
Under review as a conference paper at ICLR 2018

RECURRENT AUTO-ENCODER MODEL FOR
MULTIDIMENSIONAL TIME SERIES REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent auto-encoder model can summarise sequential data through an encoder
structure into a fixed-length vector and then reconstruct into its original sequential
form through the decoder structure. The summarised information can be used to
represent time series features. In this paper, we propose relaxing the dimension-
ality of the decoder output so that it performs partial reconstruction. The fixed-
length vector can therefore represent features only in the selected dimensions. In
addition, we propose using rolling fixed window approach to generate samples.
The change of time series features over time can be summarised as a smooth
trajectory path. The fixed-length vectors are further analysed through additional
visualisation and unsupervised clustering techniques.
This proposed method can be applied in large-scale industrial processes for sen-
sors signal analysis purpose where clusters of the vector representations can be
used to reflect the operating states of selected aspects of the industrial system.

1 BACKGROUND

Modern industrial processes are often monitored by a large array of sensors. Machine learning
techniques can be used to analyse unbounded streams of sensor signal in an on-line scenario.

This paper illustrates the idea using propietary data collected from a two-stage centrifugal compres-
sion train driven by an aeroderivative industrial turbine (RB-211) on a single shaft. It is an isolated
large-scale module which belongs to a major natural gas terminal1. The purpose of this modular
process is to regulate the pressure of natural gas at an elevated, pre-set level.

At the compression system, numerous sensors are attached to various parts of the system to monitor
the production process. Vital real-valued measurements like temperature, pressure, rotary speed,
vibration... etc., are recorded at different locations 2.

The system can be treated as a multidimensional entity changing through time. Each stream of
sensor measurement is basically a set of real values received in a time-ordered fashion. When this
concept is extended to a process with P sensors, the dataset can therefore be expressed as a time-
ordered multidimensional vector {RP

t : t ∈ [1, T ]}.
The dataset used in this study is unbounded (i.e. continuous streaming) and unlabelled, where the
events of interest (e.g. overheating, mechanical failure, blocked oil filters... etc) are not present. The
key goal of this study is to find the representation of multiple sensor data in order to identify patterns
and anomalies to assist maintenance and diagnostics. We propose a recurrent auto-encoder model
which can be used to provide effective vector representation for multidimensional time series data.
Further visualisation and clustering techniques can be applied to assist the identification of patterns.

1.1 RELATED WORKS

A comprehensive review conducted by (Bagnall et al., 2017) analysed traditional time series cluster-
ing algorithms for unidimensional data. Thay have concluded that Dynamic Time Warping (DTW)
can be an effective benchmark for unidimensional time series data representation. On the other

1A simplified process diagram of the compression train can be found in Figure 7 at the appendix.
2A list of all sensors is available in the appendix.

1



Under review as a conference paper at ICLR 2018

hand, there has been many researches done to generalise DTW to multidimensional level (Vlachos
et al., 2006; Gillian et al., 2011; ten Holt et al., 2007; Ko et al., 2005; Petitjean et al., 2012; Liu
et al., 2009; Wang et al., 2013; Shokoohi-Yekta et al., 2017; Giorgino, 2009). Most of the studies
focused on analysing Internet of Things (IoT), wearable sensors and gesture recognition, where the
dimensionality of the examined dataset remains relatively low comparing with large-scale industrial
applications such as the one we feature in this paper.

In the neural network area, Srivastava et al. (2015) proposed a recurrent auto-encoder model based on
LSTM neurons which aims at learning representation of video data. It achieves this by reconstructing
sequence of video frames. Their model was able to derive meaningful representations for video clips
and the reconstructed outputs demonstrate similarity based on qualitative examination. Another
recent paper by D’Avino et al. (2017) also used LSTM-based recurrent auto-encoder model for video
data. Sequence of video frames feed into their model so that it learns the intrinsic representation of
the video source. Areas of high reconstruction error indicate deviation from the underlying video
source and hence can be used as video forgery detection mechanism.

