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ABSTRACT

Language-based agentic systems have shown great promise in recent years, transi-
tioning from solving small-scale research problems to being deployed in challeng-
ing real-world tasks. However, optimizing these systems often requires substantial
manual labor. Recent studies have demonstrated that these systems can be repre-
sented as computational graphs, enabling automatic optimization. Despite these
advancements, most current efforts in Graph-based Agentic System Optimization
(GASO) fail to properly assign feedback to the system’s components given feed-
back on the system’s output. To address this challenge, we formalize the con-
cept of semantic backpropagation with semantic gradients—a generalization that
aligns several key optimization techniques, including reverse-mode automatic dif-
ferentiation and the more recent TextGrad by exploiting the relationship among
nodes with a common successor. This serves as a method for computing direc-
tional information about how changes to each component of an agentic system
might improve the system’s output. To use these gradients, we propose a method
called semantic gradient descent which enables us to solve GASO effectively. Our
results on both BIG-Bench Hard and GSM8K show that our approach outperforms
existing state-of-the-art methods for solving GASO problems. A detailed ablation
study on the LIAR dataset demonstrates the parsimonious nature of our method.

1 INTRODUCTION

Language-based agentic systems are being hailed as a major breakthrough in artificial intelligence,
with real-world deployment well underway and numerous companies already being founded based
on this technology (e.g., Pythagora-io (2023) ). Such agentic systems typically consist of multiple
components. These components are selected to perform specific tasks, such as question answering,
implementing and executing computer programs, or performing web searches (Wang et al., 2024;
Guo et al., 2024). Due to the strength of Large Language Models (LLMs) in doing a wide array of
tasks, agentic systems typically have most of their key components rely on querying LLMs. This
results in communication between the components of such systems being handled with free-form
natural language (Zhuge et al., 2023). However, while relying on LLMs does partially alleviate the
engineering burden of building such systems, designing agentic systems remains nontrivial.

Agentic systems are often modeled as computational graphs, with components involving frozen large
models having auxiliary optimizable parameters (Zhuge et al., 2024). When the graph topology is
fixed, the challenge of optimizing these parameters to enable an agentic system to solve a specific
problem can be modeled as the Graph-based Agent System Optimization (GASO) problem.

Famous methods that attempt to solve the GASO problem include DSPy prompt optimization meth-
ods (e.g., COPRO) (Khattab et al., 2024), GPTSwarm’s node optimization (Zhuge et al., 2024),
Textgrad (Yuksekgonul et al., 2024), and Trace’s OptoPrime (Cheng et al., 2024). DSPy prompt op-
timization methods and GPTSwarm’s node optimization both do so by optimizing a prompt template
for each node given the input-output pairs of each node that were observed during predictions. In
contrast, both TextGrad and OptoPrime adopt a backpropagation-inspired approach, wherein both of
them attempt to assign a feedback to each of the components in a system by message passing in the
reverse topological order (backward) of the graph given an output feedback. However, OptoPrime
fails to build a compact and explicit representation of how each component can be improved to pass
backward. On the other hand, TextGrad omits neighborhood nodes while computing the backward
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Figure 1: The entire process of our proposed LLM-based solution to GASO. Given a sample query
to optimize over, (1) the forward pass of each node can be executed by joining an instruction along-
side other inputs to process. Then, (2,3) the semantic gradients are generated through semantic
backpropagation that crucially takes into account the neighboring nodes. And finally, (4), the se-
mantic gradients accumulated are joined with the optimizable parameter (e.g., the instruction) and
an optimization meta-prompt to retrieve update in the direction given by the semantic gradients.

messages. We argue that the aforementioned drawbacks of OptoPrime and TextGrad significantly
hinder the effectiveness of backpropagation and reverse-mode automatic differentiation.

To address the issues with TextGrad and other proposed GASO solutions, we propose semantic
backpropagation over semantic gradients. Semantic gradients generalize mathematical gradients
by representing directional information in any semantically interoperable form, indicating how a
variable in a system would change to improve the overall system performance. Semantic backprop-
agation serves to align TextGrad with reverse-mode automatic differentiation (Linnainmaa, 1970;
1976), which is also known as backpropagation (Werbos, 1982) in the context of neural network
optimization. 1 We further propose semantic gradient descent which uses semantic gradients to
update the optimizable parameters, and therefore solve the GASO problem. Our overall approach to
solving the GASO problem is summarized in Figure 1.

We apply semantic backpropagation and semantic gradient descent to BIG-Bench Hard (BBH) (Suz-
gun et al., 2023) and GSM8K (Cobbe et al., 2021), finding that semantic gradient descent outper-
forms TextGrad, OptoPrime, and COPRO on these benchmarks. We also perform an extensive
ablation study on the LIAR (Wang, 2017) dataset, showing that the method is parsimonious.

Our contributions can be summarized as follows: We (1) formalize the Graph-Based Agentic System
Optimization (GASO) problem. (2) Introduce Semantic Gradients, Semantic Gradient Descent, and
Semantic Backpropagation, demonstrating how these methods resolve challenges in existing GASO
solvers. (3) Show improved performance over other GASO solvers, including COPRO, OptoPrime,
and TextGrad when evaluating on BBH and GSM8K with a general question-answering setup. (4)
Perform an ablation study on the LIAR dataset that highlights a decrease in performance when key
components of our methods are removed.

2 BACKGROUND

2.1 THE GRAPH-BASED AGENTIC SYSTEM OPTIMIZATION PROBLEM

The Graph-based Agentic System Optimization (GASO) problem aims to optimize a system capable
of delivering precise answers to a variety of user queries through a structured computational ap-
proach. We formalize this system using a directed acyclic computational graph (V,E,H,Θ). In this
graph, V represents the set of vertices or nodes, with each node v ∈ V being a variable within the

1The method proposed in this paper is not to be confused with semantic backpropagation in Genetic Pro-
gramming (Pawlak et al., 2014) where input-output pairs are propagated which, while different, both pass
messages backward, in different semantic spaces.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

system. E denotes the set of directed edges between nodes, H is a set of forward functions assigned
to certain nodes, and Θ ⊂ V consists of variables that are optimizable parameters2.

For any vertex v in the graph, let Predecessors(v) denote its predecessor vertices and Successors(v)
denote its successor vertices. If a node v ∈ V has no predecessors, it either holds a specified user
query Q or an optimizable parameter θ ∈ Θ. Conversely, if a node has predecessors, it contains the
result of computations performed by the function hv ∈ H on its predecessors, expressed as:

∀v ∈ V s.t.Predecessors(v) ̸= ∅, v = hv(Predecessors(v)). (1)

The final response A to the user query Q is produced by a special output node where
Successors(v) = ∅. The notation A(Q,Θ) highlights the functional relationship between the graph
output and the user query-parameter pair. To obtain the final response, each node of the graph is
executed in topological order.

The objective in the GASO problem is to find a set of parameters Θ∗ that minimizes the expected
loss EQ∼D[l(Q,A(Q,Θ∗))] over a distribution of queries D. Here, l represents a loss function (e.g.,
negative utility) defined for a query and its corresponding response. In addition to the loss l(Q,A),
a semantic alphanumeric feedback F (Q,A) is provided as an additional signal for optimization. In
this paper, we focus on cases where variables are represented in free-form natural language; that is,
Q, A, Θ, and the outputs of hv are composed of alphanumeric strings. To effectively process the
semantic content, the functions hv often require querying LLMs. For instance, consider a variable
va linked to its predecessors vq (a user query) and vθ (an additional optimizable instruction that can
affect the response to vq). The function for va could be expressed as hva(vq, vθ) = LLM(vq ⊕ vθ),
where ⊕ denotes the concatenation operator, and the LLM function returns an LLM response. In
practical applications, vθ is often a prompt prefix or suffix optimized to improve the LLM’s response
to the task. In the general case, forward functions could take more complex forms, such as accessing
a file, executing a command line and reading the result, and managing some internal thought (Wang
et al., 2024; Zhang et al., 2024; Jin et al., 2024).

