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ABSTRACT

Multi-agent cooperation is an important feature of the natural world. Many tasks
involve individual incentives that are misaligned with the common good, yet a
wide range of organisms from bacteria to insects and humans are able to over-
come their differences and collaborate. Therefore, the emergence of cooperative
behavior amongst self-interested individuals is an important question for the fields
of multi-agent reinforcement learning (MARL) and evolutionary theory. Here, we
study a particular class of multi-agent problems called intertemporal social dilem-
mas (ISDs), where the conflict between the individual and the group is particularly
sharp. By combining MARL with appropriately structured natural selection, we
demonstrate that individual inductive biases for cooperation can be learned in a
model-free way. To achieve this, we introduce an innovative modular architecture
for deep reinforcement learning agents which supports multi-level selection. We
present results in two challenging environments, and interpret these in the context
of cultural and ecological evolution.

1 INTRODUCTION

Nature shows a substantial amount of cooperation at all scales, from microscopic interactions of
genomes and bacteria to species-wide societies of insects and humans (Maynard Smith & Szath-
mary, 1997). This is in spite of natural selection pushing for short-term individual selfish interests
(Darwin, 1859). In its purest form, altruism can be favored by selection when cooperating individ-
uals preferentially interact with other cooperators, thus realising the rewards of cooperation without
being exploited by defectors (Hamilton, 1964a;b; Dawkins, 1976; Santos et al., 2006; Fletcher &
Doebeli, 2009). However, many other possibilities exist, including kin selection, reciprocity and
group selection (Nowak, 2006; Úbeda & Duéñez-Guzmán, 2011; Trivers, 1971; Nowak & Sigmund,
2005; Wilson, 1975; Smith, 1964).

Lately the emergence of cooperation among self-interested agents has become an important topic
in multi-agent deep reinforcement learning (MARL). Leibo et al. (2017) and Hughes et al. (2018)
formalize the problem domain as an intertemporal social dilemma (ISD), which generalizes matrix
game social dilemmas to Markov settings. Social dilemmas are characterized by a trade-off be-
tween collective welfare and individual utility. As predicted by evolutionary theory, self-interested
reinforcement-learning agents are typically unable to achieve the collectively optimal outcome, con-
verging instead to defecting strategies (Leibo et al., 2017; Pérolat et al., 2017). The goal is to find
multi-agent training regimes in which individuals resolve social dilemmas, i.e., cooperation emerges.

Previous work has found several solutions, belonging to three broad categories: 1) opponent mod-
elling (Foerster et al., 2017; Kleiman-Weiner et al., 2016), 2) long-term planning using perfect
knowledge of the game’s rules (Lerer & Peysakhovich, 2017; Peysakhovich & Lerer, 2018) and
3) a specific intrinsic motivation function drawn from behavioral economics (Hughes et al., 2018).
These hand-crafted approaches run at odds with more recent end-to-end model-free learning algo-
rithms, which have been shown to have a greater ability to generalize (e.g. (Espeholt et al., 2018)).
We propose that evolution can be applied to remove the hand-crafting of intrinsic motivation, similar
to other applications of evolution in deep learning.

Evolution has been used to optimize single-agent hyperparameters (Jaderberg et al., 2017), imple-
ment black-box optimization (Wierstra et al., 2008), and to evolve neuroarchitectures (Miller et al.,
1989; Stanley & Miikkulainen, 2002), regularization (Chan et al., 2002), loss functions (Jaderberg
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et al., 2018; Houthooft et al., 2018), behavioral diversity (Conti et al., 2017), and entire reward func-
tions (Singh et al., 2009). These principles tend to be driven by single-agent search and optimization
or competitive multi-agent tasks. Therefore there is no guarantee of success when applying them in
the ISD setting. More closely related to our domain are evolutionary simulations of predator-prey
dynamics (Yong & Miikkulainen, 2001), which used enforced subpopulations to evolve populations
of neurons which are sampled to form the hidden layer of a neural network.1

To address the specific challenges of ISDs, the system we propose distinguishes between optimiza-
tion processes that unfold over two distinct time-scales: (1) the fast time-scale of learning and (2) the
slow time-scale of evolution (similar to Hinton & Nowlan, 1987). In the former, individual agents
repeatedly participate in an intertemporal social dilemma using a fixed intrinsic motivation. In the
latter, that motivation is itself subject to natural selection in a population. We model this intrinsic
motivation as an additional additive term in the reward of each agent (Chentanez et al., 2005). We
implement the intrinsic reward function as a two-layer fully-connected feed-forward neural network,
whose weights define the genotype for evolution. We propose that evolution can help mitigate this
intertemporal dilemma by bridging between these two timescales via an intrinsic reward function.

