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ABSTRACT

Learning disentangled representations of data is one of the central themes in
unsupervised learning in general and generative modeling in particular. In this
work, we tackle a slightly more intricate scenario where the observations are
generated from a conditional distribution of some known control variate and some
latent noise variate. To this end, we present a hierarchical model and a training
method (CZ-GEM1) that leverages some of the recent developments in likelihood-
based and likelihood-free generative models. We show that CZ-GEM introduces the
right inductive biases that ensure the disentanglement of the control from the noise
variables, while also keeping the components of the control variable disentangled.
This is achieved without compromising on the quality of the generated samples.
Our approach is simple, general, and can be applied both in the supervised and
unsupervised settings.

1 INTRODUCTION

Consider the following scenario: a hunter-gatherer walking in the African Savannah some 50,000
years ago notices a lioness sprinting out of the bush towards her. In a split second, billions of
photons reaching her retinas carrying an enormous amount of information: the shade of the lioness’
fur, the angle of its tail, the appearance of every bush in her field of view, the mountains in the
background and the clouds in the sky. Yet at this point there is a very small number of attributes
which are of importance: the type of the charging animal, its approximate velocity and its location.
The rest are just details. The significance of the concept that the world, despite its complexity, can
be described by a few explanatory factors of variation, while ignoring the small details, cannot be
overestimated. In machine learning there is a large body of work aiming to extract low-dimensional,
interpretable representations of complex, often visual, data. Interestingly, many of the works in
this area are associated with developing generative models. The intuition is that if a model can
generate a good approximation of the data then it must have learned something about its underlying
representation. This representation can then be extracted either by directly inverting the generative
process (Srivastava et al., 2019b) or by extracting intermediate representations of the model itself
(Kingma & Welling, 2014; Higgins et al., 2017). Clearly, just learning a representation, even if it is
low-dimensional, is not enough. The reason is that while there could be many ways to compress the
information captured in the data, allowing good enough approximations, there is no reason to a priori
assume that such a representation is interpretable and disentangled in the sense that by manipulating
certain dimensions of the representation one can control attributes of choice, say the pose of a
face, while keeping other attributes unchanged. The large body of work on learning disentangled
representations tackles this problem in several settings; fully supervised, weakly supervised and
unsupervised, depending on the available data (Tran et al., 2018; Reed et al., 2014; Jha et al., 2018;
Mathieu et al., 2016; Higgins et al., 2017; Chen et al., 2018; Kim & Mnih, 2018; Chen et al., 2016;
Nguyen-Phuoc et al., 2019; Narayanaswamy et al., 2017). Ideally, we would like to come up with
an unsupervised generative model that can generate samples which approximate the data to a high
level of accuracy while also giving rise to a disentangled and interpretable representation. In the last
decade two main approaches have captured most of the attention; Generative Adversarial Networks
(GANs) and Variational Auto-Encoders (VAEs). In their original versions, both GANs (Goodfellow
et al., 2014) and VAEs (Kingma & Welling, 2014) were trained in an unsupervised manner and

1CZ-GEM: CZ-Generative Model
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(a) Chair rotation generated by CGAN (b) Chair rotation generated by CZ-GEM

Figure 1: Changing the azimuth of chairs in CGAN and CZ-GEM while holding Z constant. Unlike
CZ-GEM, C and Z are clearly entangled in CGAN as changing C also changes the type of chair even
though Z is held constant.

gave rise to entangled representations. Over the years, many methods to improve the quality of the
generated data as well as the disentanglement of the representations have been suggested (Brock
et al., 2018; Kingma & Dhariwal, 2018; Nguyen-Phuoc et al., 2019; Jeon et al., 2018). By and large,
GANs are better than VAEs in the quality of the generated data while VAEs learn better disentangled
representations, in particular in the unsupervised setting.

In this paper, we present a framework for disentangling a small number of control variables from the
rest of the latent space which accounts for all the additional details, while maintaining a high quality
of the generated data. We do that by combining VAE and GAN approaches thus enjoying the best of
both worlds. The framework is general and works in both the supervised and unsupervised settings.
Let us start with the supervised case. We are provided with paired examples (x, c) where x is the
observation and c is a control variate. Crucially, there exists a one-to-many map from c to the space
of observations, and there are other unobserved attributes z (or noise) that together completely define
x. For instance, if x were an image of a single object, c controls the orientation of the object relative
to the camera and z could represent object identity, texture or background.