2.2 REVERSE-MODE AUTOMATIC DIFFERENTIATION

When the forward functions and the loss function are differentiable, first-order optimization methods
(see the work of Beck (2017)) compute the gradient of the loss with respect to all optimizable
parameters to solve GASO. Reverse-mode automatic differentiation (Linnainmaa, 1970; 1976), or
RMAD, facilitates this by computing the gradient of each variable in accordance with the chain rule:

∂l

∂v
=

∑
w∈Successors(v)

∂l

∂w

∂w

∂v
=

∑
w∈Successors(v)

∂l

∂w
Jhv

w
, (2)

where hv
w represents the function hw with variables Predecessors(w) \ {v} fixed at their current

values. Here, J denotes the Jacobian of hv
w with respect to v. The numerical gradients can be

interpreted as a vector that could be added to the weights if one wants to improve the loss function.
In the next section, we generalize the numerical gradients of RMAD to arbitrary strings, and the
RMAD method to handle arbitrary forms of gradients.

3 METHODS

Building on the foundational work of Linnainmaa (1970; 1976), Pryzant et al. (2023), and Yuksek-
gonul et al. (2024), we introduce the concept of Semantic Backpropagation over Semantic Gradients.
In the context of the GASO problem, the semantic gradient of a loss function l(Q,A(Q,Θ)) with
respect to a variable v, denoted as ∇vlQ, provides directional information on how altering v can
improve system performance for a query Q. Semantic backpropagation employs the final semantic
gradient ∇AlQ—typically derived from the answer feedback F (Q,A)—to generate semantic gra-
dients ∇vlQ for all variables v ∈ V . Specifically, for a given variable v, the backward functions—
acting as a generalization of the chain rule—are used to partially compute the semantic gradients

2While the GASO problem is general and accounts for both node and edge optimization within a graph,
in this work, we are interested in credit assignment methods that distribute a semantic feedback to each of the
node variables. Therefore, we focus on the special case where we assume that the edges are fixed and only
optimize the parameters Θ.
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for Predecessors(v) using the semantic gradient with respect to v. This procedure is systematically
applied to all variables v ∈ V , proceeding in reverse topological order.

Using semantic gradients, we propose Semantic Gradient Descent to address the GASO problem.
Generalizing from numerical gradient descent (Lemaréchal, 2012), this method involves the follow-
ing iterative steps: (1) Sample a query Q from a distribution D, (2) Apply semantic backpropagation
to compute the semantic gradients ∇vlQ for all variables v ∈ V if l(Q,A(Q,Θ)) exceeds a speci-
fied threshold, (3) Use an optimizer ϕ on each parameter θ ∈ Θ, guided by its semantic gradients,
to update the optimizable parameters. The subsequent sections detail the mechanisms of semantic
backpropagation and semantic gradient descent.

3.1 SEMANTIC BACKPROPAGATION

Given a computational graph as described in Section 2, in our approach, we generalize the
term ∂l

∂wJhv
w

in Equation (2) by introducing a set of backward functions {ĥv
w : w ∈ V, v ∈

Predecessors(w)}. Each backward function ĥv
w serves as an analogue to the product of the deriva-

tive and the Jacobian in RMAD, extending it to arbitrary forward functions hw that might incorporate
natural language. Specifically, for any query Q, node w ∈ V , and v ∈ Predecessors(w), ĥv

w maps
the values of Predecessors(w), w, and the gradient ∇wlQ, to a direction ∇w

v lQ, in the space of v.
This direction represents how a change in v would affect w = hw(Predecessors(w)) in alignment
with∇w

v lQ, while keeping the other predecessors fixed.

Instead of the summation over successors in RMAD, we introduce an aggregation function Av that
combines the set of directions {∇w

v lQ : w ∈ Successors(v)} into a single semantic gradient ∇vlQ
for each variable v. This generalizes the summation operator in RMAD, allowing for more flexible
and problem-specific methods of combining gradients. Formally, we have:

∇vlQ = Av({∇w
v lQ : w ∈ Successors(v)}), where ∇w

v lQ = ĥv
w(Predecessors(w), w,∇wlQ)

for all w ∈ Successors(v). Algorithm 1 shows the procedure for backpropagation of semantic gra-
dients. Our formulation thus extends the chain rule and RMAD to accommodate arbitrary functions
and aggregation mechanisms.

Algorithm 1 Semantic Backpropagation

Require: A computational graph with vertices V , a set of backward functions {ĥv
w : w ∈ V, v ∈

Predecessors(w)}, a set of gradient aggregation functions {Av : v ∈ V }, and∇AlQ, the gradient
of l(Q,A) for some query Q with respect to answer A.
for v in ReverseTopologicalSort(V \ {A}) do

for w in Successors(v) do
∇w

v lQ ← ĥv
w(Predecessors(w), w,∇wlQ)

end for
∇vlQ ← Av({∇w

v lQ : w ∈ Successors(v)})
end for

Ensure: {∇vlQ : v ∈ V }

Implementation 1: Feedback on Optimizable Parameters

For an optimizable parameter θ ∈ Θ,∇w
θ lQ = ĥθ

w(Predecessors(w), w,∇wlQ), the direc-
tion of change of θ that would move w towards to the direction∇wlQ for w ∈ Successors(θ)
is set to be the string:

Input:
Predecessors(w) \ θ

My output:
w

Feedback received on my output:
∇wlQ.

Here, the aggregator Aθ is string concatenation.
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In this work, the forward functions hv process semantic information from natural language inputs.
Our implementation of the corresponding backward functions ĥw

v involves querying an LLM to
understand how the input value v influences the output value w. This requires considering all in-
puts of hw(i.e., Predecessors(w)) and the semantic gradient of the output ∇wlQ. These backward
functions can be customized as needed. For example, in this paper, we adopt a specific form of
semantic gradient for all optimizable parameters θ ∈ Θ, where ∇θlQ is calculated as the aggre-
gation over all successors of θ, their semantic gradients, and the predecessors of hw excluding θ
for all w ∈ Successors(θ). Implementation 1 provides an example of our approach for computing
semantic gradients for optimizable parameters.

3.2 SEMANTIC GRADIENT DESCENT

In this section, we first formalize the notion of parameter updating given semantic gradients, and
then present in detail the procedure in which it is applied.

3.2.1 PARAMETER UPDATE FUNCTION

Similar to numerical gradient descent, semantic gradient descent also requires a parameter update
function, denoted as ϕ. Given an optimizable parameter θ and a set of semantic gradients Gθ =
{∇θlQi : i ∈ N, i ≤ k} of losses lQi = l(Qi, A(Qi,Θ)) for queries Qi, the function ϕ updates
the parameter value by moving θ according to Gθ. Analogously to numerical gradient descent, the
parameter θ is updated by applying the formula θ ← θ−α

∑k
i=1∇θlQi . One method to implement

ϕ involves querying an LLM for an improved version of θ, conditioned on Gθ. We adopt this strategy
and detail our implementation of the parameter update function in Implementation 2.

Implementation 2: Parameter Update Function

Given an optimizable parameter θ and a set of its semantic gradients Gθ,

ϕ(θ,Gθ) = PostProc(LLM(s)),

where s is the string
I’m trying to write a task-specific question answering assistant.
My current prompt is:

θ
Here are some examples that it did not answer well:

l(Gθ)
Based on the above examples, write an improved prompt.
Do not include the keyword “feedback” or any example-specific content in the prompt.
Finish with the improved prompt wrapped by <prompt> and </prompt>,

l lists the semantic gradients with a prefix “## Example k” attached to the kth gradient,
and PostProc is a post-processing function that extracts the improved prompt wrapped by
<prompt> and </prompt> from the LLM response.