Evolutionary theory predicts that evolving individual intrinsic reward weights across a population
who interact uniformly at random does not lead to altruistic behavior (Axelrod & Hamilton, 1981).
Thus, to achieve our goal, we must structure the evolutionary dynamics (Nowak, 2006). We first
implement a “Greenbeard” strategy (Dawkins, 1976; Jansen & van Baalen, 2006) in which agents
choose interaction partners based on an honest, real-time signal of cooperativeness. We term this
process assortative matchmaking. Although there is ecological evidence of assortative matchmaking
(Keller & G. Ross, 1998), it cannot explain cooperation in all taxa (Grafen et al., 1990; Henrich,
2004; Gardner & West, 2010). Moreover it isn’t a general method for multi-agent reinforcement
learning, since honest signals of cooperativeness are not normally observable in the ISD models
typically studied in deep reinforcement learning.

To address the limitations of the assortative matchmaking approach, we introduce an alternative
modular training scheme loosely inspired by ideas from the theory of multi-level (group) selection
(Wilson, 1975; Henrich, 2004), which we term shared reward network evolution. Here, agents
are composed of two neural network modules: a policy network and a reward network. On the
fast timescale of reinforcement learning, the policy network is trained using the modified rewards
specified by the reward network. On the slow timescale of evolution, the policy network and reward
network modules evolve separately from one another. In each episode every agent has a distinct
policy network but the same reward network. As before, the fitness for the policy network is the
individual’s reward. In contrast, the fitness for the reward network is the collective return for the
entire group of co-players. In terms of multi-level selection theory, the policy networks are the
lower level units of evolution and the reward networks are the higher level units. Evolving the two
modules separately in this manner prevents evolved reward networks from overfitting to specific
policies. This evolutionary paradigm not only resolves difficult ISDs without handcrafting but also
points to a potential mechanism for the evolutionary origin of social inductive biases.

2 METHODS

We varied and explored different combinations of parameters, namely: (1) environments {Harvest,
Cleanup}, (2) reward network features {prospective, retrospective}, (3) matchmaking {random,
assortative}, and (4) reward network evolution {individual, shared, none}. We describe these in
the following sections.

2.1 INTERTEMPORAL SOCIAL DILEMMAS

In this paper, we consider Markov games (Littman, 1994) within a MARL setting. Specifically we
study intertemporal social dilemmas (Leibo et al., 2017; Hughes et al., 2018), defined as games in
which individually selfish actions produce individual benefit on short timescales but have negative
impacts on the group over a longer time horizon. This conflict between the two timescales char-
acterizes the intertemporal nature of these games. The tension between individual and group-level
rationality identifies them as social dilemmas (e.g. the famous Prisoner’s Dilemma).

1See also Potter & Jong (2000) and Panait & Luke (2005) for reviews of other evolutionary approaches to
cooperative multi-agent problems.
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Figure 1: Screenshots from (a) the Cleanup game, (b) the Harvest game. The size of the agent-
centered observation window is shown in (b). The same size observation was used in all experiments.

We consider two dilemmas, each implemented as a partially observable Markov game on a 2D grid
(see Figure 1). In the Cleanup game, agents tried to collect apples (reward +1) that spawned in a
field at a rate inversely related to the cleanliness of a geographically separate aquifer. Over time, this
aquifer filled up with waste, lowering the respawn rate of apples linearly, until a critical point past
which no apples could spawn. Episodes were initialized with no apples present and zero spawning,
thus necessitating cleaning. The dilemma occurred because in order for apples to spawn, agents
must leave the apple field and clean, which conferred no reward. However if all agents declined
to clean (defect), then no rewards would be received by any. In the Harvest game, again agents
collected rewarding apples. The apple spawn rate at a particular point on the map depended on the
number of nearby apples, falling to zero once there were no apples in a certain radius. There is
a dilemma between the short-term individual temptation to harvest all the apples quickly and the
consequential rapid depletion of apples, leading to a lower total yield for the group in the long-term.
For more details, see the Appendix.

