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ABSTRACT

Recent advances in the sparse neural network literature have made it possible to
prune many large feed forward and convolutional networks with only a small quan-
tity of data. Yet, these same techniques often falter when applied to the problem
of recovering sparse recurrent networks. These failures are quantitative: when
pruned with recent techniques, RNNs typically obtain worse performance than
they do under a simple random pruning scheme. The failures are also qualitative:
the distribution of active weights in a pruned LSTM or GRU network tend to be
concentrated in specific neurons and gates, and not well dispersed across the entire
architecture. We seek to rectify both the quantitative and qualitative issues with
recurrent network pruning by introducing a new recurrent pruning objective derived
from the spectrum of the recurrent Jacobian. Our objective is data efficient (requir-
ing only 64 data points to prune the network), easy to implement, and produces 95
% sparse GRUs that significantly improve on existing baselines. We evaluate on
sequential MNIST, Billion Words, and Wikitext.

1 INTRODUCTION

Within the neural network community, network pruning has been something of an evergreen problem.
There are several motivations for pruning a neural network. Theoretically, overparameterization is
a well known but poorly understood quality of many networks. Pruning algorithms provide a link
between overparameterized models appropriately parameterized models. Thus, these algorithms may
provide insights into exactly why overparameterized models have so much success. Indeed, recent
work has closely linked the efficient utilization of model capacity with generalization results (Arora
et al., 2018). From a more practical perspective, overparameterized networks require more storage
capacity and are computationally more expensive than their pruned counterparts. Hence, there is an
incentive to use pruned networks rather than fully dense networks during deployment.

For years, many of the most successful network pruning techniques were iterative — relying on cycle
of pruning and retraining weights to induce sparsity in the network. As identified in Lee et al. (2018),
these methods usually either enforce a sparsity-based penalty on the weights (Han et al., 2015; LeCun
et al., 1990), or else prune based on some fitness criteria (Carreira-Perpinán & Idelbayev, 2018;
Chauvin, 1989). Recent advances in pruning literature suggest that such costly cycles of pruning
and retraining might not always be necessary. For some problems, there exists a small subnetwork
within the original larger network such that training against this smaller network produces comparable
performance to training against the original fully dense network. The Lottery Ticket Hypothesis
(Frankle & Carbin, 2019) provides a method for recovering these networks, but only after training
is complete. SNIP (Lee et al., 2018) and GraSP (Wang et al., 2020) provide a saliency criterion
for identifying this small subnetwork using less than 100 data points, no training, and no iterative
pruning.

Our present work began by asking the question: “How well do these newly discovered pruning
techniques, which optimize a network sensitivity objective, work on recurrent neural networks?”
Although Lee et al. (2018) does evaluate the SNIP pruning criterion on both GRU and LSTM
networks, we found these results to be somewhat incomplete. They did not provide a comparison
to random pruning, and the chosen tasks were not extensive enough to draw definitive conclusions.
When compared against random pruning, we found that the SNIP and GraSP pruning objective
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performed similarly to or worse than random pruning. This left us wondering where those techniques
were falling short, and if a better pruning objective could be developed that takes the temporal
structure of recurrent networks into account.

In this paper, we propose a new pruning objective for recurrent neural networks. This objective is
based on recent advances in mean field theory (Gilboa et al., 2019; Chen et al., 2018a), and can
be interpreted as forcing the network to preserve weights that propagate information through its
temporal depths. Practically, this constraint is imposed by forcing the singular values of the temporal
Jacobian with respect to the network weights to be non-degenerate. We provide a discussion about
the similarities and differences between our objective and the SNIP and GraSP pruning objectives.
It can be shown that these prior objectives fail to ensure that the temporal Jacobian of the recurrent
weights is well conditioned. Our method is evaluated with a GRU network on sequential MNIST,
Wikitext, and Billion Words. At 95% sparsity, our network achieves better results than fully dense
networks, randomly pruned networks, SNIP (Lee et al., 2018) pruned networks, and GraSP (Wang
et al., 2020) pruned networks.