Similarly, audio clips can treated as sequential data. One analysis by Chung et al. (2016) seek to
represent variable-length audio data as fixed-length vector using recurrent auto-encoder model. They
found that audio segments which sound alike would have vector representations nearby in space.

There are also few other related works in the realm of time series data. For instance, a recent paper
by Malhotra et al. (2017) proposed a recurrent auto-encoder model which aims at providing fixed-
length representation for bounded univariate time series data. Their model was trained on a plurality
of labelled datasets in order to become a generic feature extractor. Dimensionality reduction of the
context vectors via t-SNE shows that the ground truth classification can be observed in their model’s
extracted features. Another study by Hsu (2017) presented a time series compression algorithm
using a pair of RNN encoder-decoder structure and an additional auto-encoder to achieve higher
compression ratio. Meanwhile, a seperate research by Lee (2017) used an auto-encoder model with
database metrics (e.g. CPU usage, number of active sessions... etc) to identify periods of anomaly
by setting threshold on the reconstruction error.

2 METHODS

A pair of RNN encoder-decoder structure can provide end-to-end mapping between an ordered
multidimensional input sequence and its matching output sequence (Sutskever et al., 2014; Cho
et al., 2014). Recurrent auto-encoder can be depicted as a special case of the aforementioned model,
where input and output sequences are aligned with each other. It can be extended to the area of signal
analysis in order to leverage recurrent neurons power to understand complex and time-dependent
relationship.

2.1 ENCODER-DECODER STRUCTURE

At high level, the RNN encoder reads an input sequence and summarises all information into a fixed-
length vector. The decoder then reads the vector and reconstructs the original sequence. Figure 1
below illustrates the model.

2



Under review as a conference paper at ICLR 2018

Figure 1: Recurrent auto-encoder model. Both the encoder and decoder are made up of multilayered
RNN. Arrows indicate the direction of information flow.

2.1.1 ENCODING

The role of the recurrent encoder is to project the multidimensional input sequence into a fixed-
length hidden context vector c. It reads the input vectors {RP

t : t ∈ [1, T ]} sequentially from
t = 1, 2, 3, ..., T . The hidden state of the RNN has H dimensions which updates at every time step
based on the current input and hidden state inherited from previous step.

Recurrent neurons arranged in multiple layers are capable of learning complex temporal behaviours.
In this proposed model, LSTM neuron with hyperbolic tangent activation is used at all recurrent
layers (Hochreiter & Schmidhuber, 1997). An additional improvement of using gated recurrent unit
(GRU) neurons (Cho et al., 2014) can also be used but was not experimented within the scope of this
study. Once the encoder reads all the input information, the sequence is summarised in a fixed-length
vector c which has H hidden dimensions.

For regularisation purpose, dropout can be applied to avoid overfitting. It refers to randomly remov-
ing a fraction of neurons during training, which aims at making the network more generalisable (Sri-
vastava et al., 2014). In an RNN setting, Zaremba et al. (2014) suggested that dropout should only
be applied non-recurrent connections. This helps the recurrent neurons to retain memory through
time while still allowing the non-recurrent connections to benefit from regularisation.

2.1.2 DECODING

The decoder is a recurrent network which reconstructs the context vector c back into the original
sequence. To exemplify this, the decoder starts by reading the context vector c at t = 1. It then
decodes the information through the RNN structure and outputs a sequence of vectors {RK

t : t ∈
[1, T ]} where K denotes the dimensionality of the output sequence.

Recalling one of the fundamental characteristics of an auto-encoder is the ability to reconstruct the
input data back into itself via a pair of encoder-decoder structure. This criterion can be slightly
relaxed such that K 6 P , which means the output sequence is only a partial reconstruction of the
input sequence.

