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ABSTRACT

Visual attention mechanisms have been widely used in image captioning models.
In this paper, to better link the image structure with the generated text, we replace
the traditional softmax attention mechanism by two alternative sparsity-promoting
transformations: sparsemax and Total-Variation Sparse Attention (TVMAX). With
sparsemax, we obtain sparse attention weights, selecting relevant features. In or-
der to promote sparsity and encourage fusing of the related adjacent spatial lo-
cations, we propose TVMAX. By selecting relevant groups of features, the TV-
MAX transformation improves interpretability. We present results in the Microsoft
COCO and Flickr30k datasets, obtaining gains in comparison to softmax. TV-
MAX outperforms the other compared attention mechanisms in terms of human-
rated caption quality and attention relevance.

1 INTRODUCTION

The goal of image captioning is to generate a fluent textual caption that describes a given image
(Farhadi et al., 2010; Kulkarni et al., 2011; Vinyals et al., 2015; Xu et al., 2015). Image captioning is
a multimodal task: it combines text generation with the detection and identification of objects in the
image, along with their relations. While neural encoder-decoder models have achieved impressive
performance in many text generation tasks (Bahdanau et al., 2015; Vaswani et al., 2017; Chorowski
et al., 2015; Chopra et al., 2016), it is appealing to design image captioning models where structural
bias can be injected to improve their adequacy (preservation of the image’s information), therefore
strengthening the link between their language and vision components.

State-of-the-art approaches for image captioning (Liu et al., 2018a;b; Anderson et al., 2018; Lu
et al., 2018) are based on encoder-decoders with visual attention. These models pay attention either
to the features generated by convolutional neural networks (CNNs) pretrained on image recognition
datasets, or to detected bounding boxes. In this paper, we focus on the former category: visual at-
tention over features generated by a CNN. Without explicit object detection, it is up to the attention
mechanism to identify relevant image regions, in an unsupervised manner.

A key component of attention mechanisms is the transformation that maps scores into probabilities,
with softmax being the standard choice (Bahdanau et al., 2015). However, softmax is strictly dense,
i.e., it devotes some attention probability mass to every region of the image. Not only is this wasteful,
it also leads to “lack of focus”: for complex images with many objects, this may lead to vague
captions with substantial repetitions. Figure 1 presents an example in which this is visible: in the
caption generated using softmax (top), the model attends to the whole image at every time step,
leading to a repetition of “bowl of fruit.” This undesirable behaviour is eliminated by using our
alternative solutions: sparsemax (middle) and the newly proposed TVMAX (bottom).

In this work, we introduce novel visual attention mechanisms by endowing them with a new capabil-
ity: that of selecting only the relevant features of the image. To this end, we first propose replacing
softmax with sparsemax (Martins & Astudillo, 2016). While sparsemax has been previously used
in NLP for attention mechanisms over words, it has never been applied to computer vision to attend
over image regions. With sparsemax, the attention weights obtained are sparse, leading to the selec-
tion (non-zero attention) of only a few relevant features. Second, to further encourage the weights
of related adjacent spatial locations to be the same (e.g., parts of an object), we introduce a new at-
tention mechanism: Total-Variation Sparse Attention (which we dub TVMAX), inspired by prior
work in structured sparsity (Tibshirani et al., 2005; Bach et al., 2012). With TVMAX, sparsity is
allied to the ability of selecting compact regions. According to our human evaluation experiments,
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Figure 1: Example of captions generated using softmax (top), sparsemax (middle) and TVMAX
attention (bottom). Shading denotes the attention weight, with white for zero attention. The darker
the green is, the higher the attention weight is. The full sequences are presented in Appendix C.

this leads to better interpretability, since the model’s behaviour is better understood by looking at
the selected image regions when a particular word is generated. It also leads to a better selection of
the relevant features, and consequently to the improvement of the generated captions.