2 PRUNING RECURRENT NETWORKS BY JACOBIAN SPECTRUM EVALUATION

2.1 NOTATION

We denote matrices and vectors by upper- and lower-case bold letters respectively. Vector-valued
functions are bolded, whereas scalar valued functions are not. Distributions over variables are with
the following script: D,P . We denote the standard `p norm of a vector by ‖·‖p. Let [·]ij be the
(i,j)-th element of a matrix, and [·]i the i-th element of a vector. ~1, ~0, denotes a vector of 1s or 0s
of appropriate length, and use � denotes a Hadamard product. IA represents the standard indicator
function. For vectors, superscripts are always used for sequence lengths while subscripts are reserved
for indexing vector elements.

2.2 PRELIMINARIES

2.2.1 RECURRENT MODELS

Let X =
{
x(t)

}S
t=1

; with each x(t) ∈ RD. Similarly, let Ŷ =
{
ŷ(t)

}S
t=1

, where each y(t) ∈ RO is

an associated set of outputs, such that each tuple (X,Y)
i.i.d.∼ D.

Let M(x;θ) : RD 7→ RO be a generic model, parameterized by θ ∈ RN , that maps X onto an
output sequence. Define a recurrent model as a mapping done through iterative computation, such
that each (ŷ(t),h(t)) = M(x(t), ĥ(t−1);θ) depends explicitly only on the current input and some
latent state of the model, h.

We define a loss over the entire sequence of outputs as the sum of a non-sequential loss function, L̃,
over an entire sequence: L(M,X,Y) =

∑S
i=1 L̃(ŷ(t),y(t)).

We define a sparse model as one where the parameters factorize into θ = c� w, with c ∈ {0, 1}N a
binary mask and w ∈ RN the free values, typically trained by gradient descent. We define a K-sparse
condition on a sparse model M as the restriction ‖c‖0 = K during the entire training trajectory. A
model is optimally K-sparse if it minimizes the expected loss, ED[L(M,X,Y)] after training while
also being subject to a K-sparse condition.

2.2.2 MEMORY HORIZON

We introduce the following terms: N is the size of the network hidden state h, and Jt ∈ RN×N is the
temporal Jacobian, of the hidden state at time t+ 1 with respect to the previous hidden state, ∂h

(t+1)

∂h(t) ,

and σ(t)
i the singular values of said matrix.

To arrive at a one-shot pruning criteria for recurrent neural networks, we consider the impact of the
temporal Jacobian on both forward- and backward-propagation.
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• (Backpropagation) The formula for backpropagation through time (BPTT), from the loss at
time s can be given as:

∇θL̃(ŷs,ys) =

[
G̃T

h(s);θ + G̃T
h(s−1);θJs−1 + . . .+ G̃T

h(1);θ

s−1∏
t=1

Jt

]
︸ ︷︷ ︸

G̃s

·∇h(s)L̃(ŷs,ys)

(1)
Where G̃h(t);θ is the Jacobian of h(t) considering only the explicit dependence on θ.
• (Forward Propagation)

A single time-step of the network under small perturbations yields the following:

M(x(t);h(t) + ε) ≈ h(t+1) + Jtε (2)

With additional powers of the Jacobian appearing as we observe the entire sequence.

From Equation 1, it can easily be seen that increasing the normed singular values of each Jt will on
average exponentially increase the gradient signal from later sequence elements, which will expedite
convergence by reducing the vanishing gradient problem. From Equation 2, we additionally note that
a well-conditioned Jacobian would enable the network to preserve separation of distinct input vectors,
by preventing the additive perturbation from vanishing or exploding. Prior works in mean-field theory
Gilboa et al. (2019); Chen et al. (2018a) provide an extensive analysis of a similar objective on the
performance of a wide range of recurrent networks.

The Froebenius norm of the temporal Jacobian, defined below, is thus key to both forward and
backpropagation. Both processes are significantly expedited when the norm is close to 1.

χ =
1

N(S − 1)

S−1∑
t=1

E(
∥∥∥Jt

~1
∥∥∥2

2
) =

1

N(S − 1)

S−1∑
t=1

E

(
N∑
i=1

∣∣∣σ(t)
i

∣∣∣2) (3)

2.3 PRUNING CRITERIA

Under typical recurrent model initializations, where θ ∼ N (µθ, s
2
θI) or a similar distribution, with

µθ ∼ 0, s2
θ � 1, Gilboa et al. (2019) has empirically observed that χ is < 1, and that the singular

values concentrate towards 0 (see Figure 2 for further evidence). Therefore, we hypothesize that the
fastest converging and best performing sparse models are those which simply maximize χ.