3.2.2 THE OPTIMIZATION PROCEDURE

Given a parameterized graph, a loss function as described in Section 2, and a parameter update
function ϕ, semantic gradient descent solves the agentic graph optimization problem as follows.
The optimizable parameters Θ are first initialized. Then, we iteratively execute the following steps.
First, we repeatedly sample a query Q and only compute the semantic gradients of lQ with respect
to the variables if l(Q,A(Q,Θ)) is above a certain threshold. Move to the next step if this threshold
condition is met b times for some batch size b. Second, we apply ϕ to each parameter-gradients pair
(θ,Gθ) to obtain an alternative parameter value θ′ for each parameter θ ∈ Θ. Lastly, we apply an
update gate3 so that the parameters values are updated if the newly generated values outperform the

3Note that while TextGrad does not include such a mechanism, the official implementation of TextGrad
does include it.
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current values on a validation set. Formally, define a validation function

LVal(Θ) =
∑
Q∈Val

l(Q,A(Q,Θ)),

where elements of Val are samples from the query distribution D. We update Θ← {ϕ(θ,Gθ) : θ ∈
Θ} if LVal({ϕ(θ,Gθ) : θ ∈ Θ}) ≤ LVal(Θ). See Algorithm 2 for details.

Algorithm 2 Semantic Gradient Descent
Require: A computational graph with vertices V and optimizable parameters Θ ⊂ V , a distribution

of queries D, a loss function l, a output feedback function F , a parameter update function ϕ, a
loss threshold τ , a batch size b, and validation function LVal.
Initialize θ for all θ ∈ Θ.
while terminate condition not met do
Gv ← ∅
while |Gv| < b for any v ∈ V do

Sample query Q ∼ D.
if l(Q,A(Q,Θ)) > τ then

Given an output feedback F (Q,A(Q,Θ)), compute semantic gradients ∇vlQ according
to Algorithm 1 for all v ∈ V .
Gv ← Gv ∪ {∇vlQ} for all v ∈ V

end if
end while
if LVal({ϕ(θ,Gθ) : θ ∈ Θ}) < LVal(Θ) then

Θ← {ϕ(θ,Gθ) : θ ∈ Θ}
end if

end while
Ensure: Θ

Remark Unlike numerical gradient descent, which keeps updating the solution in each iteration,
our practical experience suggests that the update gate is essential to avoid the solution deviating to
less favored regions. We argue that this gating process is necessary for consistent performance im-
provement against the always-update strategy implemented by many first-order optimization meth-
ods since there is a lack of theoretical justification for semantic gradient descent to improve. See
empirical evidence for the significance of this gating in Section 5.2.

3.3 DIFFERENCE WITH TEXTGRAD

Here we present our difference with TextGrad (Yuksekgonul et al., 2024). Inspired by backpropa-
gation, TextGrad aims to solve the GASO problem by propagating“textual gradients” in the reverse
direction of the computational graph. A textual gradient of a variable is defined as a criticism of the
variable presented in natural language. See Section 4.1 for more details on textual gradients. Given
a query Q, TextGrad can be implemented as a special case of semantic backpropagation by having
Av as an identity function and the backward functions ĥ satisfying:

ĥv
w(·, w,∇wlQ) = ĥu

w(·, w,∇wlQ), and (3)

ĥv
w(Predecessors(w), w,∇wlQ) = ĥv

w(v, w,∇wlQ) (4)

for all u ∈ V,w ∈ Successors(v), and u ∈ Predecessors(w).

We believe Equation (3) and Equation (4) are critical issues of TextGrad. These equations can be
interpreted as follows: the function to compute∇w

v lQ is independent of v; and∇w
v lQ—the direction

of how v changes that would lead to a change of w—does not depend on any other predecessors of
w . These are not the case in reverse-mode automatic differentiation, where ĥv

w implements ∂l
∂wJhv

w

depending on v, and hv
w is the function hw with predecessors other than v fixed at their current

value. Equations 3 and 4 implicitly impose independence and symmetry among the input variables
of the forward functions, which is typically not true in computational graphs. This limitation is
especially apparent in agentic graphs, where heterogeneity between neighboring nodes is of high
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importance in order for complimentary and synergistic behavior to emerge (Zhuge et al., 2023).
A prominent example is the importance of having system prompts that synergize well with users’
prompts in a conversational LLM, which allows it to successfully approach virtually any objective
(e.g., OpenAI, 2024). It is neither necessary, nor justified, to ignore nodes with a common successor
during backpropagation.

Consider, for a concrete example, a variable va with predecessors vq and vθ, where vq is a user
query, va is an answer to the query, and vθ is an instruction that helps produce a good answer to
the user query with relation va = hva(vq, vθ) for some hva . Following TextGrad’s formulation,
the gradient with respect to instruction vθ, would only explicitly depend on vθ and va, and not the
question vq . It keeps any possibly useful information about the question unavailable when updating
vθ. This could potentially lead to an instance learning an instruction vθ that completely ignores the
nature of the approached question, e.g., attempting to memorize the last suited answer as the exact
instruction to follow. Moreover, when computing the gradient with respect to the question vq , an
identical function is applied as when computing the gradient with respect to vθ, which disregards
the difference between the role of these variables in the system.

Semantic backpropagation solves this issue by incorporating dependency and heterogeneity between
neighboring nodes into our formulation. In Section 5.2, we show empirical evidence that this issue
can decrease the optimization performance.

4 RELATED WORKS

4.1 TEXTUAL GRADIENTS FOR PROMPT OPTIMIZATION

The concept of textual gradient was first introduced in the context of prompt optimization as “a local
loss signal which contains information on how to improve the current prompt” (Pryzant et al., 2023).
Furthermore, Pryzant et al. (2023) propose ProTeGi, an optimization method that improves prompt
parameters that are used to instruct an LLM to produce an answer. Given some query-expected-
answer pairs, ProTeGi computes a textual gradient for each pair and applies the textual gradients to
optimize the prompt parameter. By refining the prompt through a series of textual gradient-informed
edits, an improvement is observed over baseline methods including APE (Zhou et al., 2023) and
AutoGPT (Significant Gravitas, 2023). GRAD-SUM (Austin & Chartock, 2024) extends ProTeGi by
introducing a gradient summation procedure to prevent the prompt updates from being too specific to
a query-expected-answer pair. GRAD-SUM also generalizes ProTeGi by incorporating an LLMs-
as-a-judge module (Zheng et al., 2024; Fu et al., 2023; Chen et al., 2024) to relax the expected-
answer requirement of ProTeGi. While textual gradient (Significant Gravitas, 2023), ProTeGi and
GRAD-SUM introduce first-order optimization-like methods to text-based functions, these methods
are not defined for variables not directly connected to the output variable. In addition, we observe
an interesting analogy between optimizing textual prompts using textual gradients and optimizing
numerical prompts using numerical gradients, as done by Schmidhuber (2015), where numerical
prompts are used to query a world model (Schmidhuber, 1990) through a numerical interface.