This paper introduces three main contributions:

• We propose a novel visual attention mechanism using sparse attention, based on sparse-
max (Martins & Astudillo, 2016), that improves the quality of the generated captions and
increases interpretability.

• We introduce a new attention mechanism, TVMAX, that encourages sparse attention over
contiguous 2D regions, giving the model the capability of selecting compact objects. We
show that TVmax can be evaluated by composing a proximal operator with a sparsemax
projection, and we provide a closed-form expression for its Jacobian. This leads to an
efficient implementation of its forward and backward pass.

• We perform an empirical and qualitative comparison of the various attention mechanisms
considered. We also carry out a human evaluation experiment, taking into account the
generated captions as well as the perceived relevance of the selected regions.

2 SELECTIVE VISUAL ATTENTION

Attention mechanisms have the ability to select the relevant features, in this case spatial locations.
This requires a mapping from importance scores to a distribution, z ∈ Rk 7→ p ∈ 4k, where
4k :=

{
p ∈ Rk |

∑k
i=1 pi = 1,p > 0

}
denotes the simplex (the set of all probability distributions

over k values). The standard choice for this mapping is softmax, defined as:

[softmax(z)]i =
exp(zi)∑
j exp(zj)

. (1)

However, as softmax is strictly positive, its output is dense. Thus, the model must pay some attention
to the whole image and, consequently, assign lower attention weights to the relevant regions. This
motivates our proposed selective visual attention mechanisms, which, by being sparse, are able to
better isolate the relevant image regions.
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2.1 SPARSEMAX

To achieve selective capabilities, we propose the use of sparsemax (Martins & Astudillo, 2016), a
sparse mapping consisting in the Euclidean projection of z onto the probability simplex:

sparsemax(z) := arg min
p∈4k

1

2
‖p− z‖22, (2)

which allows to obtain sparse outputs with a small increase in complexity. Output sparsity is an
attractive property for attention mechanisms, since some features do not provide relevant informa-
tion for the current prediction. In the image captioning case, using sparsemax allows focusing only
on the spatial locations of the image that are relevant to the word being generated, assigning zero
attention weight to all other regions.

2.2 SPARSE AND STRUCTURED VISUAL ATTENTION

To generate descriptive captions, the model should identify the objects present in the image. Thus,
when generating object-related words, the attention mechanism should assign high weights to the
regions of the image containing the object. However, sparsemax is unstructured and index-invariant,
leading it to select discontinuous regions. To overcome this, we propose a new visual attention
mechanism, TVMAX. TVMAX is a non-trivial generalization of fusedmax (Niculae & Blondel,
2017), a transformation based on fused lasso, to the 2D case. To this end, we first extend fusedmax
even more generally, to arbitrary graphs.

2.2.1 GENERALIZED FUSED LASSO

Let w ∈ Rk, and let I = {1, . . . , k}. Consider a graph over I defined by its edges E ⊆ I × I,
where an edge between i and j means we want to encourage wi to be close to wj . For simplicity we
use i ∼ j as shorthand for (i, j) ∈ E.

The generalized fused lasso penalty (Tibshirani et al., 2005) is defined as:

ΩE(w) =
∑
i∼j
|wi − wj |. (3)

Minimizing ΩE encourages “fused” solutions, i.e., it encourages wi = wj for i ∼ j. In particu-
lar, its proximal operator1 can be seen as a fused signal approximator, seeking a vector w that
approximates z well (in terms of Euclidean distance) and that is encouraged to be fused:

proxλΩE
(z) = arg min

w∈Rd

1

2
‖w − z‖2 + λΩE(w). (4)

Computing the value of proxλΩE
is non-trivial in general (Xin et al., 2016), but for certain edge

configurations, described below, efficient algorithms exist.

• If E forms a chain, i.e. i ∼ j ⇐⇒ i = j − 1, the problem is called 1D total variation
and can be solved in O(k) time using the taut string algorithm (Davies & Kovac, 2001;
Barbero & Sra, 2014). We use the quasilinear algorithm of Condat (2013), which is very
fast in practice.

