Workshop track - ICLR 2018

EXPLOITING LATENT INFORMATION IN RELATIONAL
DATABASES VIA WORD EMBEDDING

Rajesh Bordawekar Oded Shmueli *

IBM T. J. Watson Research Center Computer Science Department
Yorktown Heights, NY 10598, USA Technion, Haifa 32000, Israel
bordaw@us.ibm.com oshmu@cs.technion.ac.il

Bortik Bandyopadhyay *

Computer Science Department,

Ohio State University, Columbus, OH 43210, USA
bandyopadhyay.l4@osu.edu

ABSTRACT

We propose Cognitive Databases, an approach for transparently enabling Artificial
Intelligence (AI) capabilities in relational databases. A novel aspect of our design
is to first view the structured data source as meaningful unstructured text, and then
use the text to build a word embedding model. This model captures the hidden
inter-/intra-column relationships between database tokens of different types such
as numeric values, SQL Dates, and even images. For each database token, the
model includes a vector that encodes contextual semantic relationships. We seam-
lessly integrate the word embedding model into existing SQL query infrastructure
and use it to enable a new class of SQL-based analytics queries called cognitive
intelligence (CI) queries. CI queries use the model vectors to enable complex
queries such as semantic similarity/dissimilarity, inductive reasoning queries such
as analogies and semantic clustering, predictive queries using entities not present
in a database, and, more generally, using knowledge from external sources.

1 INTRODUCTION

Traditionally, relational databases have been used to analyze enterprise datasets that comprise mostly
of well-qualified typed entities (e.g., character(n), decimal, float, or timestamp). However, over the
years, relational databases have been increasingly used to store and process free-formed unstructured
text data (e.g., customer reviews). It is intuitively clear that databases with such unstructured text
entities have a significant amount of latent semantic information. However, columns that contain
different types of data, e.g., strings, numerical values, images, dates, etc., possess significant latent
information in the form of inter- and intra-column relationships. The usual way to utilize this infor-
mation is using SQL and extensions, such as text extensions, or User Defined Functions (UDFs) to
handle exotic data types. However, these extensions are rather limited in their smarts. Specifically,
SQL queries rely on value-based analytics to detect patterns. In addition, the relational data model
neglects many inter- or intra-column relationships. Thus, the traditional SQL queries lack a holistic
view of the underlying relations, and thus are unable to extract and exploit semantic relationships
that are collectively generated by tokens in a database relation.

This paper discusses Cognitive Database (Bordawekar et al.,[2017; Bordawekar & Shmueli, [2017)), a
novel relational database system, which uses word embedding techniques (Mikolov et al.| [2013bjaj
Levy & Goldberg, [2014) to extract latent knowledge from a database table. The generated word-
embedding model captures inter- and intra-column semantic relationships between database tokens
of different types. For each database token, the model includes a vector that encodes contextual
semantic relationships. The cognitive database seamlessly integrates the model into the existing

*Work done while the author was visiting IBM Research.
"Work done while the author was visiting IBM Research.

Workshop track - ICLR 2018

SQL query processing infrastructure and uses it to enable a new class of SQL-based analytics queries
called Cognitive Intelligence (CI) queries. CI queries use the model vectors to enable complex
semantic queries over relational data such as semantic similarity or dissimilarity, inductive reasoning
queries such as analogies or semantic clustering, and predictive queries using entities not present in
a database.

2 COGNITIVE DATABASE DESIGN

In the database context, vectors may be produced by either learning on text transformed and ex-
tracted from the database itself and/or using external text sources, such as wikipedia. Training a
word-embedding model from a relational database requires two stages. The first stage, fextification,
takes a relational table with different SQL types as input and returns an unstructured but meaningful
text corpus consisting of a set of sentences. This transformation allows us to generate a multi-
modal embedding model with uniform semantic representation of different SQL types. In addition
to text tokens, our current implementation supports numeric values and images (we assume that the
database being queried contains a VARCHAR column storing links to the images). We use different
strategies for converting a non-text relational data to text: e.g., values in a numeric column are first
clustered using a standard clustering approch (e.g., K-Means), and then replaced by a text token
that represents the corresponding cluster. For images, one approach classifies images into classes
using a pre-trained model and then represents each image by a string token that represents its class.
Alternatively, one can first extract text features from an image using off-the-shelf image services,
such as IBM Watson Visual Recognition Service (IBM Watson), and then use the extracted features
to train the embedding model.