4.2 OTHER BACKPROPAGATION-INSPIRED METHODS FOR GASO

Trace (Cheng et al., 2024) models the execution trace of computer programs as computational graphs
(i.e., trace graphs). In Trace, the authors introduce OptoPrime as an optimization algorithm similar
to TextGrad and semantic backpropagation that uses a feedback signal propagated backwards in the
trace graph and then used for optimization. For each node v in the trace graph, a subgraph that
contains all nodes u such that there is a path from v through u and then to the output node is as-
signed as feedback to v. Conceptually, this subgraph includes all computations influenced by v that
have an effect on the output. Then, an optimizer (typically based on large language models) lever-
ages the subgraphs as feedback signals to improve the optimizable nodes. Although the subgraph
of v contains all relevant information on how v influences the output, it does not directly indicate
how improvements can be made (i.e., there is no gradient-like information). Without gradient-like
information gained from a backpropagation-like process, an optimizer must itself implicitly try to es-
timate such information—a very non-trivial task. Another issue with the aforementioned subgraphs
is that the size of these graphs scales linearly with the depth of the overall computational graph. This
makes Trace incompatible with large graphs when the optimizer uses transformer-based language
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models (Vaswani, 2017; Schmidhuber, 1992; Schlag et al., 2021). Unlike in Trace, semantic back-
propagation explicitly backpropagates this gradient-like information and is not limited by the same
linear scaling requirement. Zhou et al. (2024)—a concurrent work—introduces a backpropagation-
like method for GASO which includes edge optimization. However, this approach is limited to
chain-structured agentic systems, with edge optimization involving the addition, removal, or rear-
rangement of agents within the chain.

4.3 OTHER METHODS FOR GASO

DSPy (Khattab et al., 2024) attempts to abstract executions of language model pipelines into text
transformation graphs. Each node in such a graph is defined as a declarative module that takes a
type of text as input and transforms it to another type of text as output. These nodes are parameter-
ized by the instructions and sets of demonstrations that are prefixed to the input text before querying
an LLM. DSPy has many implementations of optimizers for finding the best values for these pa-
rameters. Two such optimizers are BootstrapFewshot, which provides few-shot demonstrations for
each step in the pipeline, and COPRO, which does coordinate-ascent optimization on each of the
optimizable instruction prompts in the pipeline. These two optimizers are locally focused, i.e. each
step is only implicitly aware of the entire pipeline.

GPTSwarm’s node optimization method Zhuge et al. (2024) solves GASO when the edges are fixed,
which is the focus of this paper. Compared to COPRO, in each iteration of GPTSwarm’s node
optimization method, each node’s parameter is updated with respect to a local objective function
specific to the node. Such local objective functions are not always available and require an accurate
understanding of the function of each specific node. Optimizing such a local objective function
also limits the possibility that a node could change its function through global optimization. On the
other hand, GPTSwarm offers an edge optimization method that can be used as a complement of our
method when approaching the GASO problem with optimizable edges.

5 EXPERIMENTAL RESULTS

In this section, we evaluate semantic gradient descent on BIG-Bench Hard (BBH) (Suzgun et al.,
2023), GSM8k (Cobbe et al., 2021) (for comparing with TextGrad, Trace’s OptoPrime and DSPy’s
COPRO), BigCodeBench (BCB) (Zhuo et al., 2024), and LIAR (Wang, 2017) (for performing
ablation and evaluating ProTeGi) datasets. Using these datasets allows for multi-domain bench-
marking of our method. In all experiments, the number of forward computations required is
significantly higher than the number of backward computations and optimizer calls. Therefore,
for consideration of the cost-quality balance, unless otherwise specified, we use gpt-4o-mini
(a relative cheap language model) when performing forward execution and gpt-4-turbo

Analyse the statement itself.

How does the party feel about
the statement?

Is the statement consistent with
the job title?

What might be the reason that
this source released the

statement?

How does the state feel about
the statement?

Determine whether the Statement
is a lie (Yes) or not (No) based on

the Context and other information.

Work out an intermediate step
that helps solve the problem.

Work out an intermediate step
that helps solve the problem.

Solve the problem.

Query
Response / Answer

Query Response / Answer

(b) Liar

(a) BBH, GSM8K 

Figure 2: Initial graphs for general question an-
swering on BBH and GSM8K (a) and LIAR (b).
The variables in green (the θs) are optimizable.

when executing the backward computation
or the parameter update function. See Ap-
pendix B.1 for more discussion on the choice
of language models.

5.1 GENERAL QUESTION ANSWERING

In the GSM8K, BBH, and BCB datasets, we
do not provide any a priori information to the
agentic system regarding the task (e.g., we do
not tell the system whether “True” should be
represented by a “1” or by the word “True”).
The computational graph consists of seven vari-
ables with three optimizable parameters, initial-
ized identical across tasks. The initialization is
chosen to be generic. Specifically, the first two
parameters are initialized to “Work out an in-
termediate step that helps solve the problem”
and the last parameter is initialized to “Solve
the problem” (Figure 2, a).
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Tasks. We experiment with the GSM8K, BBH, and BCB datasets. The GSM8K dataset includes
samples of mathematical problems with a numerical answer. The BBH dataset consists of 23 tasks
and 27 subtasks. Mastering all (sub)tasks requires a diverse set of skills, ranging from general
mathematics to formal language processing to geometrical reasoning and more. BCB consists of
diverse coding tasks, with many tasks requiring explicit function calls to external libraries.

Baselines. We compare against TextGrad on all three datasets, and OptoPrime on the GSM8K and
BBH datasets. To make this a fair comparison, we use gpt-4o-mini as the LLM for the GASO
loss evaluations and gpt-4-turbo for the backward computations and parameter updates. In all
instances, we use the official implementations but with minor modifications made to allow them
to work without task-specific assumptions. We detail these modifications in Appendix B.2. We
also compare against the performance of OptoPrime and COPRO on the BBH dataset, as reported
by Cheng et al. (2024). Due to missing implementation details, we were unable to reproduce a
comparable level of performance—even when gpt-4o-mini was fully replaced in the implemen-
tation by gpt-4-turbo. We compare with the reported results on DSPy’s COPRO instead of
BootstrapFewshot since the latter optimizes few-shot demonstration examples, while the methods
looked at here perform prompt optimization.

Experimental Setup. For each of the (sub)tasks, we apply our method and the baselines to a training
set, and report the accuracy in a test set. For GSM8K, the training set consists of 128 randomly
selected samples from the training split, and the test set is GSM8K’s test split. For each of the BBH
(sub)tasks, following Cheng et al. (2024), 20 samples are randomly selected as the training set, and
the rest of the samples are taken as the test set. For BCB, we use the first 50 samples training split
and the rest for testing. We apply four iterations of optimization with GSM8k and BBH, and 12 for
BCB, where an iteration is counted when a new set of parameters is proposed. This proposal may be
integrated or rejected depending on the (as introduced in Section 3.2iteration regardless. This update
gate helps minimize destructive parameter updates and, in our experiments, it is computed using the
training samples. In our method, we set the query distribution D to be the uniform distribution on
the training set. See Appendix B for more details.

Results and Analysis. The full experimental results are shown in Table 1. BBH results are av-
eraged over two categories (NLP and Algorithmic), following the methodology of Suzgun et al.
(2023). Semantic gradient descent performs roughly equal to TextGrad on BCB and the best in all
other instances. See Appendix D for the BBH subtask-wise results. Notably, our method clearly
outperforms OptoPrime as well as COPRO under BBH—even in the setting where OptoPrime and
COPRO are making exclusive use of a much more expensive language model.

Method GSM8K BBH NLP BBH Algorithmic BCB
Semantic Gradient Descent 93.2 82.5 85.6 27.8
TextGrad 78.2 48.7 66.9 27.6
OptoPrime 83.9 42.3 50.4 -
OptoPrime† - 75.8 80.6 -
COPRO† - 73.9 70.0 -

Table 1: Average accuracy of our method on BBH (NLP and Algorithmic categories) and the
GSM8K dataset. The † symbol denotes results originally reported by Cheng et al. (2024).