We would like to determine the effect of removing one parameter on the Jacobian during the training
trajectory. However, as we restrict ourselves only to information available at initialization, we
approximate the effect of each parameter on the Jacobian by a first-order Taylor expansion. This is
analogous to the derivations given in Lee et al. (2018); Wang et al. (2020):

dn ∝ |[∆χ]n| =
1

S − 1

S−1∑
t=1

∣∣∣∣ ∂∂θn ‖Jt1‖22

∣∣∣∣ (4)

We call dn the sensitivity score of parameter θn.

This criterion will not be well-normed across different types of parameters. This is due to numerous
factors, including differing activation functions used for each gate, and differing distributions between
the input and recurrent state. Consequently, the variance of our objective is not uniform between
groups of parameters (see Section 3.3 for empirical confirmation). We compensate for this by dividing
our criterion by the expected magnitude of the gradient for each parameter. The normalized sensitivity
score becomes:

dn = [∆χ̃]n =≈ [∆χ]n
|γn|

, γn = ED̃

[
S∑
t=1

O∑
i=1

∂h̃
(t)
i

∂θn

]
(5)

.

where D̃ is either the data distribution or an approximate distribution (since we are only trying to
estimate the approximate variance of the gradient distribution), and the sequence {h̃(t)} is computed
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on inputs from that distribution. This normalization scheme is similar in motivation to the normaliza-
tion proposed in Pascanu et al. (2013), and allows us to consider all recurrent models with only one
additional computation.

For our pruning objective, we simply take the K weights with largest sensitivity scores, as those
represent the parameters which most affect the Jacobian objective near the initialization. Formally,
we find the K-th largest sensitivity, d̃K , and set cn = IA(dn ≥ d̃K). Empirically, we find that the
sensitivity score remains an effective metric even if the weights are not restricted to a neighborhood
where the Taylor expansion is valid (see Figure 2 for details).

This objective is simple to compute, requiring only two backward passes using auto-differentiation.
Furthermore, as we only depend on the Jacobian-vector product, it has a memory cost linear in the
parameters.

Algorithm 1 Pruning Recurrent Networks
Require: Parameters θ, DatasetD, Approximate Dataset D̃, Sparsity LevelK, Sequence LengthS, Number to SampleP , Sequence Horizon

U
1: for all p = 1 . . . P do
2: Sample sequence (X̃, Ỹ) ∼ D̃, (X,Y) ∼ D
3: for all t = 1 . . . S do
4: Compute {h̃(t)} with (X̃, Ỹ), {h(t)} with (X,Y)
5: end for
6: end for
7: Compute γ using {h̃(t)} and Equation 5
8: for all u = 1 . . . U do

9: Compute χ(u) ← ‖JS−u1‖22 = E
[∑

i,j

∣∣∣∣∣ ∂h
(S−u)
i

∂h
(S−u−1)
j

∣∣∣∣∣
2]

10: Compute ∆χ(u) ←
∣∣∣∇θχ(u)

∣∣∣
11: end for

12: Compute d←
∑
t

[
∆χ(t)

]
|γ|

13: d̃← SortDescending(d)

14: cn ← 1[dn ≥ d̃K ], ∀n
15: return c

2.4 COMPARISON TO EXTANT METHODS

There are two recently proposed criteria for pruning at initialization: GraSP (Wang et al., 2020), and
SNIP (Lee et al., 2018). They are given by:

GraSP(θ) = θTHg (6)

SNIP(θ) =
∣∣θTg∣∣ (7)

where [H]ij = E[ ∂2L
∂θi∂θj

], g = E[∇θL] are the expected gradient and Hessian respectively.

Both methods rely on the gradient of the loss with respect to the weights, with SNIP being more
dependent on this gradient than GraSP. Thus, the main term of interest is g, which can be decomposed
as:

gt = G̃t∇h(t)L̃t (8)

With G̃t, the Jacobian of h(t) with respect to θ, as defined in Equation 1.