We use an unsupervised training approach based on the Word2Vec (W2V) (Mikolov, 2013) imple-
mentation to build the word embedding model from the generated text corpus. The text corpus is
organized as a set of English-like sentences, separated by stop words (e.g., newline). Each sentence
correspond to a row in the relational view and used as a neighborhood context during the training
of the word embedding model. Hence, the inferred semantic meaning of the relational entities re-
flect the collective relationships defined by the associated relational view (generated by relational
operations such SELECT, PROJECT, and JOIN.)

Our training implementation builds on the classical W2V implementation, but it varies from the
classical approach in a number of important aspects: (1) A sentence generated from a relational
row is generally not in any natural language such as English. Therefore, W2Vs assumption that the
influence of any word on a nearby word decreases as the word distances increases, is not applicable.
In our implementation, every token in the training set has the same influence on the nearby tokens
in the context. (2) Another consequence is that unlike an English sentence, the last word is equally
related to the first word as to its other neighbors. To enable such relationships for the last word,
the first word can be viewed as its immediate neighbor). (3) For relational data, we provide special
consideration to primary keys, which can be unique. First, the classical W2V discards less frequent
words from computations. In our implementation, every token, irrespective of its frequency, is
assigned a vector. Second, irrespective of the distance, a primary key is considered a neighbor of
every other word in a sentence and included in the neighbor-hood window for each word. Also,
the neighborhood extends via foreign key occurrences of a key value to the row in which that value
is key. (4) Finally, our implementation is designed to enable incremental training, i.e. the training
system takes as input a pre-trained model and a new set of generated sentences, and returns an
updated model. This capability is critical as a database can be updated regularly and one can not
rebuild the model from scratch every time. The use of pre-trained models is an example of transfer
learning, where a model trained on an external knowledge base can be used either for querying
purposes or as a basis of a new model.

3 COGNITIVE INTELLIGENCE QUERIES

The cognitive relational database has been designed as an extension to the underlying relational
database, and thus supports all existing relational features. The cognitive relational database sup-
ports a new class of business intelligence (BI) queries called Cognitive Intelligence (CI) queries. The
CI queries extract information from a relational database based, in part, on the contextual seman-

Workshop track - ICLR 2018

tic relationships among database entities, encoded as meaning vectors. At runtime, the SQL query
execution engine uses various user-defined functions (UDFs) that fetch the trained vectors from the
system table as needed and answer CI queries. The CI queries take relations as input and return a
relation as output. CI queries augment the capabilities of the traditional relational BI queries and
can be used in conjuction with existing SQL operators.

Our current implementation is built on the Apache Spark 2.2.0 infrastructure. It supports four types
of CI SQL queries: similarity queries, inductive reasoning, prediction, and cognitive OLAP. These
queries can be executed over databases with multiple datatypes: we currently support text, numeric,
and image data. The similarity queries compare two relational variables based on similarity or
dissimilarity between the input variables. Each relational variable can be either set or sequence of
tokens. In case of sequences, computation of the nal similarity value takes the ordering of tokens into
account. The similarity value is then used to classify and group related data. The inductive reasoning
queries exploit latent semantic information in the database to reason from part to whole, or from
particular to general (Sternberg & Gardner, [1979; [Rumelhart & Abrahamson), [1973). We support
different types of inductive reasoning queries: analogies, semantic clustering, analogy sequences,
clustered analogies, and odd-man-out. Given an item from an external data corpus (which is not
present in a database), the predictive CI query can identify items from the database that are similar
or dissimilar to the external item by using the externally trained model. Finally, cognitive OLAP
allows SQL aggregation functions such as MAX(), MIN() or AVG() over a set that is identified by
contextual similarity computations on the relational variables.

Input

n00015388_18458 n01316422_255 n01315581_997
. - _

Find all images whose similarity to user
chosen images of [lion, vulture, shark]
using combinedAvgSim UDF is greater
than 0.75. Exclude the input images and
sort the result in descending order of
their similarity score.