Recurrent auto-encoder with partial reconstruction:{
fencoder : {RP

t : t ∈ [1, T ]} → c

fdecoder : c→ {RK
t : t ∈ [1, T ]} K 6 P (1)

In the large-scale industrial system use case, all streams of sensor measurements are included in the
input dimensions while only a subset of sensors is included in the output dimensions. This means the
entire system is visible to the encoder, but the decoder only needs to perform partial reconstruction of
it. End-to-end training of the relaxed auto-encoder implies that the context vector would summarise
the input sequence while still being conditioned on the output sequence. Given that activation of the
context vector is conditional on the decoder output, this approach allows the encoder to capture lead
variables across the entire process as long as they are relevant to the selected output dimensions.

3



Under review as a conference paper at ICLR 2018

It is important that we recognise that reconstructing part of the data is clearly an easier task to
perform than fully-reconstructing the entire original sequence. However, partial reconstruction has
practical significance for the industrial application aspect. In real-life scenarios, multiple context
vectors can be generated from different recurrent auto-encoder models using identical sensors in the
encoder input but different subset of sensors in the decoder output. The selected subsets of sensors
can reflect the underlying states of different parts of the system. As a result, these context vectors
produced from the same time segment can be used as different diagnostic measurements in industrial
context. We will illustrate this in the results section by highlighting two examples.

2.2 SAMPLING

For a training dataset of T ′ time steps, samples can be generated where T < T ′. We can begin at
t = 1 and draw a sample of length T . This process continues recursively by shifting one time step
until it reaches the end of training dataset. For a subset sequence of length T , this method allows
T ′−T samples to be generated. Besides, it can also generate samples from an unbounded time series
in an on-line scenrio, which are essential for time-critical applications like sensor data analysis.

Algorithm 1: Drawing samples consecutively from the original dataset
Input: Dataset length T ′
Input: Sample length T

1 i← 0 ;
2 while i 6 i+ T do
3 Generate sample sequence (i, i+ T ] from the dataset;
4 i← i+ 1;
5 end

Given that sample sequences are recursively generated by shifting the window by one time step,
successively-generated sequences are highly correlated with each other. As we have discussed pre-
viously, the RNN encoder structure compresses sequential data into a fixed-length vector represen-
tation. This means that when consecutively-drawn sequences are fed through the encoder structure,
the resulting activation at c would also be highly correlated. As a result, consecutive context vectors
can join up to form a smooth trajectory in space.

Context vectors in the same neighbourhood have similar activation therefore they must have similar
underlying states. Contrarily, context vectors located in distant neighbourhoods would have different
underlying states. These context vectors can be visualised in lower dimensions via dimensionality
reduction techniques such as principal component analysis (PCA).

Furthermore, additional unsupervised clustering algorithms can be applied to the context vectors.
Each context vector can be assigned to a cluster Cj where J is the total number of clusters. Once
all the context vectors are labelled with their corresponding clusters, supervised classification al-
gorithms can be used to learn the relationship between them using the training set. For instance,
support vector machine (SVM) classifier with J classes can be used. The trained classifier can then
be applied to the context vectors in the held-out validation set for cluster assignment. It can also be
applied to context vectors generated from unbounded time series in an on-line setting. Change in
cluster assignment among successive context vectors indicate change in the underlying state.

3 RESULTS

Training samples were drawn from the dataset using windowing approach with fixed sequence
length. In our example, the large-scale industrial system has 158 sensors which means the recurrent
auto-encoder’s input dimension has P = 158. Observations are taken at 5 minutes granularity and
the total duration of each sequence was set at 3 hours. This means that the model’s sequence has
fixed length T = 36, while samples were drawn from the dataset with total length T ′ = 2724. The
dataset was scaled into z-scores, thus ensuring zero-centred data which facilitates gradient-based
training.

The recurrent auto-encoder model has three layers in the RNN encoder structure and another three
layers in the corresponding RNN decoder. There are 400 neurons in each layer. The auto-encoder

4



Under review as a conference paper at ICLR 2018

model structure can be summarised as: RNN encoder(400 neurons/3 layers LSTM/hyperbolic tan-
gent) - Context layer (400 neurons/Dense/linear activation) - RNN decoder(400 neurons/3 layers
LSTM/hyperbolic tangent). Adam optimiser (Kingma & Ba, 2014) with 0.4 dropout rate was used
for model training.