Our goal is to learn a generative model pθ(x|c, z) that fulfills two criteria:

1.
∫
z
pθ(x|c, z)p(c)p(z)dz matches the joint distribution

∫
z
p(x|c, z)p(c)p(z)dz: If we

were learning models of images, we would like the generated images to look realistic and
match the true conditional distribution p(x|c).

2. The posterior is factorized p(c, z|x; θ) = p(c|x; θ)p(z|x; θ): We would like the control
variate to be disentangled from the noise. For example, changing the orientation of the
object should not change the identity under our model.

This problem setup can occur under many situations such as learning approximate models of simula-
tors, 3D reconstructions, speaker recognition (from speech), and even real-world data processing in
the human brain as in the hunter-gatherer example above.

We argue that a naive implementation of a graphical model as shown in Figure 2 (left), e.g. by a
conditional GAN (Mirza & Osindero, 2014), does not satisfy Criterion 2. In this model, when we
condition on x, due to d-separation, c and z could become dependent, unless additional constraints
are posed on the model. This effect is demonstrated in Figure 1(a). To overcome this we split the
generative process into two stages by replacing C with a subgraph (C → Y ) as shown in Figure
2 (center). First, we generate a crude approximation y of the data which only takes c into account.
The result is a blurry average of the data points conditioned on c, see Figure 2 (right). We then
feed this crude approximation into a GAN-based generative model which adds the rest of the details
conditioned on z. We call this framework CZ-GEM. The conditioning on z in the second stage
must be done carefully to make sure that it does not get entangled with y. To that end we rely
on architectural choices and normalization techniques from the style transfer literature (Huang &
Belongie, 2017) 2. The result is a model which generates images of high quality while disentangling
c and z as can be clearly seen in Figure 1(b). Additionally, in the unsupervised setting, when the
labels c are not available, (C → Y ) can be realized by β-VAE, a regularized version of VAE which
has been shown to learn a disentangled representation of its latent variables (Higgins et al., 2017;
Burgess et al., 2018). In Section 3 we provide implementation details for both the supervised and
unsupervised versions.

We summarize our two main contributions:

2Indeed the mapping from Y to X conditioned on Z can be viewed as a general form of style transfer.
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Figure 2: On the left, a conditional GAN (CGAN) model. CZ-GEM in the middle replaces node C
with a subgraph (C → Y ) that is trained independently of the rest of the model. This subgraph learns
to only partially render the observation. As such, Z comes at a later stage of the rendering pipeline to
add details to Y . As an example, consider the rightmost graph where the observation is made up of
different types of chairs in different poses. Let the pose be controlled by C and the type (Identity) be
explained by Z. Then in step one of CZ-GEM we learn the pose relationship between C and X via
the subgraph, giving rise to a blurry chair in the correct pose. Once the pose is learned, in the second
step, the approximate rendering Y is transformed into X by allowing Z to add identity related details
to the blurry image.

1. Architectural biases: We break down the architecture to model an intermediate representa-
tion that lends itself to interpretability and disentanglement, and then (carefully) use a GAN
based approach to add the rest of the details, thus enjoying a superior image generation
quality compared to VAEs.

2. Unsupervised discovery: We show that our model can be combined easily with common
methods for discovering disentangled representations such as β-VAE to extract c and treat
them as labels to generate images that do not compromise on generative quality.

2 PRELIMINARIES

2.1 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GAN) (Goodfellow et al., 2014) represent the current state of
the art in likelihood-free generative modeling. In GANs, a generator network Gθ is trained to
produce samples that can fool a discriminator network Dω that is in turn trained to distinguish
samples from the true data distribution p(x) and the generated samples Gθ(z)|z ∼ pz(z). Here, pz is
usually a low dimensional easy-to-sample distribution like standard Gaussian. A variety of tricks and
techniques need to be employed to solve this min-max optimization problem. For our models, we
employ architectural constraints proposed by DC-GAN (Radford et al., 2015) that have been widely
successful in ensuring training stability and improving generated image quality.