A consequence of the smaller singular values of J is that the successive terms of G̃t tend to vanish
over time. Thus, loss-based gradient objectives tend to be biased toward explicit dependency between
h(t) on θ, thus neglecting long-term dependence between h(t) and h(t−1).

In certain cases, (ex. when the hidden state is small relative to the input) SNIP and GraSP prune
many recurrent connections while leaving the input connections largely untouched (see section 3). In
contrast, our algorithm considers the J matrix explicitly, which mitigates the problem of pruning too
many recurrent connections.
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Architecture # of Parameters Random Ours Dense ∆
Basic RNN Cell 171k 7→ 8.5k 9.51±3.98 7.57±0.20 7.08±2.08 +4.39
Standard LSTM 684k 7→ 34.2k 2.17±0.18 1.66±0.16 0.80±0.18 +0.86
Peephole LSTM 1.32M 7→ 66.2k 1.80±0.18 1.24±0.08 0.74±0.10 +0.50
GRU 513k 7→ 25.7k 1.50±0.08 1.46±0.05 0.77±0.14 +0.69

Table 1: Validation Error % of Various 400 Unit RNN Architectures after 50 Epochs of Training on
Seq. MNIST; our method works well across all common recurrent architectures. Sparsity of 95 %
was used on all experiments.

3 EVALUATION

For the following experiments, we compute the `2 norm of J~1 using a single minibatch of 64 data
samples, and using only the last 4 steps of the sequence.

3.1 SEQUENTIAL MNIST BENCHMARK

We first test our method on the sequential MNIST benchmark (Lee et al., 2018), a relatively small
dataset which contains long term dependencies. We begin by verifying that our algorithm is robust
across several common recurrent architectures. The results in Table 1 confirm that our method is not
dependent on any specific recurrent neural architecture choice.

Our principal results for the Sequential MNIST benchmark are presented in Table 2. Again, we see
that our network’s performance improves with network size, with the largest gap between our method
and others coming when the network grows to 1600 units. We observe that SNIP and GraSP are
surprisingly effective at small scales with good initialization, but fail when scaled to larger network
sizes. Of the baselines, only random pruning is competitive when scaled, a fact we found quite
interesting. For reference, we also provide results on standard L2 pruning (Reed, 1993) (for which
the schedule can be found in the appendix) and random pruning. The reader should be careful to note
that L2 pruning requires an order of magnitude more resources than other methods due to it’s prune
– retrain cycle; it is only considered here as a lower bound for network compression. Furthermore,
while GraSP requires computing the Hessian gradient across the entire dataset, this is computationally
infeasible in our case and we instead compute it with a single minibatch, for fairness.

Pruning Scheme 100 Units 400 Units 1600 Units
Unnorm. SNiP 88.9±0.1 88.8±0.1 89.0±0.1
Norm. SNiP 4.09±1.06 1.52±0.11 1.10±0.11
Unnorm. GraSP 88.6±0.1 88.7±0.1 88.6±0.1
Norm. GraSP 4.28±0.57 1.62±0.24 1.22±0.14
Random 2.78±0.25 1.50±0.08 1.15±0.12
Ours 3.09±0.31 1.46±0.05 1.01±0.05
L2 1.03±0.05 0.71±0.03 0.57±0.02

Table 2: Benchmarking of Various Pruning Algorithms on 95% Sparse GRUs on seq. MNIST. SNIP,
GraSP and Random pruning are competitive for smaller models, but the results tend to diminish
as the network size increases. Our method obtains strong results even as the network size is large.
Further experimental details can be found in the appendix.
In the preceding section, we postulated that normalization across the objective was necessary for
strong performance (see Equation 5). This intuition is confirmed in Table 2, where we present both the
normalized results (with Glorot Glorot & Bengio (2010) and γ normalization) and the unnormalized
results (without both). Indeed, we see that this normalization is crucial for recurrent architectures,
with unnormalized architectures having all of the retained network weights concentrated in a single
gate. This proved to be prohibitive to training.