2.2 MODELING SOCIAL PREFERENCES AS INTRINSIC MOTIVATIONS

In our model, there are three components to the reward that enter into agents’ loss functions (1) total
reward, which is used for the policy loss, (2) extrinsic reward, which is used for the extrinsic value
function loss and (3) intrinsic reward, which is used for the intrinsic value function loss.

The total reward for player i is the sum of the extrinsic reward and an intrinsic reward as follows:

ri(si, ai) = rEi (si, ai) + ui(fi) . (1)

The extrinsic reward rEi (s, a) is the environment reward obtained by player i when it takes action ai
from state si, sometimes also written with a time index t. The intrinsic reward u(f) is an aggregate
social preference across features f and is calculated according to the formula,

ui(fi|θ) = vTσ
(
WTfi + b

)
, (2)

where σ is the ReLU activation function, and θ = {W,v,b} are the parameters of a 2-layer neural
network with 2 hidden nodes. These parameters are evolved based on fitness (see Section 2.3). The
elements of v = (v1, v2) can be seen to approximately correspond to a linear combination of the
coefficients related to advantagenous and disadvantagenous inequity aversion mentioned in Hughes
et al. (2018), which were found via grid search in this previous work, but are here evolved.

The feature vector fi is a player-specific quantity that other agents can transform into intrinsic reward
via their reward network. Each agent has access to the same set of features, with the exception that
its own feature is demarcated specially. The features themselves are a function of recently received
or expected future (extrinsic) reward for each agent. In Markov games the rewards received by
different players may not be aligned in time. Thus, any model of social preferences should not be
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overly influenced by the precise temporal alignment of different players’ rewards. Intuitively, they
ought to depend on comparing temporally averaged reward estimates between players, rather than
instantaneous values. Therefore, we considered two different ways of temporally aggregating the
rewards.
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Figure 2: (a) Agent Aj adjusts policy πj(s, a|φ) using off-policy importance weighted actor-critic
(V-Trace) (Espeholt et al., 2018) by sampling from a queue with (possibly stale) trajectories recorded
from 500 actors acting in parallel arenas. (b) The architecture includes intrinsic and extrinsic value
heads, a policy head, and evolution of the reward network.

The retrospective method derives intrinsic reward from whether an agent judges that other agents
have been actually (extrinsically) rewarded in the recent past. The prospective variant derives in-
trinsic reward from whether other agents are expecting to be (extrinsically) rewarded in the near
future.2 For the retrospective variant, fij = etj , where the temporally decayed reward etj for the
agents j = 1, . . . , N are updated at each timestep t according to

etj = η et−1
j + rE,t

j , (3)

and η = 0.975. The prospective variant uses the value estimates V est
j for fij and has a stop-gradient

before the reward network module so that gradients don’t flow back into other agents.

2.3 ARCHITECTURE AND TRAINING

We used the same training framework as in Jaderberg et al. (2018), which performs distributed asyn-
chronous training in multi-agent environments, including population-based training (PBT) (Jader-
berg et al., 2017). We trained a population of 50 agents3 with policies {πi}, from which we sampled
5 players in order to populate each of 500 arenas running in parallel. Within each arena, an episode
of the environment was played with the sampled agents, before resampling new ones. Agents were
sampled using one of two matchmaking processes (described in more detail below). Episode trajec-
tories lasted 1000 steps and were written to queues for learning, from which weights were updated
using V-Trace (Figure 2(a)). More details are in the Appendix.

The set of weights evolved included learning rate, entropy cost weight, and reward network weights
θ4. The parameters of the policy network φ were inherited in a Lamarckian fashion as in (Jaderberg
et al., 2017). Furthermore, we allowed agents to observe their last actions ai,t−1, last intrinsic
rewards (rEi,t−1(si, ai)), and last extrinsic rewards (ui,t−1(fi)) as input to the LSTM in the agent’s
neural network.

2Our terms prospective and retrospective map onto the terms intentional and consequentialist respectively
as used by Lerer & Peysakhovich (2017); Peysakhovich & Lerer (2018).

3Similar to as in (Espeholt et al., 2018) we distinguish between an “agent” which acts in the environment
according to some policy, and a “learner” which updates the parameters of a policy. In principle, a single
agent’s policy may depend on parameters updated by several separate learners.