• If the indices are aligned on a 2D grid, as in an image, and i ∼ j holds iff. j is to the right or
immediately below i, the problem is called 2D total variation. Unlike the 1D case, exact
algorithms are not available. However, for an input of size a × b, it is possible to split the
penalty into a column-wise and b row-wise 1D problems. We may then apply a number of
iterative methods, for instance proximal Dykstra (Barbero & Sra, 2014).2

1The proximal operator is defined in Eq. 11 of Appendix A.1.
2We use the implementation readily available in the copt library, available at http://openopt.

github.io/copt/.
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2.2.2 TVMAX

TVMAX combines 2D total variation (TV2D) regularization with sparsemax. This way it promotes
sparsity and encourages the attention weights of adjacent spatial locations to be the same, selecting
contiguous regions of the image. TVMAX is defined as follows:
Definition 1 (TVMAX). Let z ∈ Rk, such that z’s indices can be decomposed into rows and
columns. The TVMAX transformation is defined as

TVMAX(z) := arg min
p∈4k

1

2
‖p− z‖22 + λΩTV2D (p), (5)

where λ is an hyper-parameter controlling the amount of fusion (λ = 0 recovers sparsemax) and
ΩTV2D is a 2D total variation penalty.

Note that Eq. 5 differs from Eq. 4 in which the variable p is further constrained to lie in the proba-
bility simplex. We show next how the forward and backward passes can be efficiently computed.

2.2.3 GENERALIZED FUSED SPARSE ATTENTION

To construct generalized fused sparse attention, we follow Niculae & Blondel (2017) and define

gfusedmaxE(z) := arg min
p∈4

‖p− z‖22 + λΩE(p). (6)

This can be seen as a constrained fused lasso approximator, because the solution p must be a prob-
ability distribution vector. While the optimization function is very similar to Eq. 4, the additional
constraint that p ∈ 4 increases complexity. Fortunately, the following result holds:
Proposition 1 (Computing generalized fusedmax).

gfusedmaxE(z) = proj4
(
proxλΩE

(z)
)
. (7)

The proof is given in Appendix A.2.

Proposition 1 also provides a shortcut for deriving the Jacobian of generalized fusedmax via the
chain rule: denoting by JF the Jacobian of proxλΩE

, we have

∂ gfusedmax

∂z
= Jgfusedmax = J sparsemax(proxλΩE

(z))JF (z).

As we already know how to compute J sparsemax (Appendix A.1), we may concentrate our effort on
deriving the simpler JF (Eq. 9).
Proposition 2 (Group-wise characterization of proxλΩE

). Let w? := proxλΩE
, and denote by Gi

the set of indices fused to wi in the solution, Gi may be defined recursively:

1. i ∈ Gi for all i, and

2. j ∈ Gi if there exists m ∈ Gi such that m ∼ j and w?m = w?j .

Define sij = sign(w?i − w?j ). Then, the solution has the expression

w?i =
1

|Gi|
∑
j∈Gi

zj +
∑
m∼j
m6∈Gi

λsmj −
∑
j∼m
m6∈Gi

λsjm

 . (8)

Proposition 2 shows how to easily compute a generalized Jacobian of gfusedmax: since small pertur-
bations in z never change the groupsGi nor the signs of across-group differences sij , differentiating
Eq. 8 yields

JF i,j =
∂w?i
∂zj

=

{
1
|Gi| , j ∈ Gi,
0, j 6∈ Gi.

(9)

This generalizes Lemma 1 of Niculae & Blondel (2017) to generalized fused lasso, with a simpler
proof, given in Appendix A.3.
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2.2.4 COMPUTATION

As we show in Proposition 1, computing TVMAX’s forward pass can be done by chaining efficient
algorithms for TV2D and sparsemax.