Conditional GANs (CGAN) (Mirza & Osindero, 2014) adapt the GAN framework for generating
class conditional samples by jointly modeling the observations with their class labels. In CGAN, the
generator network Gθ is fed class labels c to produce fake conditional samples and the discriminator
Dω is trained to discriminate between the samples from the joint distribution of true conditional and
true labels p(x|c)p(c) and the fake conditional and true labels pθ(x|c)p(c).
While not the main focus of this paper, we present a novel information theoretic perspective on
CGANs. Specifically, we show that CGAN is trained to maximize a lower-bound to the mutual
information between the observation and its label while simultaneously minimizing an upper-bound
to it. We state this formally:

Lemma 1 (Information-theoretic interpretation of CGAN). Given (x, c) ∼ p(x, c), CGAN learns
the distribution pθ(x) = Gθ(x) by training a discriminator Dω to approximate the log-ratio of the
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true and generated data densities i.e. Dω ≈ log p(x, c)/pθ(x, c) in turn minimizing the following

min
θ

Epθ(x|c)p(c)
[
−Dω

]
≈min

θ

(
Ig,θ(x, c) + Eq(c|x,θ)KL(pθ(x)‖p(x))

)
+

max
θ

(
Ig,θ(x, c)− Epθ(x)KL[q(c|x, θ)‖p(c|x)]

)
=min

θ
IUBg,θ (x, c)− ILBg,θ (x, c).

where Ig,θ(x, c) is the generative mutual information and q(c|x, θ) is the posterior under the learned
model.

The detailed derivation is provided in Appendix A.1. Notice that at the limit, the model learns exactly
the marginal distribution of x and the posterior q(c|x) and the KL terms vanish.

2.2 VARIATIONAL AUTOENCODER

Variational autoencoders (VAE) represent a class of likelihood-based deep generative models that
have recently been extensively studied and used in representation learning tasks (Higgins et al., 2017;
Burgess et al., 2018; Chen et al., 2018). Consider a latent variable model where observation X
is assumed to be generated from some underlying low-dimensional latent feature space Z. VAE
models learn the conditional distribution p(x|z) using a deep neural network (parameterized by θ)
called decoder network. It uses another deep neural network (parameterized by φ), called encoder
to model the posterior distribution p(z|x). The encoder and decoder networks are trained using
amortized variational inference (Kingma & Welling, 2014) to maximizes a variational lower-bound
to the evidence likelihood (ELBO). Recently, Higgins et al. (2017) showed that by regularizing
the variational posterior approximation of p(z|x) to be close to the prior distribution p(z) in KL-
divergence, the model is encouraged to learn disentangled representations. I.e. the model learns a
posterior distribution that is factorized over the dimensions. They call their model β-VAE. We note
that information bottleneck based methods for disentangled representation learning, such as β-VAE,
severely compromise the generative quality.

2.3 NORMALIZATION

Batch-Normalization (BN) (Ioffe & Szegedy, 2015) plays a crucial role in ensuring the stability of
GAN training Radford et al. (2015). However, as we discuss in Section 3, it is not suitable for our
purposes. Recently, it has been shown that Instance Normalization (IN) Ulyanov et al. (2016) and
its variant Adaptive Instance Normalization (AdaIN) Huang & Belongie (2017) can be particularly
useful for image generation and stylization. IN normalizes each convolutional channel per training
sample, while AdaIN modifies this normalization to be a function of an additional variable z (usually
style in style transfer). The final transformation applied by AdaIN is:

AdaIN(x, z) = γ(z)
(x− µ(x)

σ(x)

)
+ β(z) (1)

where µ(x) = 1
HW

∑
h,w xnhwc and σ(x) =

√
1

HW

∑
h,w(xnhwc − µ(x))2 + ε. γ(z) and β(z) are

learned functions of z that could be parameterized by a neural network, usually a fully connected
layer.

3 CZ-GEM

In Section 1, we provided a high level description of our approach. We will now provide a detailed
description of how the two components of CZ-GEM, subgraph C → Y and the conditional generative
models (Y,Z)→ X are implemented and trained in practice. Figure 3 provides an implementation
schematic of our proposed framework.

3.1 SUB-GRAPH LEARNING

If C is known a priori then learning the subgraph C → Y reduces to the regression problem that
minimizes ||xc − yc||2. In practice, since our observations are images, this subgraph is realized using
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a deep transposed-convolution based decoder network and is trained to learn the map between C and
Y . This is similar to the recent work of Srivastava et al. (2019b). We emphasize that this network is
trained independently of the rest of the model.

