Learning HTN Methods with Preference from HTN Planning Instances

Zhanhao Xiao?, Hai Wan *%, Hankui Hankz Zhuo?, Andreas Herzig", Laurent Perrussel° and Peilin Chen®

4School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
PIRIT, CNRS, Toulouse, France
“University of Toulouse, Toulouse, France

Abstract

The hierarchical task network (HTN) planning technique is
used in a growing number of real-world applications. How-
ever in many domains, such as the logistics domain, as there
exist thousands of cases, it is difficult and time-consuming
for humans to specify all HTN methods to cover all desirable
plans. This suggests that it is important to learn HTN
methods to accomplish the tasks via decomposition. The
traditional HTN-method learning approaches require com-
plete executable plans and annotated tasks, which are often
difficult to acquire in real-world applications. In this paper,
we propose a novel framework to learn HTN methods from
HTN instances with incomplete method sets and without
annotated tasks. Besides, previous approaches demand total
orders on the subtasks in the methods while our approach is
capable of learning methods with partial orders. To reduce
the number of methods learned, we consider priorities on
methods and compute the minimal set of methods based on
prioritized preferences. By taking experiments on three well-
known planning domains, we demonstrate that our approach
is effective, especially on solving new HTN problems.

Introduction

The hierarchical task network (HTN) planning technique
(Erol et al. 1994) is increasingly used in a number of real-
world applications (Lin ez al. 2008; Behnke et al. 2019). In
the real-world logistics domain, such as Amazon and DHL
Global Logistics, the shipment of packages is arranged via
decomposition into a more detailed shipment arrangement
in a top-down way according to the predefined decomposi-
tion methods. In practice, there exist a vast number of cases
occurring, such as the delay caused by the weather, leading
that it is difficult and time-consuming for humans to find all
complete methods for all actions. This suggests that it is im-
portant to learn methods to help humans to improve the HTN
domain.

Normally the domain experts have partially hierarchical
domain knowledge, which possibly is not sufficient to cover
all desirable solutions (Kambhampati et al. 1998). Different
from classical planning which pursues an executable plan to

*Corresponding author.
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

achieve the declarative goal, the solution to the HTN plan-
ning problem requires to consider the hierarchical proce-
dural goals, which are given by HTN methods. With par-
tially hierarchical domain knowledge, a solution cannot be
found via decomposition according to the given methods.
One main reason lies in that the given method set is incom-
plete, which includes at least an incomplete method lacking
subtasks. Keeping the hierarchical procedural knowledge,
Geier and Bercher (2011) proposed a hybrid planning for-
malization, HTN planning with task insertion (TIHTN plan-
ning), to allow generating plans via decomposing tasks ac-
cording to the methods but also inserting tasks from outside
the given methods. The following example shows an incom-
plete method set.

Example 1. Consider an example in the logistics do-
main, suppose every task has only one method and a de-
composition tree is shown in Figure 1. The initial task
ship(pkgl, whA, shopB) is to ship a package from city A to
city B and it has a method: to ship the package from the
warehouse to the airport by truck, from city A to city B by
plane and from the airport to the shop by truck. But in case
the plane is not in the airport of city A, then the air trans-
portation task cannot be accomplished. When arranging the
plane to airport A, fly(planel, airpA), is done before load-
ing to the plane, it generates an executable plan. If it is not
allowed to insert actions, there is no plan to achieve the task
ship.

Actually, the plan with the inserted tasks offers a reference
to accomplish the compound tasks, we refine the method
by adding the inserted tasks. For example, the method of
airShip is refined by adding fly as its subtask. By refining
methods, we obtain new methods which generate the miss-
ing tasks, resulting in a new decomposition tree.

In practice, the missing of subtasks happens more likely
on the methods of some compound tasks than on the meth-
ods of some other compound tasks. For example, the task
ship is decomposed into the inter-city shipment and the
intra-city shipment, while decomposing the task airShip
varies with the place where the plane stays. It leads to a pri-
ority on the methods: some methods have a high priority
to be refined. An excess of methods learned will slow down
problem-solving, so we hope to learn as few refined methods

ship(pkgl,whA,shopB)

cityShip(pkgl,whA airpA)

-
-
-
-
-

unload -

load drive

a
fly(planel,airpA) load(pkgl,planel)

airShip(pkgl,airpA,airpB)

cityShip(pkgl,airpB,shopB)

load drive unload

fly unload

Figure 1: This is an Example of a decomposition tree from an incomplete HTN method set. The initial task ship(pkgl, whA, shopB) is
decomposed into a sequence of primitive tasks (the black leaves) according to the original methods. But when the planel is not in airport
A, the sequence is not executable. It becomes executable if arranging plane 1 to airport A before loading the package, which implies that

fly(planel, airpA) should be considered as a subtask of airShip.

as possible. The task is however challenging, as tasks can be
inserted in various methods and an exponential number of
method sets need to be considered.

The traditional approaches to learning HTN methods,
such as (Hogg et al. 2008; Zhuo et al. 2014; Lotinac and Jon-
sson 2016), only concentrate on declarative goals and omit
procedural knowledge obtained from the domain designer,
which cannot be replaced simply by declarative goals. For
example, every package needs a security check before being
uploaded into the plane. If the action model is not complete,
such as the ‘check’ action has not the effect ‘checked’, the
declarative goal may not capture it. Besides, the approaches
(Hogg et al. 2008; Zhuo et al. 2014) require the annotated
preconditions and effects of tasks, which omit the hierarchi-
cal procedural goals and only consider the declarative goals
like classical planning, so they require a complete executable
plan as input. Whereas it is not a simple task to obtain com-
plete plans, particularly when it involves thousands of situ-
ations. Furthermore, in many domains, it is difficult to ver-
ify the correctness of the annotations of tasks when they are
taken as input. In this paper, we propose a novel framework
to learn HTN methods from HTN instances with an incom-
plete method set, which always cannot generate executable
plans only via decomposition. Besides, previous approaches
restrict the tasks in the methods to be totally ordered, while
we allow them to be partially ordered. Last but not least, we
consider a prioritized preference on the methods learned.