From Eq. 7 we have that TVMAX’s Jacobian can be computed as JTVMAX =
J sp(proxλΩTV

2D
(z))J tv(z), where J sp is the sparsemax’s Jacobian and J tv is the Jacobian of

the Total Variation proximal operator.3 As derived in Proposition 2, (J tv)i,j = 1/nij if i and j are
fused in a group with nij elements, and 0 otherwise.

The backward pass intuitively involves ”spreading” the credit assigned to one image location evenly
across all locations fused with it. This can be implemented by Algorithm 1 inO(k+Ng log k) where
Ng is the number of groups of fused positions. In the worst case, when there are no positions fused,
the complexity is O(k + k log k). This algorithm is inspired by flood filling algorithms (Burtsev &
Kuzmin, 1993).

Algorithm 1 TVMAX backward pass (Jacobian-vector products)
1 Input: p = TVMAX(z), dp ∈ Rk.
2 Output: dz = J>

TVMAX(dp) ∈ Rk # chain rule
3 Initialize: N ← ∅ # neighbours stack
4 V ← ∅ # visited positions
5 G← ∅ # current group
6 s = 0 # intermediate value used for JTVMAX’s computation
7 dw ← (J sp)> dp # Eqs. 14 and 15 of §A.1
8 while |V | < k do # check if all positions have been visited
9 pick (i0, j0) 6∈ V , push (i0, j0) to N # get not visited position and add it to neighbours stack

10 while N not empty do
11 pop (i, j) from N # get element from neighbours stack
12 if pi,j = pi0,j0 then # check if element is fused
13 G← G ∪ {(i, j)}, V ← V ∪ {(i, j)} # add neighbour to group and to visited positions
14 s← s+ (dw)i,j # sum of the dw of each element of the group
15 for all neighbours (i′, j′) ∼ (i, j) do
16 if (i′, j′) 6∈ V then push (i′, j′) to N # add not visited neighbours of (i, j) to the stack

17 if G not empty then:
18 (dz)i,j ← s/|G| for all (i, j) ∈ G # compute JTVMAX for elements in group G

19 G← ∅
20 s = 0

3 IMAGE CAPTIONING MODEL

To compare the proposed attention mechanisms, we use a straight-forward simple encoder-decoder
model with visual attention, inspired by Liu et al. (2018a). The model is sketched in Figure 2.

Given an image, we use a residual CNN pretrained on ImageNet (He et al., 2016; Russakovsky
et al., 2014) to get a feature map with spatial dimension of size 8 × 8 and channel dimension of
size 2048, that go through a fine-tuned feedforward layer yielding g = 512 feature maps. The
visual feature matrix V = [v1, v2, . . . , vk], with vi ∈ Rg and k = 64 = 8 × 8, contains the image
information used to generate the corresponding caption. Following Liu et al. (2018a), we use input
and output attention to select the relevant features for the current generation. To generate the word
at position t, the input attention, αt, is computed using the LSTM’s previous hidden state, ht−1 ∈
Rd. First, a similarity score zt,i, i ∈ {1, . . . , k}, is computed between ht−1 and the ith image cell
via a feedforward transformation (Bahdanau et al., 2015), as zt,i = w>tanh(affine([vi;ht−1])),
for all k image cells. Then, αt is obtained by normalizing the k-dimensional vector of scores zt
with softmax, αt = softmax(zt). Using these attention weights, a vector representation of the
image to be used as input of the LSTM, is obtained, st = V αt. The output attention α̃t, is

3J tv is a special case of JF, when using the graph E that consists in a 2D grid.
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computed in the same way as above, but applied to the current LSTM hidden state ht, instead of
ht−1, and normalized with the different proposed transformations. This produces output visual
features s̃t = V α̃t, which are passed through a feedforward layer to yield the image representation
rt = tanh(affine(s̃t)). Finally, the predictive probability of the next word is:

P (yt | y1:(t−1); Image) ∝ softmax(affine([rt;ht])). (10)

Image ResNet 152 FF

Image Encoder

V(visual features)

Input
Att. (αt)

Output
Att. (α̃t)

LSTM

ht−1

zt

ht

FF

rt

pt

ytyt−1...caption:

Figure 2: Diagram of the caption generation network.