3.1 OUTPUT DIMENSIONITY

As we discussed earlier, the RNN decoder’s output dimension can be relaxed for partial reconstruc-
tion. The output dimensionality was set at K = 6 which is comprised of a selected set of sensors
relating to key pressure measurements (e.g. suction and discharge pressures of the compressor de-
vice).

We have experimented three scenarios where the first two have complete dimensionality P =
158;K = 158 and P = 6;K = 6 while the remaining scenario has relaxed dimensionality
P = 158;K = 6. The training and validation MSEs of these models are visualised in figure 2
below.

Figure 2: Effects of relaxing dimensionality of the output sequence on the training and validation
MSE losses. They contain same number of layers in the RNN encoder and decoder respectively. All
hidden layers contain same number of LSTM neurons with hyperbolic tangent activation.

The first model with complete dimensionality (P = 158;K = 158) has visibility of all dimensions
in both the encoder and decoder structures. Yet, both the training and validation MSEs are high as
the model struggles to compress-decompress the high dimensional time series data.

For the complete dimensionality model with P = 6;K = 6, the model has limited visibility to the
system as only the selected dimensions were included. Despite the context layer summarises infor-
mation specific to the selected dimensionality in this case, lead variables in the original dimensions
have been excluded. This prevents the model from learning any dependent behaviours among all
available information.

On the other hand, the model with partial reconstruction (P = 158;K = 6) demonstrate substan-
tially lower training and validation MSEs. As all information is available to the model via the RNN
encoder, it captures all relevant information such as lead variables across the entire system.

Randomly selected samples in the held-out validation set were fed to this model and the predictions
can be qualitatively examined in details. In figure 3 below, all the selected specimens demonstrate
similarity between the original label and the reconstructed output. The recurrent auto-encoder model
captures the shift mean level as well as temporal variations of all the output dimensions.

3.2 CONTEXT VECTOR

Once the recurrent auto-encoder model is successfully trained, samples can be fed to the model and
the corresponding context vectors can be extracted for detailed inspection. As we discussed earlier,
successive context vectors have similar activation as they are only shifted by one time step. By
calculating the correlation matrix of all context vectors and visualising them on a heatmap as in

5



Under review as a conference paper at ICLR 2018

Figure 3: A heatmap showing eight randomly selected output sequences in the held-out validation
set. Colour represents magnitude of sensor measurements in normalised scale.

figure 4, it is found that the narrow band around the diagonal has consistently higher correlation.
This indicates that successive context vectors are highly correlated.

Figure 4: A correlation matrix showing the pairwise correlation of all context vectors. Notice the
narrow band around the diagonal always has stronger correlation.

In the model we selected, the context vector c is a multi-dimensional real vector R400. Since the
model has input dimensions P = 158 and sequence length T = 36, the model has achieved com-

6



Under review as a conference paper at ICLR 2018

pression ratio 158×36
400 = 14.22. Dimensionality reduction of the context vectors through principal

component analysis (PCA) shows that context vectors can be efficiently embedded in lower dimen-
sions (e.g. two-dimensional space).

At low-dimensional space, we can use supervised classification algorithms to learn the relationship
between vectors representations and cluster assignment. The trained classification model can then be
applied to the validation set to assign clusters for unseen data. In our experiment, a SVM classifier
with radial basis function (RBF) kernel (γ = 4) was used. The results are shown in figure 5 below.

(a) 2 clusters

(b) 6 clusters

Figure 5: The first example. On the left, the context vectors were projected into two-dimensional
space using PCA. The black solid line on the left joins all consecutive context vectors together as
a trajectory. Different number of clusters were identified using simple K-means algorithm. Cluster
assignment and the SVM decision boundaries are coloured in the charts. On the right, output dimen-
sions are visualised on a shared time axis. The black solid line demarcates the training set (70%)
and validation sets (30%). The line segments are colour-coded to match the corresponding clusters.