Our contributions are listed as follows. First, we propose
an approach to learning new methods by refining the orig-
inal methods based on decomposition trees with task in-
sertion. Second, we give a framework METHODLEARN to
learn HTN methods from HTN instances with an incom-
plete method set. To reduce the number of methods learned,
the method set learned by METHODLEARN is minimal w.r.t.
a given prioritization. Third, we take experiments on three
well-known domains and compare the percentage of solving
new problems on our approach with method sets of differ-
ent incompleteness and a classical learning approach, HTN-
MAKER (Hogg et al. 2008). The experiment result shows
that our approach is effective, especially on solving new
HTN problems.

Related Work

Besides those we mentioned above, there have been action
model learning approaches related with our work. Garland et

al. (2001) proposed an approach to construct and maintain
hierarchical task models from a set of annotated examples
provided by domain experts. Similar to the annotated tasks,
obtaining these annotated examples is difficult and needs a
lot of human effort. Our work also is related to the works
on learning the precondition of HTN methods (Ilghami et
al. 2005; Xu and Muifioz-Avila 2005), which take the hierar-
chical relationships between tasks, the action models, and a
complete description of the intermediate states as input. The
similar work also includes (Nejati ef al. 2006) and (Reddy
and Tadepalli 1997), which used means-end analysis to learn
structures and preconditions of the input plans. The precon-
dition and effect of primitive actions can also be learned in
(Zhuo et al. 2009). All these approaches to learning the pre-
condition of methods require a complete method set as input.

The work on hybrid planning which combines classical
planning and HTN planning is also related with our work.
By relaxing the restriction of generating plans only via de-
composition, Geier and Bercher (2011) proposed proposi-
tional TIHTN planning which allows to inserting primitive
tasks to obtain executable plans. Later Alford er al. (2015)
generalized it into lifted TIHTN planning by allowing vari-
ables in actions and predicates. In this paper, we focus on
HTN planning and aim to learn HTN methods with the help
of TIHTN planning.

Problem Definition

We adapt the definitions of propositional HTN planning
(Geier and Bercher 2011). For a propositional language L,
a state is a subset of the propositions in £. In HTN plan-
ning, actions', noted A, are classified into two categories:
the actions the agent can execute directly are called primi-
tive actions or operators, noted O, while the rest are called
compound actions, noted C. Every primitive action o is a
tuple (pre(0), add(0), del(0)) where pre(o) is a conjunction
of literals called its precondition; add (o) and del(o) are sets
of propositional symbols called its positive and negative ef-
fect. A primitive action o is applicable in a state s if s =
pre(o), which results in a state (s, 0)=(s\del(0))Uadd(0).
A sequence of primitive actions o01,...,0,, is executable in
a state sq iff there is a state sequence si,...,S, such that
Vlgign, ’V(Sifl, OZ‘):Si and 0; is applicable in Si—1.

Given a set R, we use R to denote the set of all sequences
over R and use |R| to denote the cardinality of R. For its

T“Action” is also called “task name”.

subset X and a function f : R — S, its restriction to X
is flx = {(r,s) € f | r € X}. For a binary relation @ C
Rx R, we define its restriction to X by Q|x = QN(X xX).
Task networks. A task network is a tuple tn=(T, <, &)
where 7' is a set of tasks, <C T x T is a set of ordering
constraints over T and v : T" — A labels every task with
an action.

Every task is associated to an action and the ordering con-
straints restrict the execution order of tasks. A task ¢ is called
primitive if a(t) is primitive, otherwise called compound. A
task network is called primitive iff it contains only primitive
tasks.

We say two task networks tn = (7', <,«) and tn’ =

(T',<', &) are isomorphic, denoted by tn = tn’, if and
only if there exists a bijection f : T' — T’ such that for
all t1,to€T, t1<tq iff f(tl)-</f(t2) and Oé(tl) = O/(f(tl)),
a(ty)=a'(f(t2)).
HTN methods. Compound actions cannot be directly exe-
cuted and need to be decomposed into a task network ac-
cording to HTN methods. Each HTN method m=(c,tn,,)
consists of a compound action ¢ and a task network tn,,
whose inner tasks are called subtasks. Note that a compound
action ¢ may have more than one decomposition method.

In a task network, the decomposition is done by selecting

a compound task, adding its subtask network and replacing
it. The constraints about the decomposed task ¢ are prop-
agated to its subtasks: the tasks before ¢ are before all its
subtasks and the tasks after ¢ are after all its subtasks.
HTN problems. An HTN planning domain is a tuple ® =
(L£,0,C, M) where M is a set of decomposition methods
and O NC = (. We call a pair (so, to) an instance where s
is the initial state and % is the initial task. An HTN problem
is a tuple P = (D, so, to)-

In different literature, the solution to the HTN problem
has different forms: mostly a plan (such as (Erol et al
1994)), a primitive task network (such as (Behnke et al
2017)) and a list of decomposition trees (such as (Zhuo et
al. 2014)). In this paper, we consider a solution to the HTN
problem as a decomposition tree rooted in the initial task ¢;.