4 EXPERIMENTS

Settings. The input images are resized to 256 × 256 before going through the residual CNN and
the feature maps obtained have a size of 8 × 8. We use an LSTM hidden size of d = 512 and a
word embedding size of 256, for all models. The models were trained for 50 epochs using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001 and a decay of 0.8 and 0.999 for
the first and second momentum, respectively. After the 10th epoch, the learning rate starts decaying
with a decay factor of 0.99. For TVMAX, we set λ = 0.01.

Datasets and Metrics. We report our results on the Microsoft COCO (MSCOCO) and Flickr30k
datasets. MSCOCO is composed of 113,287 images of common objects in context while Flickr30k
consists in 31,000 pictures of people involved in everyday activities and events. Each image is an-
notated with 5 captions. We use the split proposed by Karpathy & Fei-Fei (2015), which stipulates
equal validation and test sizes of 5,000 images (MSCOCO) and 1,000 (Flickr30k). The metrics we
report are SPICE (Anderson et al., 2016), CIDEr (Vedantam et al., 2015), longest common subse-
quence ROUGE, (denoted ROUGEL; Lin, 2004), 1– to 4–gram BLEU (denoted BLEU4; Papineni
et al., 2002), and METEOR (Banerjee & Lavie, 2005). To investigate whether selective attention
alleviates repetition, we also measure the n-gram repetition metric REP (Malaviya et al., 2018).

Table 1: Automatic evaluation of caption generation on MSCOCO and Flickr30k.

MSCOCO Flickr30k

SPICE CIDER ROUGEL BLEU4 METEOR REP↓ SPICE CIDER ROUGEL BLEU4 METEOR REP↓
softmax 18.4 0.967 52.9 29.9 24.9 3.76 13.5 0.443 44.2 19.9 19.1 6.09
sparsemax 18.9 0.990 53.5 31.5 25.3 3.69 13.7 0.444 44.3 20.7 19.3 5.84
TVMAX 18.5 0.974 53.1 29.9 25.1 3.17 13.3 0.438 44.2 20.5 19.0 3.97

Automated metrics. As can be seen in table 1, overall sparsemax and TVMAX attention mech-
anisms achieve better results when compared with softmax, indicating that the use of selective at-
tention leads to better captions. This improvement does not come at a high computational cost: at
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Figure 3: Example of captions generated using softmax (top), sparsemax (middle) and TVMAX
attention (bottom). Shading denotes the attention weight, with white for zero attention. The darker
the green is, the higher the attention weight is. The full sequences are presented in Appendix C.

inference time, models using TVMAX and sparsemax are only 1.3x and 1.1x slower than softmax.
Moreover, for TVMAX, automatic metrics results are slightly worse than sparsemax but still supe-
rior to softmax on MSCOCO and similar on Flickr30k. We show next that this is compensated with
fewer repetitions and higher scores in the human evaluation of the captions and attention relevance.

Table 2: Human evaluation results with different attention mechanisms on MSCOCO.

CAPTION (1-5) ATTENTION RELEVANCE (1-5)

softmax 3.50 3.38
sparsemax 3.71 3.89
TVMAX 3.87 4.10

Human rating. The caption evaluation consisted in attributing a score from 1 to 5 to the caption
of each model while the attention evaluation consisted in scoring the relevancy of the attended areas,
from 1 to 5, when generating the non stop words of the captions. A full description of the human
assessment can be found in Appendix B.