In the two-dimensional space, the context vectors separate into two clearly identifiable neighbour-
hoods. These two distinct neighbourhoods correspond to the shift in mean values across all output
dimensions. When K-means clustering algorithm is applied, it captures these two neighbourhoods
as two clusters in the first scenario.

When the number of clusters increases, they begin to capture more subtleties. In the six clusters sce-
nario, successive context vectors oscillate back and forth between close clusters which correspond
to interlacing troughs and crests in the output dimensions. Similar pattern can also be observed in
the validation set, which indicates that the knowledge learned by the auto-encoder model is gener-
alisable to unseen data.

Furthermore, we have repeated the same experiment again with a different configuration (K =
158;P = 2) to reassure that the proposed approach can provide robust representations of the data.
The sensor measurements are drawn from an identical time period and only the output dimension-
ality K is changed (The newly selected set of sensors is comprised of a different measurements of
discharge gas pressure at the compressor unit). Through changing the output dimensionality K,
this allows us to illustrate the effects of partial reconstruction with different output dimensions. As

7



Under review as a conference paper at ICLR 2018

seen in figure 6, the context vectors form a smooth trajectory in the low-dimensional space. Similar
sequences yield context vectors which are located in a shared neighbourhood. Nevertheless, the clus-
ters found by K-means method in this secondary example also manage to identify neighbourhoods
of similar sensor patterns.

(a) 2 clusters

(b) 6 clusters

Figure 6: The second example. The sensor data is drawn from the same time period as the previous
example, only the output dimension has been changed to K = 2 where another set of gas pressure
sensors were selected.

4 DISCUSSION

Successive context vectors generated by windowing approach are always highly correlated, thus
form a smooth trajectory in high-dimensional space. Additional dimensionality reduction techniques
can be applied visualise the change of features as a smooth trajectory. One of the key contributions of
this study is that, the context vectors form distinct neighbourhoods which can be identified through
unsupervised clustering algorithms such as K-means. The clusters can be optionally labelled man-
ually to identify operating state (e.g. healthy vs. faulty). Alarm can be triggered when the context
vector travels beyond the boundary of a predefined neighbourhood. Moreover, this enables us to
find the clusters of unlabelled time series data. Clusters of the vector representation can be used by
operators and engineers to aid diagnostics and maintenance.

Another contribution of this study is that dimensionality of the output sequence can be relaxed,
thus allowing the recurrent auto-encoder to perform partial reconstruction. Although it is clearly
easier for the model to partially reconstruct the original sequence, such simple improvement allows
users to define different sets of sensors of particular interest. By limiting the number of sensors
to include in the output dimension, the context vector can be used to reflect the underlying states
of specific aspects of the large-scale industrial process. This ultimately generates more actionable
insights and enables users to diagnose the induatrial system. We have demonstrated the use of partial
reconstruction by through two examples which graphically show the effects of it.

This proposed method performs multidimensional time series clustering, which can natively scale
up to very high dimensionality as it is based on recurrent auto-encoder model. We have applied the
method to an industrial sensor dataset with P = 158 and empirically show that it can summarise
multidimensional time series data effectively.

The model can be generalised to any multi-sensor multi-state processes for operating state recogni-
tion. We also recognise that the cost of collecting labelled time series data can be very expensive.
This study established that recurrent auto-encoder model can be used to analyse unlabelled and un-

8



Under review as a conference paper at ICLR 2018

bounded time series data. This opens up further possibilities for analysing IoT and industrial sensors
data given that these domains are predominately overwhelmed with unbounded and unlabelled time
series data.

Nevertheless, the proposed approach has not included any categorical sensor measurements (e.g.
open/closed, tripped/healthy, start/stop... etc). Future research can focus on incorporating categori-
cal measurements alongside real-valued measurements.

DISCLOSURE

The technical method described in this paper is the subject of British patent application
GB1717651.2.