A decomposition tree is a tuple T = (T,E,<,a,f)
where (T, FE) is a tree, with nodes T and with directed
edges E : T — T mapping each node to an ordered list
of its children; < is a set of constraints over 71°; function
« : T — Alinks tasks and actions; function 5 : T — M
labels every inner node with a decomposition method.

We use < to denote the transitive closure of < and the
order defined by E. We say ¢; is a predecessor of ¢5 if t; <
to. Dually, we also say t» is a successor of ¢1. According to
<, we say the sequence constituted by the leaf nodes of T
is its plan, denoted by ¥(T).

Definition 1 (Valid decomposition trees). A decomposition
tree T is valid w.r.t. an HTN problem P = (D, so, to) iff its
plan 9(T) is executable in sq and its root is to and for every
inner node t where 5(t) = (¢, tn,,), it satisfies:

1. a(t)=c¢

2. (E(t)a =< |E(t)7 a|E(t)) = tny,;

3. if (t,t') €< then for every st € E(t), (st,t') €=<;

4. if (t',t) €< then for every st € E(t), (t, st) €=<;

5. there are no t1,to such that t1 < ty and to < tq.

Solutions. A solution to an HTN problem P = (D, sq, to)
is a valid decomposition tree 7 w.r.t. P and we say (sg, to)
is solved under © and is satisfied by 7.

Example 2 (Example 1 cont.). If plane1 is already at air-
port A in sg, the decomposition tree drawn with black ar-
rows shown in Figure 1 is a solution to the HTN problem.
o1 = (load;drive;unload;load:fly; unload: load: drive; unload)
is its plan.

Method Learning. In this paper, we assume that the origi-
nal methods are kept as they come from the expert knowl-
edge and they are sound in some situations. So, we only con-
sider adding methods into the original domain. For an HTN
domain ® = (£,0,C, M) and a method set M’, we use
D+M' = (L£,0,C, M U M’) to denote the resulting do-
main by adding M’ into ©.

An HTN method learning problem is defined as a tuple
(©,7) where ® is an HTN domain and Z is a set of in-
stances. A solution of the HTN method learning problem is
a set of methods M’ which should satisfy:

« all instances in the set Z are solved under ®+AM’;
o the learned method set M’ is as minimal as possible;

« the learned methods in M’ have as little inserted subtasks
as possible.

Refining Methods via Task Insertion

In this paper, we focus on the HTN problem with an incom-
plete method set, where there is no valid decomposition tree
w.r.t. the problem. In other words, there is no executable
plan obtained only by applying methods. By allowing in-
serting tasks, (Geier and Bercher 2011) proposes a hybrid
planning formalization, TIHTN planning. A solution to the
TIHTN problem is a TIHTN plan which is a primitive ac-
tion sequence executable in the initial state and includes all
primitive tasks obtained by applying methods and inserted
primitive tasks. (Alford et al. 2015) gives a progression pol-
icy for TIHTN planning and it is not difficult to design a
progression-based algorithm to find a TIHTN plan and a de-
composition tree which excludes inserted primitive tasks.

Actually, the inserted tasks in the TIHTN plan are subtask
candidates: they provide clues for refining the original meth-
ods by adding them as subtasks. Then, based on a TIHTN
plan, we propose the completion profile to refine methods
and complete decomposition trees.

Inspired by (Alford et al 2015), we propose a
progression-based algorithm to search TIHTN plans in Al-
gorithm 1. First, we say a task is unconstrained in the current
state if all its predecessors have been done and use uncons
to denote the set of unconstrained tasks in the current state.
In every step, we choose non-determinitiscally an uncon-
strained task to perform or decompose (line 4), where perfor-
mance updates the state (line 9) and decomposition updates
the tree (line 14-15). Once a task is performed or decom-
posed, it is labelled as ‘done’ (line 16). If the precondition
of the primitive task chosen is not satisfied in the current

Algorithm 1: HPLAN(D, sq, to)

input : An HTN domain © and an instance (sg, o)
output: A decomposition tree 7 and a plan o
1 8¢ 50; o+~ 0;
2 uncons < T < ty;
3 while uncons # () do

E « (;

4 choose non-deterministically some ¢ € uncons;
5 if t is primitive then

6 if s [~ pre(a(t)) then

7 find a plan o’ to s’ where s’ = pre(a(t));
8 o+ ococ';

9 s« ¢

10 o+ ooalt);

1 s < (s, a(t));
12 else

13 choose non-deterministically

m = (¢, tn,) € M s.t. a(t) = c;

14 T+ TUT,, st.tng, = (T, <, am);

15 E+— FEU{txTy}
16 label t is done;
17 update < and uncons in T’
18 if allt € T are done then

19 | Return o and T

2 Return fail

state, it searches a plan to satisfy it (line 7) via an off-the-
shelf planner, FF planner, which actually is a classical plan-
ning problem. When all tasks are labelled as done, it returns
a TIHTN plan and a decomposition tree excluding inserted
tasks.

Example 3 (Example 2 cont.). If planel is not at air-
port A in sg, the decomposition tree in Example 2 is not
valid as its plan o1 is not executable in sy. While 0o =
(load;drive; unload:fly, load:; fly; unload: load; drive; unload) is a
TIHTN plan to the problem.