5.2 SPECIALIZED INITIALIZATION EXPERIMENTS AND ABLATION STUDY

In this section, we perform an ablation study to validate the importance of each component in the
semantic gradient descent pipeline. We look at a more realistic scenario where the variables of the
initial graph are highly specialized. This matches better the contemporary usage of agentic systems,
where the components of the systems are assigned to implement specific and fine-grained functions
(Wang et al., 2024), e.g., considering the question from a particular role’s perspective (Li et al.,
2023). Please also refer to Appendix A for additional ablation experiments using different network
architectures and using a different forward engine.

Task. In the LIAR dataset (Wang, 2017), the task is to decide whether a political statement is a lie or
not. Each sample in the dataset consists of five attributes, i.e., (i) the statement, (ii) the political party

9
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of the speaker, (iii) the job title of the speaker, (iv) the state from which the speaker comes from, and
(v) the source from which this statement is released. This five-attribute structure leads to an intuitive
decomposition of the problem, where each component of an agentic system analyzes an attribute
and then merges the analysis(Figure 2, b). This intuitive decomposition is desirable here as it allows
for a relatively naive yet practically plausible agentic system architecture and prompts. Thus we can
focus our evaluation on the performance of the optimizers. We use the binary classification version
of LIAR as done by Pryzant et al. (2023).Here, the prefix of the response (required to be either “Yes”
or “No”) is used to determine how the agentic system has classified a query.

Experiment Design. Following the aforementioned decomposition strategy, we optimize a graph
of 13 variables, of which six are optimizable parameters. These six optimizable parameters serve as
instructions for an LLM. Five are initialized to guide the LLM in analyzing specific attributes of a
sample, while the last parameter instructs the LLM to formulate a final answer based on the previous
analyses. See Figure 2 for the visualization of the initial graph.

We compare our optimization method with four variants: (1) optimizing without semantic gradients
by removing the feedback (see Implementation 1) as input of the parameter update function; (2)
optimizing one parameter only (running this variant six times with a different parameter each time
and reporting the average); (3) optimizing with semantic gradients computed without conditioning
the neighborhood (i.e., as in Equation (3)), emulating TextGrad in our implementation; and (4)
optimizing without the update gate introduced in Section 3.2, where update gate accepts parameter
updates only if they performs better on a validation set.

Each variant is applied for 8 iterations. We run all the variants five times with different random seeds
except for the variant that optimizes one parameter only. For this variant , we try optimizing each
of the six parameters separately (once each) and report the average of these six optimizations. We
optimize on 50 randomly selected samples from the LIAR training split, as done by Pryzant et al.
(2023). We use these 50 random samples as both the query distribution D and the validation set.
Samples with missing values are filtered out since in this study we are interested in the case where
each of the attributes is analyzed specifically by a component of the system.

Results. Table 2 shows the performance results and their respective standard errors. A noticeable
drop in performance is observed when a component is removed. This supports the minimalism
of semantic gradient descent. For the one instruction variant, we also compare with a best-of-N
method. We observe that the semantic gradient descent outperforms its one instruction variant on
the best-of-N metric. We report the token usage of our method in Appendix B.3.

Method Classification Accuracy (%)
Semantic Gradient Descent 71.2 ± 3.2
No Gradient 66.0 ± 2.8
One Instruction 67.7
Gradient without Neighborhood 63.2 ± 4.1
No Validation 49.2 ± 5.0

Table 2: Ablation study results on the LIAR dataset. The table reports the empirical mean and
standard error of the classification accuracy (i.e., the negative loss plus one). The “one instruction”
variant does not have a corresponding standard error since the optimization results under this cate-
gory are averaged over different optimizable parameters, which are not i.i.d. random variables.

6 CONCLUSION

In this work, we tackled the challenge of optimizing language-based agentic systems by introduc-
ing semantic gradients and semantic backpropagation. These concepts generalize existing credit-
assignment methods, such as reverse-mode automatic differentiation and TextGrad, by incorporating
neighborhood conditioning to compute directional information which can be leveraged to improve
each optimizable component of the system. This framework enabled us to propose semantic gra-
dient descent, effectively solving the Graph-based Agentic System Optimization (GASO) problem.
Altogether, our results indicate that semantic gradients can significantly reduce the manual effort
needed to optimize agentic systems, paving the way for greater scalability in AI solutions.
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A ADDITIONAL ABLATIONS

A.1 EXPERIMENTS WITH DIFFERENT ARCHITECTURES

We experiment with semantic backpropagation on GSM8k when using 2 larger graph variants, each
containing 5 optimizable parameters instead of the reported 3. The first graph is organized as a
network of 2x2x1 optimizable parameters, and the second is organized as a chain. The initialization
is done in the same way described in Section 5.1, where every parameter is initialized to “Work out
an intermediate step that helps solve the problem”, except for the last parameter, which is initialized
to “Solve the problem.” These achieved a performance of 88.3% and 88.4%, respectively, as com-
pared with the original reported performance of 93.2%. While the reported performance is lower
than that of our original architecture, it still outperforms the best results achieved by TextGrad and
OptoPrime.

A.2 EXPERIMENTS WITH DIFFERENT FORWARD ENGINES

The proposed method is expected to scale in power very closely to the underlying model, and so we
would not expect it to perform well on a benchmark if backed by a weak model and using a relatively
small network. Regardless, we expect to see some marginal improvements even in this case. Thus,
to determine if this is indeed the case, we’ve run an ablation experiment with Llama3.1-8b-Instruct.
We observed that our method using Llama led to a performance of 78.77% on GSM8k and 55.3%
on BBH, compared with a performance of 77.41% on GSM8k and 51% on BBH using the model
alone. This implies that the model is a critical part of the performance of these methods (which is
unsurprising) but that our method still improves upon this.
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B EXPERIMENTAL DETAILS

For all experiments with semantic gradient descent, we use a batch size of two and a loss threshold of
0.5. Four optimization iterations are applied for all tasks and methods we experiment in Section 5.1.
See Appendix C.1 for the prompt templates we used in our implementation.

B.1 USE OF LANGUAGE MODELS

The exact versions of language models used are gpt-4o-mini-2024-07-18 when perform-
ing forward execution and gpt-4-turbo-2024-04-09 when executing the backward com-
putation or the parameter update function. gpt-4o-mini-2024-07-18 is a language model
that is more than fifty times cheaper than gpt-4-turbo-2024-04-09 or any other version of
gpt-4-turbo. We choose a cheaper language model for forward computation since for all com-
peting methods in Section 5.1, the forward computation are executed tens or hundreds more times
than backward computation or parameter update function. However, results reported by (Cheng
et al., 2024) that are presented in Section 5.1 are based on gpt-4-0125-preview an early ver-
sion of gpt-4-turbo-2024-04-09which is in the gpt-4-turbo family. Using an expensive
language model for forward computation results in a large increase in the cost for a single experi-
ment.

B.2 BASELINE METHODS

TextGrad. We use TextGrad’s official implementation of prompt optimization with their default
hyperparameters. However, TextGrad frequently fails to learn the format of tasks when a generic ini-
tial prompt such as “Answer the question” is used, resulting in a zero score in most of the (sub)tasks.
To overcome this issue, we set its initial prompt to “Answer the Question. Think step by step. Finish
with an answer to the question wrapped by <answer></answer>.” with a post-processing step
that extracts the content between the answer tags before evaluation.

OptoPrime. We use the official implementation of Trace and its IPython Notebook example on
BBH with reference to Cheng et al. (2024)’s paper. Whenever the official implementation diverges
from the paper, we modify the code to rectify this divergence.There are two initializations presented
by Cheng et al. (2024). We report only results using the COT initialization as this achieves stronger
performance. We adopt the same update gating as in semantic gradient descent, which is also done
by TextGrad’s implementation. We also experimented with a version without an update gate. The
removal of the update gate led to a sharp decline in performance with a score of zero on more than
half the tasks.