Despite performing slightly worse than sparsemax under automated metrics, TVMAX outperforms
sparsemax and softmax in the caption human evaluation and the attention relevance human evalua-
tion, reported in Table 2. The superior score on attention relevance shows that TVMAX is better at
selecting the relevant features and its output is more interpretable. Additionally, the better caption
evaluation results demonstrate that the ability to select compact regions induces the generation of
better captions. We next explore possible explanations for the TVMAX superior results.

Repetition. Figure 1 illustrates that softmax attention is prone to spuriously repeating references to
the same object. Selective attention mechanisms like sparsemax and especially TVMAX reduce rep-
etition, as measured by the REP metric reported in Table 1. This expected success can be attributed
to the sparsity of the attention weights distribution and to the ability to select compact regions ex-
clusively and can be one of the causes of the human evaluation results. This happens even though
TVMAX generates longer sentences than sparsemax and softmax (9.5 against 9.0 words on average)
and shows the benefit of promoting structured and sparse attention simultaneously. To corroborate
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our intuition that sparsity leads to less repetition, we measured the Jensen-Shannon divergence (JS)
between the attention distributions for each step of the generation of the captions correspondent to
the images of the MSCOCO test set. The mean JS values are 0.12, 0.29, and 0.34 for softmax,
sparsemax, and TVmax, respectively. This shows that sparsity leads to less similar attention distri-
butions along the generation of the captions and, consequently, to less repetitions.

Object detection. Using the MSCOCO object detection ground truth, we compared the percentage
of objects present in the image that are referred to in the captions, using each attention mechanism.
With TVMAX 28.2% of the reference objects are referred, against 27.5% and 27.4% for sparsemax
and softmax, repectively. This shows that promoting high attention to groups of spatial locations of
the image leads to a more precise identification of the objects.

Sparsity. The average image area that receives zero attention is 34% for sparsemax and 25% for
TVMAX. To illustrate where the models attend to, we display the output attention in Figures 1 and
3. As expected, softmax weights are spread widely across the image, ending up missing the relevant
regions. In contrast, sparsemax and TVMAX weights are zero for the non-relevant spatial locations.

Qualitative comparison. As the image of Figure 1 contains various similar objects, the softmax
model (top) generates a incoherent, repetition-laden caption. In contrast, the sparsemax (middle)
and TVMAX (bottom) models better identify the relevant parts of the image, generating coherent
and descriptive captions. Moreover, the groups obtained with TVMAX are clearly visible and more
aligned to object boundaries, offering better interpretability, as revealed by human attention assess-
ment. In Figure 3 it can also be noticed that with TVMAX (bottom) the model correctly identified “a
group of people” instead of “a soccer player” as with sparsemax (middle) and softmax (top). This
indicates its superior ability to correctly define the relevant groups of features and that this ability
leads to improved captions.

5 RELATED WORK

Image captioning. In the last years, neural models with visual attention mechanisms have been
receiving increased interest. Several researchers have been studying diverse attention mechanisms in
order to refine visual information for image captioning. Xu et al. (2015) proposed the use of hard at-
tention, which only attends to one region at each step. However, to generate descriptive captions the
model should, often, focus on more than one region. In addition, hard attention is non-differentiable,
requiring imitation learning or Monte Carlo policy gradient approximations.Anderson et al. (2018)
proposed bottom-up attention, using an object detection model designed to identify bounding boxes
of objects, and top-down attention, selecting the relevant bounding-boxes. Wang et al. (2019) pro-
posed an hierarchical attention network composed by a patch detector, object detector, and concept
detector. Using object detection models is less demanding on the attention mechanism, since it only
has to select the boxes the model should attend to. However, such models are limited by the bound-
ing boxes position’s accuracy. Gao et al. (2019) introduced a deliberate attention network to refine
the attended visual features. Yet, the attention distribution remained dense.