Refining Methods and Completing Decomposition
Trees

Suppose the TIHTN planner outputs a plan o and a decom-
position tree T, we use I, to denote all the inserted tasks in
0. The TIHTN plan actually is an ordering of primitive tasks
and we extend the < relation of 7 by considering the exe-
cution order of primitive actions in o. To get the compound
tasks, we use N7 to denote the inner nodes of the decom-
position tree 7. Next, we show how to link these inserted
tasks with the inner nodes N7 of the decomposition tree T
to generate a new decomposition tree.

Definition 2. We define a completion profile as a function
p:1, — N7, such that for every inserted task t' € I, there
is not a primitive task t, € o where either both t, < p(t')
andt' K tp, or p(t') < tpandt, < t'.

Intuitively, every inserted task is associated with a com-
pound task as its subtask. Every inserted task is restricted to
be performed before the predecessors and after the succes-
sors of its corresponding compound task.

Next, we define how to refine a method by inserting tasks.
A completion profile leads to a set of refined methods by
adding the relevant inserted tasks into the original methods.
Formally, for a completion profile p, let ¢ be an inner node in
the decomposition tree, we use Ty = {t' | p(t') =t} to denote
all inserted tasks associated with ¢. Then we use 7'(p) to de-
note the range of function p, i.e., the inner nodes which have
a non-empty set T;. The inserted subtasks with the original
subtasks of ¢ compose a new subtask network, written by
tn, = (I, <|r:, &), where o is the function o from the
plan o. Every non-empty set T;' leads to a refined method
my, = (¢, (Tn UT,, <m U < |rt, am Uy)) Wrt. the origi-
nal method 3(t) = m = (¢, (T, <m, am)). We use M, to
denote the set of refined methods from the completion pro-
file p.
Example 4 (Example 3 cont.). For the TIHTN plan o9
and the decomposition tree in Example 1, we have a com-
pletion profile p where p(t;) = airShip and «(t,) =
fly(planel, airpA). The refined method is (airShip, (T}, <.,
yar)) where T = {fly, load, fly, unload}.

The completion profile actually completes the decompo-
sition tree: the inserted tasks are connected with their corre-
sponding inner nodes as their children. When we add new
nodes into the decomposition tree, the integrity of ordering
constraints will be destroyed. To avoid that, we define an
operator closure to complete the ordering constraints. For-
mally, for a tree 7 = (T, E), we define its closure on the
ordering constraint < as closure(T, E, <), which is given
by:

< U J{(ch), (ch,t")|ch € E(t),t' < t,t <t"}.
teT
Intuitively, the closure operation completes the ordering
constraints about the children which should be inherited
from their parent.

Next we show how to complete the decomposition tree
according to the completion profile.

We define the completion of the decomposition tree T
by completion profile p w.rt. TIHTN plan o as 7, =
(T",E',<', o, "), which is given by:

T :=TU UteT(p) T

E' :=EU{(t,st) |teT,steT(tn))}

<":= closure(T", E', <) UU,er(,) <1t

o =aUa,

B = (B\{(t,m) [t € T(p)}) U{(t,mp) |t € T(p)}

The procedure of completing a decomposition tree con-
sists of first connecting the inserted tasks with the inner
nodes, then completing the ordering constraints and finally
updating the method applied as the refined method. The de-
composition tree being completed will satisfy the instance:

Proposition 1. Given an HTN problem P = (D, so, to), let
o be one of its TIHTN plans and T be its corresponding de-
composition tree and p be one of their completion profiles.
Then the completed decomposition tree T, satisfies the in-
stance (S, to) under the new domain ©+M,,.

Proof. First, we show that 7, is a valid decomposition tree
w.r.t. D+M,,. For every node ¢ in 7, with 3'(t) = (c,tn,),
i) the function « is not reduced, so ' (t) = ¢; ii) the edges
between the task t and its inserted tasks 7 are added, so
the task network induced by its children is isomorphic with
m; iii) closure(T”, E', <) guarantees that all ordering con-
straints of ¢ are propagated to the inserted tasks and <<|T£
only introduces the ordering constraints among the inserted
subtasks in the same method, so conditions 3. and 4. are sat-
isfied; iv) as the completion profile guarantees that no con-
tradict pair about < is introduced, condition 5. is satisfied.
Without removing nodes, the root of 7, is still ¢5. As the
plan 9(7,) is the TIHTN plan o executable in s¢, 7, satisfies
the instance (so, to). O

When an HTN problem has incomplete methods, the com-
pletion profile offers a way to improve the HTN domain:

Theorem 1. Ifan HTN problem P=(9, sq, to) has a TIHTN
plan but no solution, then there is a completion profile p
where the HTN problem P’ = (D+M,, s¢, to) is solvable.

Proof. Let o be a TIHTN plan of P with its decomposi-
tion tree 7. Suppose p is a completion profile w.r.t. o and
7. By Proposition 1, the decomposition tree 7, satisfies the
instance (so,to) under the new domain ®+M,. So, o is a
solution of the HTN problem P’. O

When the completion profile only add decomposition
methods, we have a corollary:

Corollary 2. Every plan of the HTN problem P = (D,1) is
also a plan of the HTN problem P’ = (D+M'I).

Proof. As the original methods are still in the domain, the
valid decomposition trees of the original problem P are also
valid decomposition trees of the new HTN problem P’. So,
plans of P are also plans of P’. O

Prioritized Preferences

To formalize the experience that the missing of subtasks
happens more likely on some methods than other methods,
we consider a priority on the methods. Generally, the priority
comes from the confidences of domain experts on methods:
the method believed to lack subtasks more likely to have a
higher priority.