Figure 3: Schematic for CZ-
GEM

Subgraph C → Y not only improves disentanglement and inter-
pretability in CZ-GEM but also allows for unsupervised discovery of
generative factors whenC is not available in the dataset. In such cases,
subgraph C → Y is realized as a variational autoencoder. This allows
us to use any state-of-the-art unsupervised disentangled representation
learning method such as Higgins et al. (2017); Burgess et al. (2018);
Chen et al. (2018); Kim & Mnih (2018); Chen et al. (2016) to discover
disentangled generative control factors. In our implementation we use
β-VAE (see Section 2.2). One drawback of these information bottle-
neck based methods is that they compromise on the generative quality.
This is where the GAN likelihood-free approach in the second stage
comes into play. In fact, even if the output of the first stage (i.e. the
intermediate image Y in Figure 2) is of very low generative quality,
the final image is of high quality since the second stage explicitly
adds details using a state-of-the-art GAN method. In Section 5 we
show how a simple VAE with a very narrow information bottleneck
(2-6 dimensions) can be used within CZ-GEM to discover C in an unsupervised fashion without
compromising on generation quality.

3.2 ADDING DETAILS

Vanilla GANs can only model the marginal data distribution i.e. they learn pθ to match px and in
doing so they use the input to the generator (Gθ) only as a source of stochasticity. Therefore we
start with a conditional GAN model instead, to preserve the correspondence between Y and X . As
shown in section 2.1, this framework trains Gθ such that the observation X is maximally explained
by the conditioning variable Y . One major deviation from the original model is that the conditioning
variable in our case is the same type and dimensionality as the observation. That is, it is an image,
albeit a blurry one. This setup has previously been used by Isola et al. (2017) in the context of
image-to-image translation.

Incorporating Z requires careful implementation due to two challenges. First, trivially adding Z to
the input along with Y invokes d-separation and as a result Y and Z can get entangled. Intuitively,
Z is adding high level details to the intermediate representation Y . We leverage this insight as an
inductive bias, by incorporating Z at higher layers of the network rather than just feeding it as an
input to the bottom layer. A straightforward implementation of this idea does not work tough. The
reason is that BatchNorm uses batch-level statistics to normalize the incoming activations of the
previous layer to speed up learning. In practice, mini-batch statistics is used to approximate batch
statistics. This adds internal stochasticity to the generator causing it to ignore any externally added
noise, such as Z. An elegant solution to resolve this second challenge comes in the form of adaptive
instance normalization (see Section 2.3). It not only removes any dependency on the batch-statistics
but also allows for the incorporation of Z in the normalization process itself. For this reason, it has
previously been used in style transfer tasks (Huang & Belongie, 2017). We replace all instances of
BatchNorm in the generator with Adaptive InstanceNorm. We then introduce Z to the generative
process using equation 1. γ(z) and β(z) are parameterized as a simple feed-forward network and are
applied to each layer of AdaIN in the generator.

4 RELATED WORK

Disentangled representation learning has been widely studied in recent years, both in the supervised
and unsupervised settings. In supervised cases, works such as Tran et al. (2018); Reed et al. (2014);
Bao et al. (2018); Jha et al. (2018); Mathieu et al. (2016); Szabó et al. (2017); Isola et al. (2017);
Kulkarni et al. (2015); Narayanaswamy et al. (2017) have used the provided labels in the dataset
or other form of weak supervision to promote disentanglement in the learned representation. In
unsupervised learning most methods such as Higgins et al. (2017); Burgess et al. (2018); Chen et al.
(2018; 2016); Esmaeili et al. (2018); Jeon et al. (2018) rely on creating an information bottleneck
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to squeeze out representations that are statistically independent in its components. Such models
often have to sacrifice on the generative capacity of the method in order to learn a factorized latent
representation.

Recently, Locatello et al. (2018) has emphasized the use of inductive biases and weak supervision
instead of fully unsupervised methods for disentangled representation learning. Nguyen-Phuoc
et al. (2019) and Sitzmann et al. (2019) have successfully shown that including inductive biases,
respectively an explicit 3D representation, leads to better performance. Their inductive bias comes
in the form of learned 3D transformation pipeline. In comparison, CZ-GEM is much simpler and
smaller in design and applies to the general setting where the data is determined by control and noise
variables. In addition, it can be used in both supervised and unsupervised setting and does not rely on
the knowledge of 3D transformations.