4We can imagine that the reward weights are simply another set of optimization hyperparameters since they
enter into the loss.
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Figure 3: (a) Agents assigned and evolved with individual reward networks. (b) Assortative match-
making, which preferentially plays cooperators with other cooperators and defectors with other de-
fectors. (c) A single reward network is sampled from the population and assigned to all players,
while 5 policy networks are sampled and assigned to the 5 players individually. After the episode,
policy networks evolve according to individual player returns, while reward networks evolve ac-
cording to aggregate returns over all players.

The objective function was identical to that presented in Espeholt et al. (2018) and comprised three
components: (1) the value function gradient, (2) policy gradient, and (3) entropy regularization,
weighted according to hyperparameters baseline cost and entropy cost (see Figure 2(b)).

Evolution was based on a fitness measure calculated as a moving average of total episode return,
which was a sum of apples collected minus penalties due to tagging, smoothed as follows:

F i
j = (1− ν)F i−1

j + νRi
j , (4)

where ν = 0.001 and Ri
j is the return obtained on episode i by agent j (or reward network j in the

case of the shared reward network evolution (see Section 2.5 and Appendix for details).

2.4 RANDOM VS. ASSORTATIVE MATCHMAKING

Matches were determined according to two methods: (1) random matchmaking and (2) assortative
matchmaking. Random matchmaking simply selected uniformly at random from the pool of agents
to populate the game, while cooperative matchmaking first ranked agents within the pool according
to a metric of recent cooperativeness, and then grouped agents such that players of similar rank
played with each other. This ensured that highly cooperative agents played only with other cooper-
ative agents, while defecting agents played only with other defectors. For Cleanup, cooperativeness
was calculated based on the amount of steps in the last episode the agent chose to clean. For Harvest,
it was calculated based on the difference between the the agent’s return and the mean return of all
players, so that having less return than average yielded a high cooperativeness ranking. Coopera-
tive metric-based matchmaking was only done with either individual reward networks or no reward
networks (Figure 3(b)). We did not use cooperative metric-based matchmaking for our multi-level
selection model, since these are theoretically separate approaches.

2.5 INDIVIDUAL VS. SHARED REWARD NETWORKS

Building on previous work that evolved either the intrinsic reward (Jaderberg et al., 2018) or the en-
tire loss function (Houthooft et al., 2018), we separately evolved the reward network within its own
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population, thereby allowing different modules of the agent to compete only with like components.
This allowed for independent exploration of hyperparameters via separate credit assignment of fit-
ness and thus considerably more of the hyperparameter landscape could be explored compared with
using only a single pool. In addition, reward networks could be randomly assigned to any policy
network, and so were forced to generalize to a wide range of policies. In a given episode, 5 separate
policy networks were paired with the same reward network, which we term a shared reward network.
In line with (Jaderberg et al., 2017), the fitness determining the copying of policy network weights
and evolution of optimization-related hyperparameters (entropy cost and learning rate) were based
on individual agent return. By contrast, the reward network parameters were evolved according to
fitness based on total episode return across the group of co-players (Figure 3(c)).

This contribution is distinct from previous work which evolved intrinsic rewards (e.g. Jaderberg
et al., 2018) because (1) we evolve over social features rather than a remapping of environmental
events, and (2) reward network evolution is motivated by dealing with the inherent tension in ISDs,
rather than merely providing a denser reward signal. In this sense it’s closer to evolving a form
of communication for social cooperation, rather than learning reward-shaping in a sparse-reward
environment. We allow for multiple agents to share the same components, and as we shall see,
in a social setting, this winds up being critical. Shared reward networks provide a biologically
principled method that mixes between group fitness on a long timescale and individual reward on a
short timescale. This contrasts with hand-crafted means of aggregation, as in previous work (Chang
et al., 2004; Mataric, 1994).

3 RESULTS
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Figure 4: Total episode rewards, aggregated over players. (a), (b): Comparing retrospective
(backward-looking) reward evolution with assortative matchmaking and PBT-only baseline in
Cleanup (a) and Harvest (b). (c), (d): Comparing prospective (forward-looking) with retrospec-
tive (backward-looking) reward evolution in Cleanup (c) and Harvest (d). The black dotted line
indicates performance from Hughes et al. (2018). The shaded region shows standard error of the
mean, taken over the population of agents.