REFERENCES

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time se-
ries classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31(3):606–660, May 2017. ISSN 1573-756X. doi: 10.
1007/s10618-016-0483-9. URL https://doi.org/10.1007/s10618-016-0483-9.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen, Hung-yi Lee, and Lin-Shan Lee. Audio word2vec:
Unsupervised learning of audio segment representations using sequence-to-sequence autoencoder.
CoRR, abs/1603.00982, 2016. URL http://arxiv.org/abs/1603.00982.

Dario D’Avino, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Autoencoder with re-
current neural networks for video forgery detection. CoRR, abs/1708.08754, 2017. URL
http://arxiv.org/abs/1708.08754.

Nicholas Edward Gillian, R. Benjamin Knapp, and M. Sile O’Modhrain. Recognition of multivariate
temporal musical gestures using n-dimensional dynamic time warping. In NIME, 2011.

Toni Giorgino. Computing and visualizing dynamic time warping alignments in r: The dtw package.
Journal of Statistical Software, Articles, 31(7):1–24, 2009. ISSN 1548-7660. doi: 10.18637/jss.
v031.i07. URL https://www.jstatsoft.org/v031/i07.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http:
//dx.doi.org/10.1162/neco.1997.9.8.1735.

Daniel Hsu. Time series compression based on adaptive piecewise recurrent autoencoder. CoRR,
abs/1707.07961, 2017. URL http://arxiv.org/abs/1707.07961.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Ming Hsiao Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition in multisensor
systems using dynamic time warping. In 2005 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pp. 283–288, Dec 2005. doi: 10.1109/ISSNIP.
2005.1595593.

D. Lee. Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Di-
agnosis. ArXiv e-prints, August 2017.

J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications. In 2009 IEEE International Conference on
Pervasive Computing and Communications, pp. 1–9, March 2009. doi: 10.1109/PERCOM.2009.
4912759.

9

https://doi.org/10.1007/s10618-016-0483-9
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1603.00982
http://arxiv.org/abs/1708.08754
https://www.jstatsoft.org/v031/i07
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1707.07961
http://arxiv.org/abs/1412.6980


Under review as a conference paper at ICLR 2018

Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Timenet: Pre-
trained deep recurrent neural network for time series classification. CoRR, abs/1706.08838, 2017.
URL http://arxiv.org/abs/1706.08838.

F. Petitjean, J. Inglada, and P. Gancarski. Satellite image time series analysis under time warping.
IEEE Transactions on Geoscience and Remote Sensing, 50(8):3081–3095, Aug 2012. ISSN 0196-
2892. doi: 10.1109/TGRS.2011.2179050.

Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn Keogh. Generalizing
dtw to the multi-dimensional case requires an adaptive approach. Data Mining and Knowledge
Discovery, 31(1):1–31, Jan 2017. ISSN 1573-756X. doi: 10.1007/s10618-016-0455-0. URL
https://doi.org/10.1007/s10618-016-0455-0.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
representations using lstms. CoRR, abs/1502.04681, 2015. URL http://arxiv.org/abs/
1502.04681.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

Gineke ten Holt, Marcel Reinders, and Emile Hendriks. Multi-dimensional dynamic time warping
for gesture recognition. 01 2007.

Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Eamonn Keogh. In-
dexing multidimensional time-series. The VLDB Journal, 15(1):1–20, Jan 2006. ISSN
0949-877X. doi: 10.1007/s00778-004-0144-2. URL https://doi.org/10.1007/
s00778-004-0144-2.

Jun Wang, Arvind Balasubramanian, Luis Mojica de la Vega, Jordan Green, Ashok Samal, and
Balakrishnan Prabhakaran. Word recognition from continuous articulatory movement time-series
data using symbolic representations. 08 2013.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
CoRR, abs/1409.2329, 2014. URL http://arxiv.org/abs/1409.2329.

