625	0.577	0.600	14	0.538	18	0.667

864	Ground Truth Plan	Agent 1 Plan	Agent 2 Plan	Agent 3 Plan
865				
866				
867				
868				
869				
870				
871				
872				
873				
874				
875				
876				
877				
878				
879	grip(LH, A4)	grip(LH, A4)	grip(LH, A4)	grip(LH, A4)
880	grip(RH, D3)	grip(RH, D3)	grip(RH, D3)	grip(RH, D3)
881	move_foot(LF, chip)	move_foot(LF, chip)	move_foot(LF, chip)	move_foot(LF, chip)
882	move_foot(RF, None)	move_foot(RF, chip)	move_foot(RF, chip)	move_foot(RF, chip)
883	grip(LH, B8)	grip(LH, B8)	move_foot(LF, A4)	grip(LH, I5)
884	move_foot(RF, chip)	move_foot(LF, A4)	grip(RH, I5)	move_foot(RF, D3)
885	move_foot(LF, None)	move_foot(RF, D3)	move_foot(RF, D3)	move_foot(LF, A4)
886	grip(RH, E10)	grip(RH, E10)	grip(LH, B8)	grip(RH, B8)
887	move_foot(LF, A4)	move_foot(RF, B8)	move_foot(LF, B8)	move_foot(LF, I5)
888	move_foot(RF, I5)	move_foot(LF, chip)	move_foot(RF, A4)	grip(LH, E10)
889	move_foot(LF, None)	grip(LH, G10)	grip(RH, G10)	move_foot(RF, B8)
890	grip(LH, G10)	move_foot(LF, E10)	move_foot(RF, I5)	grip(RH, G10)
891	match(G10)	move_foot(RF, chip)	grip(LH, E10)	move_foot(LF, E10)
892	grip(RH, K11)	grip(RH, K11)	move_foot(LF, E10)	grip(LH, K11)
893	move_foot(LF, I5)	move_foot(RF, G10)	move_foot(RF, G10)	move_foot(RF, G10)
894	move_foot(RF, None)	move_foot(LF, chip)	grip(RH, K11)	dynamic(RH, I14)
895	grip(LH, I14)	grip(LH, I14)	move_foot(LF, B8)	move_foot(LF, K11)
896	move_foot(RF, I5)	move_foot(LF, E10)	move_foot(RF, G10)	move_foot(RF, None)
897	move_foot(LF, None)	move_foot(RF, K11)	grip(LH, I14)	grip(LH, I16)
898	grip(RH, I16)	grip(RH, I16)	move_foot(LF, E10)	move_foot(RF, I14)
899	move_foot(LF, E10)	move_foot(RF, I14)	move_foot(RF, I5)	move_foot(LF, None)
900	move_foot(RF, K11)	move_foot(LF, G10)	grip(LH, I16)	dynamic(RH, F18)
901	move_foot(LF, G10)	grip(LH, F18)	move_foot(LF, I14)	match(F18)
902	grip(LH, F18)	match(F18)	move_foot(RF, G10)	top_out()
903	match(F18)	top_out()	dynamic(RH, F18)	
904	top_out()		move_foot(LF, I16)	
905			move_foot(RF, I14)	
906			match(F18)	
907			top_out()	

Figure 6: Side-by-side comparison of the Ground Truth Plan and the generated plans of Agent 1, Agent 2, and Agent 3.

909
910
911
912
913
914
915
916
917