Manually disentangled generative models like the 3D morphable model (Blanz & Vetter, 1999) have
been built for faces. They are powerful in terms of generalization but there is a big gap between those
synthetic images and real-world face images. In addition, those models are built highly supervised
from 3D scans and the approach is limited by the correspondence assumption which does not scale to
more complex objects like chairs (Egger et al., 2019). We use a 3D morphable model to generate our
synthetic face dataset and show that we can disentangle pose variation from synthetic and real 2D
images.

5 EXPERIMENTS

In this section, we provide a comprehensive set of quantitative and qualitative results to demonstrate
how CZ-GEM is clearly able to not only disentangle C from Z in both supervised and unsupervised
settings but also ensure that independent components of C stay disentangled after training. Addi-
tionally, we show how in unsupervised settings CZ-GEM can be used to discover disentangled latent
factors when C is not explicitly provided.

We evaluate CZ-GEM on a variety of image generation tasks which naturally involve observed
attributes C and unobserved attributes Z. To that end, we generate three 3D image datasets of faces,
chairs, and cars with explicit control variables. Chairs and cars datasets are derived from ShapeNet
(Chang et al., 2015). We sample 100k images from the full yaw variation and a pitch variation of 90
degrees. We used the straight chair subcategory with 1968 different chairs and the sedan subcategory
with 559 different cars. We used Blender to render the ShapeNet meshes scripted with the Stanford
ShapeNet renderer. For faces, we generated 100k images from the Basel Face Model 2017 (Gerig
et al., 2018). We sample shape and color (first 50 coefficients), expressions (first 5 coefficients), pose
(yaw -90 to 90 degrees uniformly, pitch and roll according to a Gaussian with variance of 5 degrees)
and the illumination from the Basel Illumination Prior (Egger et al., 2018). For the generation of the
faces dataset, we use the software provided by Kortylewski et al. (2019). For the stated datasets we
have complete access to C, but we also include unsupervised results on celebA (Liu et al., 2015) with
unconstrained real images. All our datasets are built from publicly available data and tools.

We use the DCGAN architecture (Radford et al., 2015) for all neural networks involved in all
the experiments in this work and provide a reference implementation with exact architecture and
hyperparameter settings at https://github.com/AnonymousAuthors000/CZ-GEM.

5.1 SUPERVISED SETTING

In the supervised setting we compare CZ-GEM to CGAN. We quantitatively compare the two
methods to ensure that independent components of C stay disentangled post learning. Furthermore,
we qualitatively compare their abilities to disentangle C and Z. And finally, we compare the quality
of the samples that the models generate. For chairs and cars, C contains only the pose variables and
all other variations are explained by Z. For faces, C contains in addition to pose the first 4 principal
directions of shape variations.

We start by quantitatively evaluating how well the information about the control variable is maintained
in the generated image. To that end we train a deep regression model f(x) to predict the control
variate C from the dataset X . We then compute the mean-squared error (MSE) of this regressor on
the generated data ||c− f(Gθ(c, z))||22. In Table 1 we report these numbers for both models on all
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Table 1: Disentangled representation learning
performance. Lower is better. We report MSE
for all the models and the data for reference.

Dataset Real data CGAN CZ-GEM

Face 0.010 0.010 0.010
Chair 0.027 0.067 0.060
Car 0.016 0.032 0.037

Table 2: Inception score. Higher is better. Incep-
tion score of real data is reported for reference.

Dataset Real data CGAN CZ-GEM

Face 2.49 1.90 2.28
Chair 3.55 2.49 3.50
Car 3.18 2.78 3.41

three datasets. We also include the training error (i.e. the MSE of the regressor on the real data)
for comparison. The results show that CGAN and CZ-GEM are comparable in preserving the label
information in the generated data, but as we show below, only CZ-GEM does that while ensuring that
C and Z remain disentangled.