10

http://arxiv.org/abs/1706.08838
https://doi.org/10.1007/s10618-016-0455-0
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1502.04681
http://arxiv.org/abs/1502.04681
http://arxiv.org/abs/1409.3215
https://doi.org/10.1007/s00778-004-0144-2
https://doi.org/10.1007/s00778-004-0144-2
http://arxiv.org/abs/1409.2329


Under review as a conference paper at ICLR 2018

APPENDIX A

The rotary components are driven by industrial RB-211 jet turbine on a single shaft through a gear-
box. Incoming natural gas passes through the low pressure (LP) stage first which brings it to an
intermediate pressure level, it then passes through the high pressure (HP) stage and reaches the
pre-set desired pressure level. The purpose of the suction scrubber is to remove any remaining con-
densate from the gas prior to feeding through the centrifugal compressors. Once the hot compressed
gas is discharged from the compressor, its temperature is lowered via the intercoolers.

Figure 7: A simplified process diagram of the two-stage centrifugal compression train which is
located at a natural gas terminal.

Figure 8: Locations of key components around the centrifugal compressor.

11



Under review as a conference paper at ICLR 2018

APPENDIX B

The sensor measurements used in the analysis are listed below:

1. GASCOMPCARBONDIOXIDEMEAS

2. GASCOMPMETHANEMEAS

3. GASCOMPNITROGENMEAS

4. GASPROPMOLWTMEAS

5. PRESSAMBIENT

6. GB SPEEDINPUT

7. GB SPEEDOUTPUT

8. GB TEMPINPUTBRGDRIVEEND

9. GB TEMPINPUTBRGNONDRIVEEND

10. GB TEMPINPUTBRGTHRUSTINBOARD

11. GB TEMPINPUTBRGTHRUSTOUTBRD

12. GB TEMPLUBOIL

13. GB TEMPLUBOILTANK

14. GB TEMPOUTPUTBRGDRIVEEND

15. GB TEMPOUTPUTBRGNONDRIVEEND

16. GB VIBBRGCASINGVEL

17. GB VIBINPUTAXIALDISP

18. GB VIBINPUTDRIVEEND

19. GB VIBINPUTNONDRIVEEND

20. GB VIBOUTPUTDRIVEEND

21. GB VIBOUTPUTNONDRIVEEND

22. GG FLOWFUEL

23. GG FLOWWATERINJECTION

24. GG FLOWWATERINJSETPOINT

25. GG POWERSHAFT

26. GG PRESSAIRINLET

27. GG PRESSCOMPDEL

28. GG PRESSCOMPDELHP

29. GG PRESSCOMPDELIP

30. GG PRESSDIFBRGLUBOIL

31. GG PRESSDIFINLETFILTER

32. GG PRESSDIFINLETFLARE

33. GG PRESSDIFVALVEWATERINJCTRL

34. GG PRESSDISCHWATERINJPUMP1

35. GG PRESSDISCHWATERINJPUMP2

36. GG PRESSEXH

37. GG PRESSFUELGAS

38. GG PRESSHYDOILDEL

39. GG PRESSLUBEOILHEADER

40. GG PRESSLUBOIL

41. GG PRESSMANIFOLDWATERINJ

42. GG PRESSSUCTWATERINJPUMP

43. GG SPEEDHP

44. GG SPEEDIP

45. GG TEMPAIRINLET

46. GG TEMPCOMPDEL

47. GG TEMPCOMPDELHP

48. GG TEMPCOMPDELIP

49. GG TEMPEXH

50. GG TEMPEXHTC1

51. GG TEMPEXHTC2