B.3 COMPARISON OF TOKEN COUNTS

To determine how much the inclusion of neighbouring information affects the cost of the method,
we calculated the total number of tokens generated for the forward and backward passes when
running the aforementioned experiment on the LIAR dataset. The results of this analysis are shown
in Table 3. While the inclusion of neighbouring information has a relatively inconsequential effect
on token usage, the exclusion of neighbouring information actually leads to lower token usage in the
forward pass.

Neighbor No Neighbor
Forward Input Tokens 273,300 289,850
Forward Output Tokens 150,841 164,652
Backward Input Tokens 4,182 3,811
Backward Output Tokens 2,006 1,277

Table 3: Comparison of token counts with and without neighbors.
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C PROMPTS

C.1 PROMPT TEMPLATES USED IN OUR IMPLEMENTATION

We use the string “The answer should be {desire}.” for external feedback F (Q,A) on the graph
output A given a query Q, where “{desire}” is a placeholder for the target output given by the
dataset. Figures 3 to 6 and 8 to 10 show the Python implementation of the prompt templates used
in our experiments. Specifically, Figure 3 shows the prompt templates for the forward functions for
general question answering, Figure 4 shows the backward functions for general question answer-
ing, Figure 5 shows the forward functions for LIAR, Figure 6 shows the backward functions for
LIAR and Figure 7 for the no neighborhood variant, Figure 8 shows the gradients with respect to
optimizable parameters, Figure 9 shows a replacement of the gradients with respect to optimizable
parameters for the ablation study that the gradients are not used for optimization, and Figure 10
shows the optimizer. We show the resilience of the proposed method to sensible variations of the
prompts in Appendix C.4.

1 f"""Question:
2 {utils.add_indent(self.question.question_str)}
3 """
4 if len(self.pred_statements) != 0:
5 prompt += \
6 f"""
7 Consider the following hints:
8 {utils.add_indent(utils.listing([statement.statement_str for statement in

self.pred_statements]))}
9 """

10 prompt += \
11 f"""
12 Task:
13 {utils.add_indent(self.instruction.instruciton_str)}
14

15 Show your reasoning steps.
16 Finish with an output statement wrapped by <output statement> and </

output statement>.
17 """

Figure 3: Prompt template of forward function for general question answering
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1 f"""A task is performed given a question and some hints.
2

3 Task:
4 {utils.add_indent(self.instruction.instruciton_str)}
5

6 Question:
7 {utils.add_indent(self.question.question_str)}
8

9 Hints:
10 {utils.add_indent(utils.listing([statement.statement_str for statement in

self.pred_statements]))}
11

12 Output attempt in response to the task:
13 {utils.add_indent(self.statement_str)}
14

15 Feedback on the output:
16 {utils.add_indent(utils.listing(feedback))}
17

18 Based on the feedback, how each hint should to be changed?
19 Respond one line per hint. Start with "Hint x" for the xth line.
20 """

Figure 4: Prompt template of backward function for general question answering

1 def template_context(task, problem):
2 return """# Task
3 {task_content}
4

5 # Output format
6 Answer in no more than two sentences.
7

8 # Context
9 {text}

10

11 #Answer""".format(task_content=task, text=problem[’text’])
12

13 def template_final(self, task, problem, inputs):
14 return """# Task
15 {task_content}
16

17 # Output format
18 Answer Yes or No as labels
19

20 # Context
21 {text}
22

23 # Hints
24 {input}
25

26 # Answer""".format(task_content=task, text=problem[’text’], input=inputs)

Figure 5: Prompt template of forward function for LIAR. Function template context is for the first
five intermediate variables, while function template final is for the answer variable.
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1 def fdbk_prompt(final_task, context, hints, answer, desire):
2 return f"""A task is performed given a context and some hints
3 Task:
4 {final_task}
5

6 Context:
7 {context}
8

9 Hints:
10 {hints}
11

12 Answered: {answer}
13

14 However, the desired answer is {desire}.
15

16 How each hint needs to be changed to get the desired output? Respond one
line per hint. Start with "Hint x" for the xth line.

17 """

Figure 6: Prompt template of backward function for LIAR

1 def fdbk_prompt_no_sibling(hint, answer, desire, idx):
2 return f"""A task is performed given a context and some hints.
3 One of the hints is:
4 {hint}
5

6 Answered: {answer}
7

8 However, the desired answer is {desire}.
9

10 How the hint needs to be changed to get the desired output? Respond one
line."""

Figure 7: Prompt template of backward function for LIAR with no neighbor information

1 def example_str(i, input, output, fdbk):
2 return f"""Input:
3 {utils.add_indent(input)}
4

5 My output:
6 {utils.add_indent(output)}
7

8 Feedback received on my output:
9 {utils.add_indent(fdbk)}

10 """

Figure 8: Prompt template of the gradient with respect to optimizable parameters

1 def example_str_no_grad(i, input, output):
2 return f"""## Example {i}
3 Input:
4 {utils.add_indent(input)}
5

6 My output:
7 {utils.add_indent(output)}
8 """

Figure 9: A replacement of prompt template of the gradient with respect to optimizable parameters
for ablation study when the gradient is not used for optimization.
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1 def meta_prefix(task, examples, bad_examples):
2 prompt = f"""I’m trying to write a task-specific question answering

assistant.
3

4 My current prompt is:
5 "{task}"
6 """
7

8 prompt += f"""\nHere are some examples that it did not answer well:
9 {utils.add_indent(examples)}

10 """
11 return prompt
12

13 def opt_prompt(task, examples, include_grad, n, is_final, bad_examples=
True, short_prompt=False):

14 prompt = meta_prefix(task, examples, bad_examples)
15

16 prompt += f"""\nBased on the above examples, write an improved prompt
.

17 Show your reasoning steps.
18 Do not include the keyword "feedback" or any example-specific content in

the prompt.
19 Finish with the improved prompt wrapped by <prompt> and </prompt>{

short_prompt}.
20 """
21 return prompt

Figure 10: Prompt template for the optimizer. opt prompt returns the optimization prompt.
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C.2 EXAMPLES OF PROMPT EVOLUTION

An example showing how the optimization results diverge from an identical initialization is pre-
sented in Figure 11. The same set of initial prompts is broadcast to all 23 subtasks of BIG-Bench
Hard. An example of prompt evolution for a specific task is presented in Figure 12 using the results
of the experiments in Section 5.1.

Work out an intermediate
step that helps solve the
problem.

Work out an intermediate
step that helps solve the
problem.

Initial prompt

Initial prompt

Solve the problem.

Initial prompt

Input Output

Common topology and intialization
for all 23 BBH subtasks

When answering questions
involving a sequence of
statements where characters
make claims about each
other's truthfulness, follow
these steps
...

Analyze the sequence of
statements made by each
character in the scenario. Start
by assuming the truthfulness
...

Determine if the final
statement is true by
considering a
sequence of claims
and counterclaims. Use
any provided hints 
...

Optimized prompts for "Web of lies"

Final iteration

Final iteration

Final iteration

Analyze the SVG path
element provided to determine
the geometric shape it
represents. Start by counting
the number of distinct points in
the path

...

Analyze the SVG path data
provided in the question to
determine the geometric
shape it represents. Review
the sequence of
...

Analyze the provided
SVG path element to
determine which
geometric shape it
represents. Consider
the number of line
segments
...

Optimized prompts for "Geometric shapes"

Final iteration

Final iteration

Final iteration

When answering a question,
carefully read and consider all
the details and conditions
mentioned. Analyze the
context to understand

...

When answering the question,
begin by thoroughly
understanding the context and
specifics provided. Break
down the question into parts
...

Analyze the question
by carefully considering
its context, details, and
any provided hints.
Select the correct
answer
...

Optimized prompts for "Reasoning about
colored objects"

Final iteration

Final iteration

Final iteration

...