SELECT X.imageName,
combinedAvgSim(X.imagename,
’'n00015388_18458.jpeg’,

’n01316422_255.jpeg’,

’n01315581_997.jpeg’) AS SimScore

FROM ImageDataTable X WHERE

(X.imagename <>’n00015388_18458.jpeg’) AND
(X.imagename <>’n00015388_19237.jpeg’) AND
(X.imagename <>’n00015388_18797.jpeg’) AND
(combinedAvgSim(X.imagename,
’'n00015388_18458.jpeg’,

’n01316422_255.jpeg’,

’n01315581_997.jpeg’) > 0.75)

ORDER BY SimScore DESC

i t L
n01604330_12473 n01316422_1684 n01324431_7056
andean_condor, condor glutton_wolverine andean_condor, tayra
sloth_bear

Figure 1: Inductive reasoning CI query for semantic clustering of images

To demonstrate the capabilities of the Cognitive Database, consider a semantic clustering CI query
on a relational multi-modal database (Figure[I]): the original database lists national parks with string
tokens representing image file names, e.g., n00015388_18458. jpeqg. We first create a training
table using text features extracted from the images using the Watson VRS system. The training table
is then used to build a multi-modal word embedding model that captures relationalships between
text and image features. This model is then used to answer CI queries that use both text and image
variables. For example, the goal of query shown in Figure[T]is to identify all images that are similar
to every image in the set of user chosen images. Such images share one or more features with the
input set of images. For this query, we select images of a lion, a vulture, and a shark as the input
set and use the combinedAvgSim () UDF to identify images that are similar to all these three
images. Although the input images display animals from three different classes, they share one
common feature: all three animals are carnivorous. The UDF computes the average vector from the
three input images and then selects those images whose vectors are similar to the computed average
vector with similarity score higher than 0.75. Figure [T| shows the top three image results: andean
condor, glutton wolverine, and tyra. Although these animals are from different classes, they all are
carnivores, a feature that is shared with the animals from the input set.

Workshop track - ICLR 2018

REFERENCES

Rajesh Bordawekar and Oded Shmueli. Using word embedding to enable semantic queries in re-
lational databases. In Proceedings of the 1st Workshop on Data Management for End-to-End
Machine Learning, DEEM’17, pp. 5:1-5:4, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-5026-6. doi: 10.1145/3076246.3076251. URL http://doi.acm.org/10.1145/
3076246.3076251l

Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. Cognitive database: A step towards
endowing relational databases with artificial intelligence capabilities. CoRR, abs/1712.07199,
2017. URL http://arxiv.org/abs/1712.07199.

IBM Watson. Watson visual recognition service. www.ibm.com/watson/services/visual-
recognition/.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representa-
tions. In Proceedings of the Eighteenth Conference on Computational Natural Language Learn-
ing, CoNLL 2014, pp. 171-180, 2014. URL http://aclweb.org/anthology/W/W14/
W1l4-1618.pdf.

Tomas Mikolov. word2vec: Tool for computing continuous distributed representations of words,
2013. github.com/tmikolov/word2vec.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among languages for ma-
chine translation. CoRR, abs/1309.4168, 2013a. URL http://arxiv.org/abs/13009.
4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In 27th Annual Conference on
Neural Information Processing Systems 2013., pp. 3111-3119, 2013b.

David E Rumelhart and Adele A Abrahamson. A model for analogical reasoning. Cog-
nitive Psychology, 5(1):1 - 28, 1973. ISSN 0010-0285. doi: https://doi.org/10.
1016/0010-0285(73)90023-6. URL http://www.sciencedirect.com/science/
article/pi11/0010028573900236.

Robert J Sternberg and Michael K Gardner. Unities in inductive reasoning. Technical Report Tech-
nical rept. no. 18, 1 Jul-30 Sep 79, Yale University, 1979. URL http://www.dtic.mil/
docs/citations/ADA079701l

http://doi.acm.org/10.1145/3076246.3076251
http://doi.acm.org/10.1145/3076246.3076251
http://arxiv.org/abs/1712.07199
http://aclweb.org/anthology/W/W14/W14-1618.pdf
http://aclweb.org/anthology/W/W14/W14-1618.pdf
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
http://www.sciencedirect.com/science/article/pii/0010028573900236
http://www.sciencedirect.com/science/article/pii/0010028573900236
http://www.dtic.mil/docs/citations/ADA079701
http://www.dtic.mil/docs/citations/ADA079701

	Introduction
	Cognitive Database Design
	Cognitive Intelligence Queries