To qualitatively evaluate the level of disentanglement between C and Z, we vary each individual
dimension of C over its range while holding Z constant. We plot the generated images for both
models on car and chair datasets in Figure 4. Notice that CZ-GEM allows us to vary the control
variates without changing the identity of the object, whereas CGAN does not. In addition, we find that
for CGAN, the noise Z provides little to no control over the identity of the chairs. This is potentially
due to the internal stochasticity introduced by the BatchNorm. The last rows for the CZ-GEM figures
provide the visualization of Y . It can be seen how Y is clearly preserving C (pose information) but
averaging the identity related details.

(a) CZ-GEM car rotation (b) CZ-GEM car elevation

(c) CZ-GEM chair rotation (d) CZ-GEM chair elevation

(e) CGAN car rotation (f) CGAN car elevation

(g) CGAN chair rotation (h) CGAN chair elevation

Figure 4: Latent traversal on cars and chairs. Third rows in CZ-GEM results show Y .

We also qualitatively evaluate CZ-GEM on the more challenging faces dataset that includes 10 control
variates. As shown in Figure 9 in the appendix, CZ-GEM is not only able to model the common pose
factors such as rotation and azimuth but also accurately captures the principal shape component of
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Basel face model that approximates the width of the forehead, the width of jaw etc. Compared to
CGAN, CZ-GEM does a qualitatively better job at keeping the identity constant.

Finally, in order to ensure that our method does not compromise the generative quality, we evaluate
the Inception score (Salimans et al., 2016) on all three datasets. Inception score has been widely used
to measure the diversity and the generative quality of GANs. As shown in Table 2, unlike CGAN,
CZ-GEM does not degrade the image quality.

5.2 UNSUPERVISED SETTING

We now test the performance of CZ-GEM in the unsupervised setting, where disentangled components
of C needs to be discovered, using β-VAE, as part of learning the mapping C → Y . For our purpose,
we use a simple version of the original β-VAE method with a very narrow bottleneck (6D for faces
and 2D for cars and chairs) to extract C.

The latent traversals for the faces dataset are presented in Figure 5. Unsupervised discovery is able to
recover rotation as well as translation variation present in the dataset. For comparison, we evaluate
InfoGAN (Chen et al., 2016) and present the results in Figure 6 where it is evident that CZ-GEM
clearly outperforms InfoGAN on both disentanglement and generative quality. More traversal results
are provided in the appendix. We further test our method on the CelebA dataset (Liu et al., 2015),
where pose information is not available. This traversal plot is shown in Figure 7. Traversal plots for
cars and chairs dataset are provided in the Appendix Figure 12 and Figure 13.

Figure 5: Latent traversal on faces (unsupervised CZ-GEM). The three latent variables capture the
rotation, azimuth, and distance respectively.

Figure 6: Latent traversal of InfoGAN on faces. The latent variables are able to capture some pose
changes but the pose changes are highly entangled with other pose factors as well as the face shape.

6 CONCLUSIONS

We present a simple yet effective method of learning representations in deep generative models in the
setting where the observation is determined by control variate C and noise variate Z. Our method
ensures that in the learned representation both C and Z are disentangled as well as the components
of C themselves. This is done without compromising the quality of the generated samples. In future
work, we would like to explore how this method can be applied to input with multiple objects.

REFERENCES

Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell, and Josef Sivic. Seeing 3d chairs:
exemplar part-based 2d-3d alignment using a large dataset of cad models. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 3762–3769, 2014.

8



Under review as a conference paper at ICLR 2020

Figure 7: Latent traversal on CelebA (unsupervised CZ-GEM). The latent variables consistently
capture the azimuth, hair-style, gender and hair color respectively while maintaining good image
quality.

Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Towards open-set identity
preserving face synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6713–6722, 2018.

Voler Blanz and Thomas Vetter. A morphable model for the synthesis of 3D faces. In ACMTOGSIG-
GRAPH, pp. 187–194, 1999.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In Advances in Neural Information Processing Systems, pp.
2610–2620, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

Bernhard Egger, Sandro Schönborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-Forster,
Clemens Blumer, and Thomas Vetter. Occlusion-aware 3d morphable models and an illumination
prior for face image analysis. IJCV, 2018.

Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie Wuhrer, Michael Zollhoefer, Thabo
Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al. 3d morphable
face models–past, present and future. arXiv preprint arXiv:1909.01815, 2019.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, Narayanaswamy Siddharth, Brooks Paige,
Dana H Brooks, Jennifer Dy, and Jan-Willem van de Meent. Structured disentangled representa-
tions. arXiv preprint arXiv:1804.02086, 2018.

Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel Lüthi, Sandro
Schönborn, and Thomas Vetter. Morphable face models - an open framework. In FG, pp. 75–82,
2018.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Neural Information
Processing Systems, 2014.

9



Under review as a conference paper at ICLR 2020

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2(5):6, 2017.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510,
2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Insu Jeon, Wonkwang Lee, and Gunhee Kim. Ib-gan: Disentangled representation learning with
information bottleneck gan. 2018.

Ananya Harsh Jha, Saket Anand, Maneesh Singh, and VSR Veeravasarapu. Disentangling factors of
variation with cycle-consistent variational auto-encoders. In European Conference on Computer
Vision, pp. 829–845. Springer, 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983,
2018.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster,
and Thomas Vetter. Analyzing and reducing the damage of dataset bias to face recognition with
synthetic data. In CVPRW, 2019.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. In Advances in neural information processing systems, pp. 2539–2547,
2015.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled represen-
tations. arXiv preprint arXiv:1811.12359, 2018.

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and Yann
LeCun. Disentangling factors of variation in deep representation using adversarial training. In
Advances in Neural Information Processing Systems, pp. 5040–5048, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Siddharth Narayanaswamy, T Brooks Paige, Jan-Willem Van de Meent, Alban Desmaison, Noah
Goodman, Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations
with semi-supervised deep generative models. In Advances in Neural Information Processing
Systems, pp. 5925–5935, 2017.

10



Under review as a conference paper at ICLR 2020

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Hologan:
Unsupervised learning of 3d representations from natural images. arXiv preprint arXiv:1904.01326,
2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems,
pp. 271–279, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of
variation with manifold interaction. In International Conference on Machine Learning, pp. 1431–
1439, 2014.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems, pp.
2234–2242, 2016.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In Advances in Neural Information
Processing Systems, 2019.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural
Information Processing Systems, pp. 3308–3318, 2017.

Akash Srivastava, Kai Xu, Michael U Gutmann, and Charles Sutton. Ratio matching mmd nets: Low
dimensional projections for effective deep generative models. arXiv preprint arXiv:1806.00101,
2018.

Akash Srivastava, Kristjan Greenewald, and Farzaneh Mirzazadeh. Bregmn: scaled-bregman genera-
tive modeling networks. arXiv preprint arXiv:1906.00313, 2019a.

Akash Srivastava, Jessie Rosenberg, Dan Gutfreund, and David D Cox. Simvae: Simulator-assisted
training for interpretable generative models. 2019b.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

Attila Szabó, Qiyang Hu, Tiziano Portenier, Matthias Zwicker, and Paolo Favaro. Challenges in
disentangling independent factors of variation. arXiv preprint arXiv:1711.02245, 2017.

Luan Quoc Tran, Xi Yin, and Xiaoming Liu. Representation learning by rotating your faces. IEEE
transactions on pattern analysis and machine intelligence, 2018.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

A APPENDIX

A.1 CGAN MUTUAL INFORMATION DERIVATION

Following Sugiyama et al. (2012); Gutmann & Hyvärinen (2010); Mohamed & Lakshminarayanan
(2016); Srivastava et al. (2017) we know that at optima the logits (Dω) of a trained discriminator
approximate the log-ratio of the true data and generated data densities, i.e. Dω ≈ log px(x|c)p(c)

pθ(x|c)p(c) .
Following Nowozin et al. (2016); Srivastava et al. (2017; 2018; 2019a) the generator Gθ can therefore
be trained to minimize the following f-divergence between the two sets of densities,

min
θ

E[−Dω] ≈ min
θ

∫
pθ(x|c)p(c)

[
− log

p(x|c)p(c)
pθ(x|c)p(c)

]
d(x, c). (2)
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The RHS of equation 2 can be re-arranged into terms containing the upper and the lower bounds to
the generative mutual information between X and C, i.e.,

min
θ

E
[
−Dω

]
≈min

θ
E
[
log

pθ(x|c)
p(x)

]
+max

θ
E
[
log

p(c|x)
p(c)