Sparse attention. In several tasks only a few features are relevant for the current prediction. This
can be attained when using sparse attention. Various prior works have proposed sparse attention
mechanisms with promising results, (Xu et al., 2015; Martins & Astudillo, 2016; Malaviya et al.,
2018; Peters et al., 2019). Niculae & Blondel (2017) proposed 1D fusedmax, which incorporates
the fused lasso, so that adjacent words are encouraged to have the same attention weight. In this
work, the authors were able to improve interpretability without sacrificing performance, obtaining
superior results on textual entailment and summarization. We derive a generalized fused attention
mechanism, extending 1D fusedmax.

6 CONCLUSIONS AND FUTURE WORK

We propose using sparse and structured visual attention, in order to improve the process of selecting
the features relevant to the caption generation. For that, we used sparsemax and introduced TVMAX.
Results on the image captioning task, show that the attention mechanism is able to select better
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features when using sparsemax or TVMAX. Furthermore, in the human assessment and attention
analysis we see that the improved selection of the relevant features as well as the ability to group
spatial features lead to the generation of better captions, while improving the model’s interpretability.

In future work, TVMAX attention can be applied to other multimodal problems such as visual ques-
tion answering. It can also be applied in other tasks for which we have prior knowledge of the data’s
stucture, for instance graphs or trees.
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Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate opti-
mization. The Annals of Applied Statistics, 1(2):302–332, 2007.

Lianli Gao, Kaixuan Fan, Jingkuan Song, Xianglong Liu, Xing Xu, and Heng Tao Shen. Deliberate
attention networks for image captioning. 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. CVPR, 2016.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. preprint
arXiv:1412.6980, 2014.

9

https://arxiv.org/abs/1607.08822
https://arxiv.org/abs/1607.08822
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://aclanthology.info/papers/W05-0909/w05-0909
https://aclanthology.info/papers/W05-0909/w05-0909
http://arxiv.org/abs/1411.0589
http://arxiv.org/abs/1411.0589
http://www.aclweb.org/anthology/N16-1012
http://www.aclweb.org/anthology/N16-1012
https://arxiv.org/abs/1506.07503
http://ieeexplore.ieee.org/document/6579659/
https://projecteuclid.org/euclid.aos/996986501
https://arxiv.org/abs/1506.07503
https://arxiv.org/abs/0708.1485
https://arxiv.org/abs/0708.1485
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385


Under review as a conference paper at ICLR 2020

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C Berg, and
Tamara L Berg. Baby talk: Understanding and generating image descriptions. In Proc. CVPR,
2011.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. Text Summarization
Branches Out, 2004.

Fenglin Liu, Xuancheng Ren, Yuanxin Liu, Houfeng Wang, and Xu Sun. simNet: Stepwise image-
topic merging network for generating detailed and comprehensive image captions. Preprint
arXiv:1808.08732, 2018a.

Xihui Liu, Hongsheng Li, Jing Shao, Dapeng Chen, and Xiaogang Wang. Show, tell and discrim-
inate: Image captioning by self-retrieval with partially labeled data. preprint arXiv:1803.08314,
2018b.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Neural baby talk. In Proc. CVPR, 2018.
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A FORWARD AND BACKWARD PASS OF 2D FUSEDMAX ATTENTION.

A.1 PRELIMINARIES

The proximal operator of a function f : Rd → R ∪ {∞} is defined as

proxf (z) = arg min
w∈Rd

f(z) +
1

2
‖z −w‖22, (11)

and it is guaranteed to have a unique solution, thanks to the strong convexity of the Euclidean
distance.

The indicator function of a set C ⊂ Rd is the function

ιC : Rd → R ∪ {∞}, ιC(w) :=

{
0, w ∈ C,
∞, w 6∈ C. (12)

The projection onto a convex set C ⊂ Rd is defined as

projC(z) := arg min
w∈C

1

2
‖z −w‖22 = proxιC (z), (13)

showing that the proximal operator can be seen as a generalization of projection.