Given a method set M, we define a prioritization as a
partition on it: P=(Py, ..., P,) where J,;,, P; = M.
Intuitively, the decomposition methods in P; have a higher
priority to be refined than those in P; if ¢« > j. We further
consider the prioritized preference in terms of cardinality.

Given a prioritization P=(P,, ..., P,) of M, we consider
the prioritized preference <p as follows: for M1,My C
M, if there is some 1 < 7 < n such that

. |M1 ﬂPi|§|M2ﬂPZ‘| and
e forall 1<j<i,|MyNPj|=|MaN P

then we write M1 <p M. We say M; is strictly preferred
over My w.r.t. P, written by M; <p Mo, if My <p Ms
and Mo £Lp M.

s

Preferred Completion Profiles

Generally, we hope to find a completion profile changing the
original methods minimally under the prioritized preference.
We first define some notations: for a refined method mf,,
we use 7(m}) to denote its original method m. For a re-
fined method set M’, we use 7(M’) to denote all the orig-
inal methods of the refined methods in M’, i.e., 7(M)
{meM|m=7(m'),m" € M'}. Note that several com-
pletions may be associated with the same decomposition
method. For two decomposition methods m} and mj, if
7(m}) = 7(m}), we say m} and m/, are homologous.

Definition 3. Given a TIHTN plan and its decomposition
tree, a completion profile p is preferred w.rt. preference P
if there is not a completion profile p', such that (M) <p
T(M,).

Intuitively, the preferred completion profile refines meth-
ods minimally under the prioritized preference.

Next, we will show how to find the preferred completion
profile, as shown in Algorithm 2. First, we consider all in-
serted tasks in the plan as unlabelled (line 1). Then we scan
all inner nodes from the nodes with a method of higher pri-
ority to the nodes with a method of lower priority (line 2-3).
Next, for an inner node, we find the set of candidate subtasks
Ay from the inserted tasks, which do not violate the ordering
constraints if they were inserted as its subtasks (line 5). More
specially, for the inner node ¢, the inserted tasks which are
executed between the last task required to be executed ahead
of ¢ and the first task required to be after ¢, are allowed to be
added as subtasks of ¢. According to the total order + in the
decomposition tree, we define the subtasks candidate set A,
of ¢ as the set of the unlabelled inserted tasks between the
last predecessor of ¢ and the first successor of ¢. Finally, we
associate all tasks in the subtask candidate set to ¢ (line 5)
and label them as subtasks (line 6). When all inserted tasks
are labelled, it returns a preferred completion profile. It must
terminate and the worst case is that the inserted tasks are as-
sociated with the root task.

Algorithm 2 only scan the nodes of the decomposition tree
once and searching the subtask candidate set can be done in
linear time, so the algorithm terminates in polynomial time.

Algorithm 2: COMPLETE(c, T, P)

input : A TIHTN plan o, its decomposition tree T
and a prioritization P = (P, ..., P,) on M
output: A completion profile p
1 1<+ 1,
2 for j <~ ntoldo

3 for eacht € Ny s.t. B(t) € P; do

4 if I # () then

5 forevery t' € Ay N1, setp(t') =t;
6 I+ 1 \ At7

7 return p

Actually, to find a preferred completion profile, we only
need to scan the inner nodes in the decomposition tree ac-

cording to the preference and link appropriate inserted tasks
with inner nodes, which can be done in polynomial time.

Observe that the more detailed tasks are more sensitive
to these situations and more easily to be thoughtless. There
exists a class of HTN domains where actions can be stratified
according to the decomposition hierarchy (Erol et al. 1996;
Alford et al.). In this case, we assume that an action is more
abstract than its subtasks and we consider a preference in
terms of a stratum-based priority: the more abstract actions
have a lower priority to be refined.

Learning Methods from Instances

As stated above, we only consider to introduce new meth-
ods into the HTN domain. However, an excess of methods
introduced may slow down problem-solving significantly, as
there are excessive choices to decompose tasks. To reduce
the number of methods learned, we consider the minimal
set of methods learned under the prioritized preference. We
propagate the prioritized preference to the refined methods:
if 7(m') € P; thenm’ € P;.

Definition 4. Given a method set M’ and its prioritization
P, a subset M{, of M’ is the minimal set w.r.t. P if there is
not a subset M’ of M’ such that My <p M.

To learn as few methods as possible, we first compute a
preferred completion profile w.r.t. the stratum-based priori-
tized preference and then compute the minimal method set.

Suppose M is a set of methods learned, we use Z(M’) to
denote the solvable subset of Z w.r.t. ©+M’. Furthermore,
we use T (M) to denote the set of decomposition trees w.r.t.
D+M'’. The decomposition trees and the instances solved
are monotonic w.r.t. the methods learned:

Proposition 2. If M, C Mo, then T (M1) C T (My) and
Z(My) CI(Msy).

Proof. When M; C M, it means that there are more
methods to be chosen to decompose compound tasks, in con-
sequence there will be more decomposition trees generated.

As every HTN plan comes from the decomposition tree,
if an instance ¢ € Z(M;) has an HTN plan, then it has
a decomposition tree 7 satisfying it, entailing that 7° €

T (My). Thus, the instance 7 also in Z(My). O

Method substitution. The completion profiles from various
instances may induce many refined methods which decom-
pose the same compound action and generate similar exe-
cutable plans. The vast increase in the number of methods
will slow down the problem-solving significantly and we
need to reduce the redundant refined methods which can be
replaced by other methods. To compute the minimal set, we
need to remove the redundant refined methods and define a
method substitution operator.