As shown in Figure 4, PBT without using an intrinsic reward network performs poorly on both
games, where it asymptotes to 0 total episode reward in Cleanup and 400 for Harvest (the number
of apples gained if all agents collect as quickly as they can).

Figures 4(a) and (b) compare random and assortative matchmaking with PBT and reward networks
using retrospective social features. When using random matchmaking, individual reward network
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agents perform no better than PBT on Cleanup, and only moderately better at Harvest. Hence there
is little benefit to adding reward networks over social features if players have separate networks,
evolved selfishly. The assortative matchmaking experiments used either no reward network (u(f)
= 0) or individual reward networks. Without a reward network, performance was the same as the
PBT baseline. With individual reward networks, performance was very high, indicating that both
conditioning the internal rewards on social features and a preference for cooperative agents to play
together were key to resolving the dilemma. On the other hand, shared reward network agents per-
form as well as assortative matchmaking and the handcrafted inequity aversion intrinsic reward from
(Hughes et al., 2018), even using random matchmaking. This implies that agents didn’t necessar-
ily need to have immediate access to honest signals of other agents’ cooperativeness to resolve the
dilemma; it was enough to simply have the same intrinsic reward function, evolved according to
collective episode return.

Figures 4(c) and (d) compare the retrospective and prospective variants of reward network evolution.
The prospective variant, although better than PBT when using a shared reward network, generally
results in worse performance and more instability. This is likely because the prospective variant
depends on agents learning good value estimates before the reward networks become useful, whereas
the retrospective variant only depends on environmentally provided reward and thus does not suffer
from this issue.
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Figure 5: Social outcome metrics for Harvest. (a) Sustainability. (b) Equality. (c) Total amount of
tagging. The shaded region shows the standard error of the mean.

We next plot various social outcome metrics in order to better capture the complexities of agent
behavior (see Figure 5 for Harvest, see Appendix for Cleanup). Sustainability measures the average
time step on which agents received positive reward, averaged over the episode and over agents. Fig-
ure 5(a) shows that having no reward network results in players collecting apples extremely quickly,
compared with much more sustainable behavior with reward networks. Equality is calculated as
E(1−G(R)), where G(R) is the Gini coefficient over individual returns. Figure 5(b) demonstrates
that having the prospective version of reward networks tends to lead to lower equality, while ret-
rospective variant has very high equality. Tagging measures the average number of times a player
fined another player throughout the episode. Figure 5(c) shows that there is a higher propensity for
tagging when using either a prospective reward network or an individual reward network, compared
to the retrospective shared reward network. This explains the performance shown in Figure 4.

Finally, we can directly examine the weights of the final retrospective shared reward networks which
were best at resolving the ISDs. Interestingly, the final weights evolved in the second layer suggest
that resolving each game might require a different set of social preferences. In Cleanup, one of
the final layer weights v2 evolved to be close to 0, whereas in Harvest, v1 and v2 evolved to be of
large magnitude but opposite sign. We can see a similar pattern with the biases b. We interpret this
to mean that Cleanup required a less complex reward network: it was enough to simply find other
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Figure 6: Distribution of layer 2 weights and biases of evolved retrospective shared reward network
at 1.5× 108 training steps for (a) Cleanup, and (b) Harvest.

agents’ being rewarded as intrinsically rewarding. In Harvest, however, a more complex reward
function was perhaps needed in order to ensure that other agents were not over-exploiting the apples.
We found that the first layer weights W tended to take on arbitrary (but positive) values. This
is because of random matchmaking: co-players were randomly selected and thus there was little
evolutionary pressure to specialize these weights.

4 DISCUSSION

Real environments don’t provide scalar reward signals to learn from. Instead, organisms have de-
veloped various internal drives based on either primary or secondary goals (Baldassarre & Mirolli,
2013). Here we examined intrinsic rewards based on features derived from other agents in the envi-
ronment. In accord with evolutionary theory (Axelrod & Hamilton, 1981; Nowak, 2006), we found
that naı̈vely implementing natural selection via genetic algorithms did not lead to the emergence of
cooperation. Furthermore, assortative matchmaking was sufficient to generate cooperative behavior
in cases where honest signals were available. Finally, we proposed a new multi-level evolutionary
paradigm based on shared reward networks that achieves cooperation in more general situations.