The sparsemax attention mapping (Martins & Astudillo, 2016) is the projection onto the simplex,

sparsemax(z) := proj4(z) = arg min
p∈4

1

2
‖p− z‖2. (14)

A necessary component for using sparsemax for attention is its Jacobian, the matrix of its partial
derivatives (J sparsemax)i,j = ∂ sparsemax(z)i

∂zj
. Martins & Astudillo (2016) derive its expression

J sparsemax(z) = diag s− 1

‖s‖1
ss>, (15)

where sj = 1 if sparsemax(z)j > 0 and sj = 0 otherwise.

A.2 PROOF OF PROPOSITION 1

Proof. This result is a slight extension of Proposition 2 in Niculae & Blondel (2017), and also
follows from Corrolary 4 of Yu (2013), by taking f = ι4, and noting that ι4 is symmetric: if
p ∈ 4, then any vector p′ obtained by permuting p is also in 4, because its values remain non-
negative and sum to 1.

A.3 PROOF OF PROPOSITION 2

Let w? := proxλΩE
, and denote by Gi the set of indices fused to wi in the solution. Define sij =

sign(w?i − w?j ).

Proof. The subgradient optimality conditions of Eq. 4 are: (Friedman et al., 2007)

w?i − zi +
∑
k:i∼k

λtik −
∑
k:k∼i

λtki = 0, 1 ≤ i ≤ d. (16)

where tij = sign(w?i − w?j ) if w?i 6= w?j , otherwise tij is a free variable in [−1, 1].

We focus on a single group G = Gi, dropping the index i for brevity. Within a fused group, the
solution is constant, i.e., w?j = w for j ∈ G. We separate the sums in Eq. 16 according to whether
k ∈ G or not, and move the “constant” terms to the right hand side, yielding the system

w +
∑
j∼k
k∈G

λtjk −
∑
k∼j
k∈G

λtkj = zj +
∑
k∼j
k 6∈G

λskj −
∑
j∼k
k 6∈G

λsjk, j ∈ G. (17)
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Summing up the Eq. 17 over all j ∈ G, we observe that for any k ∈ G, the term λtjk appears twice
with opposite signs. Thus,

∑
j∈G

w =
∑
j∈G

zj +
∑
k∼j
k 6∈G

λskj −
∑
j∼k
k 6∈G

λsjk

 . (18)

Dividing by |G| gives exactly Eq. 8. This reasoning applies to any group Gi.

B HUMAN EVALUATION DESCRIPTION

To perform the human evaluation firstly 100 images were randomly selected from the test set of
the MSCOCO dataset (using the split proposed by Karpathy & Fei-Fei (2015)). For each of the
selected images, the human evaluators selected a score from 1 to 5 for the captions generated by
the models using softmax attention, sparsemax attention, and TVMAX attention. They were also
asked to evaluate whether the models attend to the relevant regions of the image when generating
a certain word. For that they observed the attention plots corresponding to the non stop words of
the caption of each of the models. While in Figures 1 and 3, 4, and 5 we emphasized sparsity with
a hard white mask, for the human evaluation the sparse regions of the attention plots were simply
fully transparent, to avoid biasing the evaluators. The possible scores were also between 1 and 5.
The 100 images were judged by 6 persons both for the captions evaluation and attention evaluation.
The order of the captions and attention plots was randomly chosen for each image.

With these scores, we computed the mean of the captions evaluation scores and the mean of the
attention relevance evaluation scores. The results are reported in Table 2.

C ADDITIONAL ATTENTION VISUALIZATION

Figure 4: Example generated captions using softmax attention (top), sparsemax attention (middle)
and TVMAX attention (bottom). The captions are “A bowl of fruit and a bowl of fruit”, “A bowl of
fruit and oranges on a table” and “A bowl of oranges and a banana on a table”.
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Figure 5: Example generated captions using softmax attention (top), sparsemax attention (middle)
and TVMAX attention (bottom). The captions are “A soccer player is running to the base”, “A soccer
player is running to the field” and “A group of people playing soccer on a field”.
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