Definition 5. Given a decomposition tree T=(T,E, <,
a,B), let T,,, be the inner nodes with method my and
mo = (c, (Ta, <2, a2)) be a homologous method with m.
We define the decomposition tree that substitutes the method
my in T with mg as sub(T,t,m') = (T',E', <,/ 3),

given by:

T = (T\ UteT,,,L1 Ttadd(ml)) U UteT Ttadd(m2)

ma
B’ = Blo Ulsen,, ({th x T (ms))

<" = closure(T", E', < U <2)

o =d | Uas

§ = (B\ {(t,m)lt € Tony}) U{(t,)t € To,)

where T2 (m) denotes the inserted subtasks w.r.t. t for the
refined method m.

After substituting a method m; with another homologous
method meo, if the resulting decomposition tree still satis-
fies the instance, it means that for this instance, the replaced
method m; is redundant and can be replaced by m.

Proposition 3. For two homologous methods my, mo, let
T = sub(T,mi,me). If T satisfies an instance (so,to)
and 9(T") is executable in so, then T’ satisfies (s, to).

Proof Sektch. Tt is not difficult to prove 7" is a valid decom-
position tree, which entails that it satisfies the instance. [

Next, we generalize the notion of substitution into the de-
composition tree set: given a decomposition tree set J and
two method sets M|, M5, we define the set of the decompo-
sition trees that substitutes every occurrence of every method
m) in M} with some method m/, in M/, which is homolo-
gous with m/, written by sub(7, M/, M}). With the sub-
stitution operator, we can reduce the refined methods:

Proposition 4. Given an HTN domain © and an instance
set T, let T be its decomposition tree set, each tree of which
satisfies its corresponding instance. For a refined method set
M’ and its subset M}, if the plan of every decomposition
tree in sub(T, M/, M) is executable in the corresponding
initial state, then Z(M') = Z((M"\ H(M))UM;) where
H (M) is the set of methods homologous with the methods
in M.

Proof. By Proposition 3, for every instance i = (s}, t})inZ
and its decomposition tree 7% € T, if 9(sub(T*, M’, M}))
is executable in 56, then it satisfies 7. When the methods in
(H(M';) \ M) are substituted, every instance is satisfied

w.r.t. the remaining methods. [

Theorem 3. Given a method set M’ and its prioritization
P, there exists a minimal subset Mj, of M’ w.r.t. P such

that Z(MG) = Z(M').

Proof. As M’ is finite, the minimal subset exists and in the
worst case, M/ itself is minimal. O

Next we give an algorithm for the HTN method learn-
ing problem, as shown in Algorithm 3. The framework con-
sists of two main components: the first iteration for learning
methods by refining methods (line 2-8) and the second it-
eration for reducing refined methods (line 9-11). The first
iteration first finds a TIHTN plan and its decomposition tree
for every instance (line 3) by HPLAN and then computes

Algorithm 3: METHODLEARN(D,Z, P)

input : An HTN domain ®, an instance set Z and a
prioritization P = (P4, ..., P,) on M

output: A new method set M’

M 0, T« 0

2 for eachiinZ do

-

3 compute a plan and decomposition tree
(0, T%) = HPLAN(D, i);
4 | p'= COMPLETE(c?, T?, P);
5 | complete the decomposition tree 7 to 7, by p';
6 | T+« TUT}
7 construct a new method set M, from p*;
8 | M~ MUM,;
9 for j <~ 1tondo
10 | compute the minimal subset M; of P;[M’] s.t.
every tree in sub(7, M’, M) satisfies their
corresponding instance;

/ /.
n M = Upgje, M
12 return M’

each preferred completion profile (line 4) by COMPLETE.
Next, these decomposition trees are completed and a set of
refined methods are constructed according to the completion
profiles (line 5-8).

To reduce the refined methods, if the constants in the in-
serted subtasks are identical with the arguments in the sub-
tasks and compound task, we use the corresponding vari-
ables to replace the constants in the inserted subtasks (line
8).

In the second iteration, we use a greedy strategy to find
the minimal set: the refined methods with lower priority are
reduced first, which is the opposite against the procedure
of searching the preferred completion profile. Here we use
P;[M’] to denote the refined methods in M’ whose orig-
inal methods are in the priority P;. By Proposition 4, the
refine methods in P;[M'] can be replaced by M/, for every

instance and M; is minimal in the priority P;.

To pursue the refined methods with as few subtasks as
possible, we take a breadth-first strategy to find the inserted
tasks when computing TIHTN plans (line 7 in Algorithm 1).

In fact, our approach outputs a method set which some-
times may be a second-best solution for criterion 2 and 3 of

the solutions, while it satisfies criterion 1:

Theorem 4. Suppose M’ is the method set learned by
METHODLEARN(®, Z, P), if every instance in T has a TI-
HTN plan under the domain ®, then it also has a solution
under the domain ® +M’.

Proof. As every instance has a TIHTN plan, by Proposition
1, there exists a set of decomposition trees T, each of which
satisfies each instance w.r.t. the domain ®+M" where M"
is a method set obtained via completion profiles (line 2-8
in Algorithm 3). Then M’CM". By Proposition 4, each
decomposition tree in sub(7, M", M) satisfies its corre-
sponding instance in Z. Thus, every instance is solvable un-
der the new domain D+M’. O

Experimental Analysis

We have implemented Algorithm 3 based on Python 3.0 and
developed an HTN method learner METHODLEARN. In this
section, we evaluate METHODLEARN in three well-known
planning domains comparing with HTN-MAKER (Hogg et
al. 2008) on the learning performances.