]
=min

θ
E
[
log

pθ(x|c)
pθ(x)

+ log
pθ(x)

p(x)

]
+

max
θ

E
[
log

q(c|x, θ)
p(c)

+ log
p(c|x)
q(c|x, θ)

]
=min

θ
E
[
log

pθ(x|c)
pθ(x)

+ log
pθ(x)

p(x)

]
+

max
θ

E
[
log

q(c|x, θ)
p(c)

− log
q(c|x, θ)
p(c|x)

]
=min

θ
Ig,θ(x, c) + Eq(c|x,θ)KL(pθ(x)‖p(x))+

max
θ
Ig,θ(x, c)− Epθ(x)KL[q(c|x, θ)‖p(c|x)]

=min
θ
IUBg,θ (x, c)− ILBg,θ (x, c). (3)

A.2 QUANTITATIVE EVALUATION

Apart from the MSE-based estimator reported in 1, we report and additional evaluation measure.
We use the same regressor f(x) trained for 1, but we report the Pearson correlation co-efficient (r)
between the predicted label and the true label r(c, f(Gθ(c, z))) for each dimension of C.

Chairs

CGAN 0.89 0.88
CZ-GEM 0.82 0.89

Cars

CGAN 0.88 0.97
CZ-GEM 0.86 0.96

Faces

CGAN 0.46 0.55 0.41 0.40 0.88 0.91 0.77 0.93 0.87 0.97
CZ-GEM 0.27 0.32 0.31 0.24 0.88 0.87 0.72 0.89 0.78 0.96

A.3 ADDITIONAL EXPERIMENT RESULTS

Comparison of CZ-GEM and CGAN on face dataset is shown in Figure 9. CGAN not only produces
blurry faces but also shows more undesired identity changes. In order to show the shape variation
clearly, we provide a zoomed-in view in Figure 10.

We provide additional results for supervised and unsupervised results on the chair dataset from Aubry
et al. (2014) in Figure 11 and Figure 12 respectively. The observation is the same with the previous
one. CZ-GEM varies the control variables without changing the shape of chairs. In the first row in
Figure 11, the leg of the chairs are visually indistinguishable showing an excellent disentanglement
between C and Z. For the results in unsupervised setting showing in Figure 12, CZ-GEM is able to
disentangle the rotation of chairs without any label.

Additional results of latent traversal of CZ-GEM in the unsupervised setting is provided in Figure 13.
The model is able capture the rotation but the translation is not very smooth.
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(a) CZ-GEM face pose

(b) CZ-GEM face shape

Figure 8: Latent traversal of CZ-GEM on faces. The pose variations are azimuth, horizontal translation,
vertical translation, distance, rotation, and elevation from top to bottom. The shape variations show
the difference in face height, forehead, jaw, and ear from top to bottom.

Figure 14 provides the InfoGAN result on the face dataset. Compared with unsupervised CZ-GEM
result in Figure 15, clearly InfoGAN discovers some control variables but the effect is highly
entangled.
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(a) CGAN face pose

(b) CGAN face shape

Figure 9: Latent traversal of CGAN on faces. The pose variations are azimuth, horizontal translation,
vertical translation, distance, rotation, and elevation from top to bottom. The shape variations show
the difference in face height, forehead, jaw, and ear from top to bottom.

Figure 10: Zoomed-in comparison on face shape. Row 1: CGAN forehead variation; Row 2: CGAN
jaw variation; Row 3: CZ-GEM forehead variation; Row 4: CZ-GEM jaw variation. Row 1 and Row
3 should have a bigger forehead from left to right while Row 2 and Row 4 should have a consistent
forehead. CGAN and CZ-GEM shows good forehead variation in Row 1 and Row 3 respectively but
CZ-GEM (Row 4) does better than CGAN (Row 2) in keeping the forehead the same while another
factor is changing.
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Figure 11: Latent traversal on chairs. The first three rows show the effect of the variable in C that
controls the rotation of chairs. The last row visualize the corresponding Y .

Figure 12: Latent traversal on chairs (unsupervised CZ-GEM).

Figure 13: Latent traversal of unsupervised CZ-GEM on cars.
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Figure 14: Latent traversal of InfoGAN on faces dataset.

Figure 15: Latent traversal of unsupervised CZ-GEM on face dataset.
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