Figure 11: Processes of prompt evaluation for different BBH subtasks. The same initial prompts are
set for all 23 subtasks of BIG-Bench Hard. However, the optimized prompts are specialized for each
subtask.
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Work out an intermediate step that helps solve the problem.

When answering questions involving a sequence of statements where
characters make claims about each other's truthfulness, follow these
steps:
1. Start by evaluating the truthfulness of the first statement independently.
2. For each subsequent statement, determine its truth value based on the
truth or falsehood of the previous statements and the content of the current
statement.
3. Use logical deductions to build a chain of reasoning that connects all the
statements.
4. Conclude by using this chain of reasoning to answer the final question
about the truthfulness of the last character's statement.

Work out an intermediate step that helps solve the problem.

...

When answering questions involving a sequence of statements where
characters make claims about each other's truthfulness, follow these
steps:

1. **List All Statements**: Begin by listing every statement made by the
characters in the order they appear.

2. **Initial Truth Assignment**: Assign a tentative truth value to each
character's statement starting with the first one. Assume the first statement
is true and proceed accordingly.

3. **Identify Dependencies**: For each statement, identify which other
statements it depends on. For example, if a character claims another
character is lying, the truth value of the claim depends on the truthfulness
of the other character's statement.

4. **Evaluate Logical Consistency**: Use logical reasoning to evaluate the
consistency of each statement with those it depends on. Check if
assuming a statement as true leads to any contradictions in the
dependencies.

5. **Adjust Truth Values**: If a contradiction arises, reassess and adjust
the truth values of the involved statements. This may involve flipping the
assumed truth value of one or more statements to resolve contradictions.

6. **Iterative Reassessment**: Repeat the evaluation of logical consistency
and adjustment of truth values until no further contradictions are found.

7. **Determine Character Reliability**: Assess the reliability of each
character based on the final truth values of their statements. Characters
whose statements consistently lead to contradictions are less reliable.

8. **Resolve Final Question**: Use the established truths and the reliability
of the characters to answer the final question.

9. **Review and Confirm**: Re-examine the logical flow and consistency of
the analysis to ensure no statement or relationship has been
misinterpreted or overlooked.

Initial prompt

Iteration 1

Iteration N

Final iteration

Analyze the statements made by each character in the scenario. Determine
the truthfulness of the final character's statement based on the logical
implications of the preceding statements. Answer with "Yes" if the final
character tells the truth, otherwise answer with "No".

Initial prompt

... Iteration N

Analyze the sequence of statements made by each character in the
scenario. Start by assuming the truthfulness of the first character's
statement. For each subsequent character, evaluate the truthfulness of
their statement based on the previous character's claims about them. If a
character is claimed to be truthful, assume their statement is true; if they
are claimed to be a liar, assume their statement is false. Continue this
process through all statements. After analyzing all statements in order,
determine the truthfulness of the final character's statement based on the
evaluations. If the final character's statement is true, respond with "Yes"; if
it is false, respond with "No".

Iteration 1

Final iteration

Solve the problem.

Initial prompt

Determine if the final statement is true based on the sequence of claims
and counterclaims. Consider any provided hints to analyze the truthfulness
of the statements. Respond with "Yes" or "No" only.

Iteration 1

... Iteration N

Determine if the final statement is true by considering a sequence of
claims and counterclaims. Use any provided hints as the primary source of
information. If multiple hints are provided, prioritize the first hint that
directly addresses the truthfulness of the final statement. This hint should
be regarded as the decisive truth, even if it contradicts the sequence of
claims or other hints. Respond with "Yes" or "No" only.

Final iteration

Input
Output

Prom
pt evolution

Prom
pt evolution

Prom
pt evolution

Figure 12: Evolution of prompts over the optimization iterations for ”web of lies” subtask of BBH.
Notice, that the initial prompts are generic, and are the same across all 23 subtasks of BIG-Bench
Hard, whereas starting from iteration 1 onwards the prompts become more specialized to the target
task.
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C.3 EXAMPLE OF SEMANTIC GRADIENT

We manually look at the gradients generated in the LIAR task and highlight an example that neatly
demonstrates the importance of integrating neighbor information in the backward function. We can
see that the information that is injected in the prompt that generates all gradients at once makes it so
that important information that was generated by neighbors is taken into account when generating
the feedback for the other neighbors.

In this particular example, we can see that a gradient of a neighbor that affirmatively stated a factual
inaccuracy in the statement was used when generating the feedback for other neighbors. This con-
trasts with the no-sibling setting, where there was no way for the gradient to know that there was a
factual inaccuracy.

FEEDBACK PROMPT WITH NEIGHBOR INFORMATION (TEMPLATE IN FIGURE 6)

A task is performed given a context and some hints

Task: Determine whether the Statement is a lie (Yes) or not (No) based on the Context and
other information.

Context:

Statement: On (the federal minimum wage of) $7.75, you cant even make half the poverty
level.

Job title: U.S. Representative

State: Washington state

Party: democrat

Source: an interview on MSNBC’s ”Politics Nation”

Hints:

1. The statement highlights that the federal minimum wage of $7.75 is insufficient to lift in-
dividuals above half the poverty level, emphasizing the inadequacy of current wage standards.
This reflects a broader concern about economic inequality and the need for wage reform, par-
ticularly from a Democratic perspective.

2. The Democratic party likely feels that the statement highlights the inadequacy of the
federal minimum wage in addressing poverty, emphasizing the need for an increase to
better support low-income workers. They would generally advocate for raising the mini-
mum wage to ensure a living wage for all.

3. Yes, the statement is consistent with the job title of a U.S. Representative, as it reflects
a concern for economic issues affecting constituents. As a Democrat, advocating for higher
wages aligns with party values focused on social justice and economic equity.

4. The U.S. Representative likely released the statement to highlight the inadequacy of the
federal minimum wage in addressing poverty and to advocate for an increase in wages. This
aligns with the Democratic Party’s focus on economic justice and support for worker s’ rights.

5. The state likely feels that the federal minimum wage of $7.75 is insufficient, as it does not
provide a living wage and fails to meet the basic needs of individuals and families. This sen-
timent aligns with the Democratic Party’s advocacy for raising the minimum wage to combat
poverty and support workers.

Answered: No

However, the desired answer is Yes.

How does each hint need to be changed to get the desired output? Respond one line per hint.
Start with ”Hint x” for the xth line.
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GENERATED GRADIENTS WITH NEIGHBOR INFORMATION

Hint 1: Clarify that the federal minimum wage is 7.25, not7.75, and explicitly state that the
claim ”you can’t make half the poverty level” is factually incorrect based on federal poverty
guidelines.

Hint 2: Emphasize that while Democrats advocate for raising the minimum wage, the
specific claim in the statement is demonstrably false because the federal minimum wage
exceeds half the poverty level for a single individual.

Hint 3: Indicate that the job title and party affiliation do not validate the accuracy of the state-
ment, as the claim must be fact-checked against objective standards.

Hint 4: Reframe the intent behind the statement as an exaggeration to emphasize wage inade-
quacy, but note that exaggeration is not aligned with the factual context.

Hint 5: Specify that while Washington state’s stance may favor higher wages, this does not
negate the factual inaccuracy of the claim about making half the poverty level on the federal
minimum wage.

FEEDBACK PROMPT WITHOUT NEIGHBOR INFORMATION (TEMPLATE IN FIGURE 7)

A task is performed given a context and some hints.

One of the hints is: The Democratic party likely feels that the statement highlights the
inadequacy of the federal minimum wage in addressing poverty, emphasizing the need
for an increase to better support low-income workers. They would generally advocate for
raising the minimum wage to ensure a living wage for all.

Answered: No

However, the desired answer is Yes.

How the hint needs to be changed to get the desired output? Respond one line.