We consider three domains which are evaluated on in
HTN-MAKER (Hogg et al. 2008), i.e., Logistics, Satellite,
and Blocks-World, to evaluate our approach. We first get
the problem generators from International Planning Com-
petition website? and randomly generate 100 instances for
each domain and take 75 instances as the training set and
25 instances as the testing set. We run METHODLEARN
and HTN-MAKER with 75 instances growingly as input
and obtain different learned method sets from these two ap-
proaches. The planning instance in the testing set is consid-
ered as solved, if its goal is achieved by a plan computed
under the learned HTN method set via an HTN planner. For
HTN-MAKER we use the well-known HTN planner SHOP2
(Nau et al. 2003) and for our approach METHODLEARN we
still use Algorithm 1 without task insertion. The time bound
of the HTN planner is set to 3600 seconds. In order to check
if an instance is solved, we add a verifying action whose
precondition is the goal and whose effect is empty in the
last subtask of the initial task. The learning performance is
measured via the percentage of the number of the solved in-
stances on that of the testing instances, which is called the
percentage of instance solved.

To simulate the incomplete method set as the input of
METHODLEARN, we take the HTN domain description in
the website? of SHOP2, and remove different sets of sub-
tasks. Furthermore, to evaluate the influence of the differ-
ent incompleteness of the given method sets on the learning
performance, we consider three removal cases: 1) remove
one primitive task from each method (if exists), with mean-
ing the high completeness, noted by ML-H; 2) remove two
primitive tasks from each method (if exists), noted by ML-
M, with meaning the middle completeness; 3) remove one
more compound task in some method of ML-M, noted by
ML-L, with meaning the low completeness.

Consider the method set shown in Figure 1, For ML-H,
we remove the first drive and the first fly in the methods
cityShip and airShip, respectively, while for ML-M, we re-
move all drive and fly in the methods. For ML-L, the first
cityShip is additionally removed from the method of ship
based on the ML-M setting.

Figure 2 shows the learning performances of our approach
and HTN-MAKER in the three domains. Generally, with the
training set growing, the percentage of the problems solved
increases, which does not violate Proposition 2. For the Lo-
gistics and Satellite domains, in the settings of ML-H and
ML-M, METHODLEARN learns the necessary methods to
solve all testing problems from a few instances. It is because
the structure of these two domains is relatively straightfor-
ward and the decomposition trees still can be constructed by
the incomplete method sets. In the ML-L setting, the com-

2http://ipc02.icaps-conference.org/
*https://www.cs.umd.edu/projects/shop/

http://ipc02.icaps-conference.org/
https://www.cs.umd.edu/projects/shop/

100%

— MLH
/
20% o ML-M
7 -= ML-L
----- HTN-MAKER

Percentage of Instances Solved
Percentage of Instances Solved

— MLH

ML-M
== ML-L

Percentage of Instances Solved

== ML-L

0%t — - ML-H-RandP

10° 10t
Training size

(a) The Logistics Domain

10?

~——- ML-H-RandP

100 10t
Training size

(b) The Satellite Domain

102

----- HTN-MAKER o --e-- HTN-MAKER
G

~——- ML-H-RandP

10*
Training size

(c) The Blocks-World Domain

Figure 2: The Percentage of Solving Instances on Our Approach with Different Incomplete Method Sets and HTN-MAKER

10?

pound action removed in the Logistics Domain, cityShip,
contains more arguments, making the methods learned be-
come more case-specific, which cannot contribute to other
instances. For the Blocks-World domain, it cannot achieve
the full convergence in each setting. The reason is that there
are a few special instances which are significantly differ-
ent from the training instances, resulting in that the methods
learned hardly suit these special testing instances.

To evaluate our assumption on the stratum-based priori-
tized preference, we also compare it against a random pri-
oritized preference, denoted by ML-H-RandP in Figure 2.
When a completion profile associates the inserted tasks to a
more abstract tasks, it generates a more case-specific method
which may not suit other instances. It is shown that consider-
ing the stratum-based prioritized preference leads to a better
learning performance.

Discussion and Conclusion

We suppose that in the original method set, every compound
action at least has a method to decompose. Our approach
also can accept classical planning instances which only have
a goal formula: we can trivially introduce a compound action
of achieving the goal which is decomposed into a verifica-
tion action whose precondition is the goal and whose effect
is empty. Note that we only invoke a TIHTN planner to ob-
tain plans for refining methods and focus on HTN problems.
Also, the TIHTN planner needs to search actions to insert
from the vast number of action candidates, a refined method
including the missing subtasks helps to find the plan.

To sum up, we present a framework to learn HTN meth-
ods from HTN instances by refining methods. We also show
that the methods learned by our framework are likely to
solve new instances in the same classical planning domain.
The experiment results demonstrate that our approach out-
performs the traditional method learning approach, HTN-
MAKER, given an appropriately incomplete method set as
input. It is also illustrated that the stratum-based prioritized
preference is effective.

Acknowledgements

This paper was supported by the National Natural Sci-
ence Foundation of China (No. 61573386), National

Key R&D Program of China (No. 2018YFC0830600),
Guangdong Province Natural Science Foundation (No.
2016A030313292), Guangdong Province Science and Tech-
nology Plan projects (No. 2016B030305007 and No.
2017B010110011), Guangzhou Science and Technology
Project (No. 201804010435).