Why does evolving intrinsic social preferences promote cooperation? Firstly, evolution ameliorates
the intertemporal choice problem by distilling the long timescale of collective fitness into the short
timescale of individual reinforcement learning, thereby improving credit assignment between selfish
acts and their temporally displaced negative group outcomes (Hughes et al., 2018). Secondly, it mit-
igates the social dilemma itself by allowing evolution to expose social signals that correlate with, for
example, an agent’s current level of selfishness. Such information powers a range of mechanisms for
achieving mutual cooperation like competitive altruism (Hardy & Van Vugt, 2006), other-regarding
preferences (Cooper & Kagel, 2016), and inequity aversion (Fehr & Schmidt, 1999). In accord, lab-
oratory experiments show that humans cooperate more readily when they can communicate (Ostrom
et al., 1992; Janssen et al., 2010).

The shared reward network evolution model was inspired by multi-level selection; yet it does not
correspond to the prototypical case of that theory since its lower level units of evolution (the pol-
icy networks) are constantly swapping which higher level unit (reward network) they are paired
with. Nevertheless, there are a variety of ways in which we see this form of modularity arise in na-
ture. For example, free-living microorganisms occasionally form multi-cellular structures to solve a
higher order adaptive problem, like slime mold forming a spore-producing stalk for dispersal (West
et al., 2006), and many prokaryotes can incorporate plasmids (modules) found in their environment
or received from other individuals as functional parts of their genome, thereby achieving cooper-
ation in social dilemmas (Griffin et al., 2004; McGinty et al., 2011). Alternatively, in humans a
reward network may represent a shared “cultural norm”, with its fitness based on cultural informa-
tion accumulated from the groups in which it holds sway. In this way, the spread of norms can occur
independently of the success of individual agents (Boyd & Richerson, 2009).

For future work, we suggest investigating alternative evolutionary mechanisms for the emergence
of cooperation, such as kin selection (Griffin & West, 2002) and reciprocity (Trivers, 1971). It
would be interesting to see whether these lead to different weights in a reward network, potentially
hinting at the evolutionary origins of different social biases. Along these lines, one might consider
studying an emergent version of the assortative matchmaking model along the lines suggested by
Henrich (2004), adding further generality and power to our setup. Finally, it would be fascinating
to determine how an evolutionary approach can be combined with multi-agent communication to
produce that most paradoxical of cooperative behaviors: cheap talk.
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A ENVIRONMENT DETAILS AND ACTION SPACE

All episodes last 1000 steps, and the total size of the playable area is 25×18 for Cleanup and 36×16
for Harvest. Games are partially observable in that agents can only observe via a 15×15 RGB
window, centered on their current location. The action space consists of moving left, right, up, and
down, rotating left and right, and the ability to tag each other. This action has a reward cost of
1 to use, and causes the player tagged to lose 50 reward points, thus allowing for the possibility of
punishing free-riders (Oliver, 1980; Gürerk et al., 2006). The Cleanup game has an additional action
for cleaning waste.

B DETAILS OF TRAINING

Training was done via joint optimization of network parameters via SGD and hyperparame-
ters/reward network parameters via evolution in the standard PBT setup. Gradient updates were
applied for every trajectory up to a maximum length of 100 steps, using a batch size of 32. Opti-
mization was via RMSProp with epsilon=10−5, momentum=0, decay rate=0.99, and an RL discount
factor of 0.99. The baseline cost weight (see Mnih et al. (2016)) was fixed at 0.25, and the entropy
cost was sampled from LogUniform(2 × 10−4,0.01) and evolved throughout training using PBT.
The learning rates were all initially set to 4× 10−4 and then allowed to evolve.

PBT uses evolution (specifically genetic algorithms) to search over a space of hyperparameters rather
than manually tuning or performing a random search, resulting in an adaptive schedule of hyperpa-
rameters and joint optimization with network parameters learned through gradient descent Jaderberg
et al. (2017).

There was a mutation rate of 0.1 when evolving hyperparameters, using either multiplicative per-
turbations of ±20% for entropy cost and learning rate, and additive perturbation of ±0.1 for reward
network parameters. We implemented a burn-in period for evolution of 4×106 agent steps, to allow
network parameters and hyperparameters to be used in enough episodes for an accurate assessment
of fitness before evolution.
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Figure 7: Social outcome metrics for Cleanup. (a) Sustainability. (b) Equality. (c) Total amount of
tagging. Shaded region = SOM.
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