GENERATED GRADIENTS WITHOUT NEIGHBOR INFORMATION

Reframe the hint to explicitly state: ”The Democratic party believes the federal minimum
wage must be raised to effectively combat poverty and ensure economic security for low-
income workers, strongly supporting this action as a key policy priority.”
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C.4 EFFECT OF PROMPT REPHRASING

To determine the sensitivity of the proposed method to the choice of prompt, we used GPT-4o
to rephrase the forward and backward prompts for the ablation experiment on the LIAR dataset
reported in Table 2. The alternative forward prompts used are given in Figures 13 to 15 and the
alternative backwards prompts in Figures 16 to 18.

With each of the three alternative forward prompts, the performance on the LIAR dataset was 72%,
68%, and 74%, respectively. With each of the three alternative backward prompts, the performance
on the LIAR dataset was 70%, 72%, and 68%, respectively. This implies that the proposed method
is relatively robust to sensible variations in the prompts.

1 async def forward(self):
2 prompt = \
3 f"""Context Information:
4 {utils.add_indent(self.question.question_str)}
5 """
6 if len(self.pred_statements) != 0:
7 prompt += \
8 f"""
9 Hints to Consider:

10 {utils.add_indent(utils.listing([statement.statement_str for statement in
self.pred_statements]))}

11 """
12 prompt += \
13 f"""
14 Task Description:
15 {utils.add_indent(self.instruction.instruciton_str)}
16

17 Explain your reasoning process in detail.
18 End your response with an output statement enclosed in <output statement>

and </output statement>.
19 """
20 if self.is_final:
21 prompt += self.question.output_format
22 response = (await llm.chat(prompt))[0]
23 statement = utils.parse_tagged_text(response, ’<output statement>’, ’

</output statement>’)[0]
24

25 self.prompt = prompt
26 self.response = response
27 self.statement_str = response if self.is_final else statement

Figure 13: First rephrased prompt template of forward function for LIAR.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1 async def forward(self):
2 prompt = \
3 f"""Background Context:
4 {utils.add_indent(self.question.question_str)}
5 """
6 if len(self.pred_statements) != 0:
7 prompt += \
8 f"""
9 Relevant Hints:

10 {utils.add_indent(utils.listing([statement.statement_str for statement in
self.pred_statements]))}

11 """
12 prompt += \
13 f"""
14 Assigned Task:
15 {utils.add_indent(self.instruction.instruciton_str)}
16

17 Describe your reasoning step by step.
18 Conclude with an output statement enclosed in <output statement> and </

output statement>.
19 """
20 if self.is_final:
21 prompt += self.question.output_format
22 response = (await llm.chat(prompt))[0]
23 statement = utils.parse_tagged_text(response, ’<output statement>’, ’

</output statement>’)[0]
24

25 self.prompt = prompt
26 self.response = response
27 self.statement_str = response if self.is_final else statement

Figure 14: Second rephrased prompt template of forward function for LIAR.
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1 async def forward(self):
2 prompt = \
3 f"""Initial Context:
4 {utils.add_indent(self.question.question_str)}
5 """
6 if len(self.pred_statements) != 0:
7 prompt += \
8 f"""
9 Hints for Consideration:

10 {utils.add_indent(utils.listing([statement.statement_str for statement in
self.pred_statements]))}

11 """
12 prompt += \
13 f"""
14 Task Details:
15 {utils.add_indent(self.instruction.instruciton_str)}
16

17 Provide detailed reasoning for your response.
18 End with an output statement wrapped in <output statement> and </output

statement>.
19 """
20 if self.is_final:
21 prompt += self.question.output_format
22 response = (await llm.chat(prompt))[0]
23 statement = utils.parse_tagged_text(response, ’<output statement>’, ’

</output statement>’)[0]
24

25 self.prompt = prompt
26 self.response = response
27 self.statement_str = response if self.is_final else statement

Figure 15: Third rephrased prompt template of forward function for LIAR.

1 prompt = \
2 f"""A task is provided along with a question and several hints.
3

4 Task Description:
5 {utils.add_indent(self.instruction.instruciton_str)}
6

7 Provided Question:
8 {utils.add_indent(self.question.question_str)}
9

10 List of Hints:
11 {utils.add_indent(utils.listing([statement.statement_str for statement in

self.pred_statements]))}
12

13 Attempted Output:
14 {utils.add_indent(self.statement_str)}
15

16 Review of the Attempt:
17 {utils.add_indent(utils.listing(feedback))}
18

19 Suggest how each hint could be improved based on the feedback.
20 Write one suggestion per hint, starting each line with "Hint x".
21 """

Figure 16: First rephrased prompt template of backward function for LIAR.
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1 prompt = \
2 f"""Below is a task that requires responding to a question using provided

hints.
3

4 Task Details:
5 {utils.add_indent(self.instruction.instruciton_str)}
6

7 Question to Answer:
8 {utils.add_indent(self.question.question_str)}
9

10 Hints Provided:
11 {utils.add_indent(utils.listing([statement.statement_str for statement in

self.pred_statements]))}
12

13 Attempted Solution:
14 {utils.add_indent(self.statement_str)}
15

16 Feedback on the Solution:
17 {utils.add_indent(utils.listing(feedback))}
18

19 For each hint, indicate changes needed based on the feedback.
20 Respond with "Hint x" followed by the suggested improvement.
21 """

Figure 17: Second rephrased prompt template of backward function for LIAR.

1 prompt = \
2 f"""Given a task, a question, and a set of hints, complete the analysis

below.
3

4 Task Specification:
5 {utils.add_indent(self.instruction.instruciton_str)}
6

7 Question Presented:
8 {utils.add_indent(self.question.question_str)}
9

10 Available Hints:
11 {utils.add_indent(utils.listing([statement.statement_str for statement in

self.pred_statements]))}
12

13 Solution Attempt:
14 {utils.add_indent(self.statement_str)}
15

16 Feedback Review:
17 {utils.add_indent(utils.listing(feedback))}
18

19 Suggest improvements for each hint, referring to them as "Hint x" in your
suggestions.

20 Provide one suggestion per hint.
21 """

Figure 18: Third rephrased prompt template of backward function for LIAR.
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D TASK-WISE AND SUBTASK-WISE PERFORMANCE RESULTS

Figure 19 presents the performance results of our method, TextGrad, and OptoPrime on BBH sub-
tasks and GSM8k. GPT-4o-mini is used during the forward pass of all methods and GPT-4-Turbo is
used during the backward pass.
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Figure 19: Scores of OptoPrime, TextGrad and semantic gradient descent (ours) on BBH and
GSM8K. Semantic gradient descent outperforms both OptoPrime and TextGrad on the majority of
BBH subtasks as well as GSM8K. In BBH subtasks “Movie recommendation” and “Salient transla-
tion error detection” semantic gradient descent is the only one that achieves a non-zero score.

27


	Introduction
	Background
	The Graph-based Agentic System Optimization Problem
	Reverse-Mode Automatic Differentiation

	Methods
	Semantic Backpropagation
	Semantic Gradient Descent
	Parameter Update Function
	The Optimization Procedure

	Difference with TextGrad

	Related Works
	Textual Gradients for Prompt Optimization
	Other Backpropagation-Inspired Methods for GASO
	Other Methods for GASO

	Experimental Results
	General Question Answering
	Specialized Initialization Experiments and Ablation Study

	Conclusion
	Additional Ablations
	Experiments with Different Architectures
	Experiments with Different Forward Engines

	Experimental Details
	Use of Language Models
	Baseline Methods
	Comparison of Token Counts

	Prompts
	Prompt templates used in our implementation
	Examples of prompt evolution
	Example of semantic gradient
	Effect of Prompt Rephrasing

	Task-wise and Subtask-wise Performance Results