References

[Alford et al.]| Ronald Alford, Vikas Shivashankar, Ugur
Kuter, and Dana S. Nau. HTN problem spaces: Structure,
algorithms, termination. In Proceedings of the 5th Annual
Symposium on Combinatorial Search, (SOCS-12), pages 2—
9

[Alford et al. 2015] Ron Alford, Pascal Bercher, and
David W Aha. Tight bounds for HTN planning with
task insertion. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI), pages
1502-1508, 2015.

[Behnke ef al. 2017] Gregor Behnke, Daniel Holler, and Su-
sanne Biundo. This is a solution! (... but is it though?) -
verifying solutions of hierarchical planning problems. In
Proceedings of the 27th International Conference on Au-
tomated Planning and Scheduling (ICAPS), pages 20-28.
AAAI Press, 2017.

[Behnke ef al. 2019] Gregor Behnke, Marvin R. G. Schiller,
Matthias Kraus, Pascal Bercher, Mario Schmautz, Michael
Dorna, Michael Dambier, Wolfgang Minker, Birte Glimm,
and Susanne Biundo. Alice in DIY wonderland or: Instruct-

ing novice users on how to use tools in DIY projects. Al
Commun., 32(1):31-57, 2019.

[Erol et al. 1994] Kutluhan Erol, James Hendler, and Dana S
Nau. HTN planning: Complexity and expressivity. In Pro-
ceedings of the 12th National Conference on Artificial Intel-
ligence (AAAI), pages 1123-1128, 1994.

[Erol et al. 1996] Kutluhan Erol, James Hendler, and Dana S
Nau. Complexity results for HTN planning. Annals of Math-
ematics and Artificial Intelligence, 18(1):69-93, 1996.

[Garland et al. 2001] Andrew Garland, Kathy Ryall, and
Charles Rich. Learning hierarchical task models by defin-
ing and refining examples. In Proceedings of the First Inter-
national Conference on Knowledge Capture (K-CAP 2001),

October 21-23, 2001, Victoria, BC, Canada, pages 44-51.
ACM, 2001.

[Geier and Bercher 2011] Thomas Geier and Pascal Bercher.
On the decidability of HTN planning with task insertion.
In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), volume 22, pages 1955—
1961, 2011.

[Hogg et al. 2008] Chad Hogg, Héctor Muifioz-Avila, and
Ugur Kuter. HTN-MAKER: learning HTNs with minimal
additional knowledge engineering required. In Proceedings
of the 23rd National Conference on Artificial Intelligence,
(AAAI-08), pages 950-956, 2008.

[lighami et al. 2005] Okhtay Ilghami, Héctor Mufioz-Avila,
Dana S. Nau, and David W. Aha. Learning approximate pre-
conditions for methods in hierarchical plans. In Proceedings

of the 22nd International Conference on Machine Learning
(ICML-05), pages 337-344, 2005.

[Kambhampati ez al. 1998] Subbarao Kambhampati, Amol
Mali, and Biplav Srivastava. Hybrid planning for par-
tially hierarchical domains. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence and 12th Confer-
ence on on Innovative Applications of Artificial Intelligence

(AAAI/IAAI), pages 882-888, 1998.

[Lin ef al. 2008] Naiwen Lin, Ugur Kuter, and Evren Sirin.
Web service composition with user preferences. In Proceed-
ings of European Semantic Web Conference (EWSC), pages
629-643. Springer, 2008.

[Lotinac and Jonsson 2016] Damir Lotinac and Anders Jon-
sson. Constructing hierarchical task models using invari-
ance analysis. In Proceedings of the 22nd European Confer-
ence on Artificial Intelligence (ECAI-16), pages 1274-1282,
2016.

[Nau et al. 2003] Dana S Nau, Tsz-Chiu Au, Okhtay II-
ghami, Ugur Kuter, J William Murdock, Dan Wu, and Fusun
Yaman. SHOP2: An HTN planning system. Journal of Ar-
tificial Intelligence Research (JAIR), 20:379-404, 2003.

[Nejati et al. 2006] Negin Nejati, Pat Langley, and Tolga
Konik. Learning hierarchical task networks by observation.

In Proceedings of the 23rd International Conference on Ma-
chine Learning (ICML-06), pages 665-672, 2006.

[Reddy and Tadepalli 1997] Chandra Reddy and Prasad
Tadepalli. Learning goal-decomposition rules using exer-
cises. In Proceedings of the Fourteenth International Con-
ference on Machine Learning (ICML-97), pages 278-286,
1997.

[Xu and Muiioz-Avila 2005] Ke Xu and Héctor Muioz-
Avila. A domain-independent system for case-based task de-
composition without domain theories. In Proceedings of the
20th National Conference on Artificial Intelligence (AAAI-
05), pages 234-240, 2005.

[Zhuo et al. 2009] Hankz Hankui Zhuo, Derek Hao Hu,
Chad Hogg, Qiang Yang, and Hector Mufoz-Avila. Learn-
ing HTN method preconditions and action models from par-
tial observations. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-09), pages
1804-1810, 2009.

[Zhuo et al. 2014] Hankz Hankui Zhuo, Héctor Muifoz-
Avila, and Qiang Yang. Learning hierarchical task network
domains from partially observed plan traces. Journal of Ar-
tificial Intelligence, 212:134—157, 2014.

	Introduction
	Related Work
	Problem Definition
	Refining Methods via Task Insertion
	Refining Methods and Completing Decomposition Trees
	Prioritized Preferences
	Preferred Completion Profiles

	Learning Methods from Instances
	Experimental Analysis
	Discussion and Conclusion
	Acknowledgements