52. GG TEMPEXHTC3

53. GG TEMPEXHTC4

54. GG TEMPEXHTC5

55. GG TEMPEXHTC6

56. GG TEMPEXHTC7

57. GG TEMPEXHTC8

58. GG TEMPFUELGAS

59. GG TEMPFUELGASG1

60. GG TEMPFUELGASLINE

61. GG TEMPHSOILCOOLANTRETURN

62. GG TEMPHSOILMAINRETURN

63. GG TEMPLUBOIL

64. GG TEMPLUBOILTANK

65. GG TEMPPURGEMUFF

66. GG TEMPWATERINJSUPPLY

67. GG VALVEWATERINJECTCONTROL

68. GG VANEINLETGUIDEANGLE

69. GG VANEINLETGUIDEANGLE1

70. GG VANEINLETGUIDEANGLE2

71. GG VIBCENTREBRG

72. GG VIBFRONTBRG

73. GG VIBREARBRG

74. HP HEADANTISURGE

75. HP POWERSHAFT

76. HP PRESSCLEANGAS

77. HP PRESSDIFANTISURGE

78. HP PRESSDIFSUCTSTRAINER

79. HP PRESSDISCH

80. HP PRESSSEALDRYGAS

81. HP PRESSSEALLEAKPRIMARYDE1

82. HP PRESSSEALLEAKPRIMARYDE2

83. HP PRESSSEALLEAKPRIMARYNDE1

84. HP PRESSSEALLEAKPRIMARYNDE2

85. HP PRESSSUCT1

86. HP PRESSSUCT2

87. HP SPEED

88. HP TEMPBRGDRIVEEND

89. HP TEMPBRGNONDRIVEEND

90. HP TEMPBRGTHRUSTINBOARD

91. HP TEMPBRGTHRUSTOUTBOARD

92. HP TEMPDISCH1

93. HP TEMPDISCH2

94. HP TEMPLUBOIL

95. HP TEMPLUBOILTANK

96. HP TEMPSUCT1

97. HP VIBAXIALDISP1

98. HP VIBAXIALDISP2

99. HP VIBDRIVEEND

100. HP VIBDRIVEENDX

101. HP VIBDRIVEENDY

102. HP VIBNONDRIVEEND

103. HP VIBNONDRIVEENDX

104. HP VIBNONDRIVEENDY

12



Under review as a conference paper at ICLR 2018

105. HP VOLDISCH

106. HP VOLRATIO

107. HP VOLSUCT

108. LP HEADANTISURGE

109. LP POWERSHAFT

110. LP PRESSCLEANGAS

111. LP PRESSDIFANTISURGE

112. LP PRESSDIFSUCTSTRAINER

113. LP PRESSDISCH

114. LP PRESSSEALDRYGAS

115. LP PRESSSEALLEAKPRIMARYDE1

116. LP PRESSSEALLEAKPRIMARYDE2

117. LP PRESSSEALLEAKPRIMARYNDE1

118. LP PRESSSEALLEAKPRIMARYNDE2

119. LP PRESSSUCT1

120. LP PRESSSUCT2

121. LP SPEED

122. LP TEMPBRGDRIVEEND

123. LP TEMPBRGNONDRIVEEND

124. LP TEMPBRGTHRUSTINBOARD

125. LP TEMPBRGTHRUSTOUTBOARD

126. LP TEMPDISCH1

127. LP TEMPDISCH2

128. LP TEMPLUBOIL

129. LP TEMPLUBOILTANK

130. LP TEMPSUCT1

131. LP VIBAXIALDISP1

132. LP VIBAXIALDISP2

133. LP VIBDRIVEEND

134. LP VIBDRIVEENDX

135. LP VIBDRIVEENDY

136. LP VIBNONDRIVEEND

137. LP VIBNONDRIVEENDX

138. LP VIBNONDRIVEENDY

139. LP VOLDISCH

140. LP VOLRATIO

141. LP VOLSUCT

142. PT POWERSHAFT

143. PT SPEED

144. PT TEMPBRGDRIVEEND

145. PT TEMPBRGNONDRIVEEND

146. PT TEMPBRGTHRUST1

147. PT TEMPBRGTHRUST3

148. PT TEMPCOOLINGAIR1

149. PT TEMPCOOLINGAIR2

150. PT TEMPEXH

151. PT TEMPLUBOIL

152. PT TEMPLUBOILPTSUMP

153. PT TEMPLUBOILTANK

154. PT VIBAXIALDISP1

155. PT VIBAXIALDISP2

156. PT VIBBRGCASINGVEL

157. PT VIBDRIVEEND

158. PT VIBNONDRIVEEND

13