Finally, in Table 3, we examine the performance of our algorithm at various sparsity levels. Our
algorithm continues to outperform random pruning, even at high sparsity levels.
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Sparsity Level
(%)

# of Parame-
ters

Random Ours Dense ∆

90 68.4k 1.12±0.16 1.05±0.08 0.63±0.02 +0.42
95 34.2k 1.50±0.08 1.46±0.05 0.77±0.10 +0.69
98 13.7k 1.82±0.22 1.77±0.07 0.67±0.13 +1.10

Table 3: Sparsity Level vs Validation Error % on 400 Unit GRUs, for seq. MNIST. Our method
consistently beats random pruning.

3.2 LINGUISTIC SEQUENCE PREDICTION

We assess our models on 3 sequence prediction benchmarks: 1) WikiText-2 (wiki2). 2) WikiText-103
(wiki103), an expanded version of (1) with 10 times more tokens. 3) A truncated version of the
One Billion Words (1b) benchmark (Chelba et al., 2013), where only the top 100,000 vocabulary
tokens are used. The full experiment parameters are given in the appendix. We report the training
and validation perplexities on a random 1% sample of the training set in Table 4.

Dataset (%) Random Ours Dense ∆
wiki2 22.66 20.54 10.479 +10.61
wiki103 49.65 46.65 35.87 +10.78
Trunc. 1b 59.17 53.26 38.98 +14.28
# of Parameters 960k 960k 19.2M -

Table 4: Training Perplexities of Training Sparse Models on Large Language Benchmarks. Our
method successfully reduces the perplexity score across all benchmarks, often significantly, however
there is still a large gap to the dense performance. Parameters are reported only for the recurrent layer
as other layers were not pruned during training.
From the results, it is clear that our algorithm succeeds in decreasing perplexity across all language
tasks. Despite their varying difficulties, our algorithm speeds up initial convergence on all tasks and
maintains an advantage throughout training.

Finally, we perform an ablation experiment on the Penn Treebank Dataset (PTB) with an 800 unit
GRU at different sparsity levels. The results are reported in Table 5.

Sparsity 0% 20% 40% 60% 70% 80% 90% 95% 98%
Perplexity 156.16 160.32 165.13 173.51 178.55 184.85 194.79 208.14 228.22
Parameters 2.88M 2.30M 1.72M 1.15M 864K 576K 288K 144K 57.6K

Table 5: Validation Perplexities of Pruned 800-unit GRU Models on Penn Treebank. For a simple
comparison we do not finetune these models, or apply any regularization tricks besides early stopping.

The loss from sparsity increases dramatically as the percentage of parameters remaining approaches
zero. This trend is similar to that reported in Gale et al. (2019) and other prior works. For reference,
a dense 200 unit GRU (360k parameters) achieves 196.31 perplexity while a 100 unit GRU (150k
parameters) achieves 202.97 perplexity.

3.3 QUALITATIVE ANALYSIS

The success of our algorithm can be partially attributed to effective distributions across hidden units.
Whereas many of the other algorithms are overly concentrated in certain gates and biased towards
the input weights, our algorithm effectively distributes sparse connections across the entire weight
matrix. We discuss the distribution of remaining connections on a 400 unit GRUs in Figure 1. We
also give a set of sample connections under each algorithm in Figure 3.

Finally, we perform an empirical study of the evolution of the Jacobian spectrum to verify our
hypothesis on recurrency preservation. We show a 400-unit GRU trained on sequential MNIST, with
a dense network, our pruning scheme, and random pruning respectively. It can be observed from
Figure 2 after 50000 training steps that our Jacobian has both higher mean and much fewer near-zero
singular values, which helps to explain our performance and justify the intuition behind our algorithm.
The spectra at initialization also further confirms that the initial singular values of J are small.
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(a) SNiP. I/R Ratio: 0.205 (b) GraSP. I/R Ratio: 0.124 (c) Ours. I/R Ratio: 0.094

Figure 1: Plot of Remaining Connections by Gate and Type. SNiP and GraSP consistently prune
recurrent connections at a much higher ratio than input connections. The ratio of remaining input to
recurrent (I/R) connections is given for each method; the dense ratio is 0.07 for comparison. SNiP
and GraSP also exhibit severe imbalance between gates, while our imbalance is far milder.

(a) Initialization, Pre-Pruning (b) SNiP (c) Ours

Figure 2: Singular Value Magnitude Histograms after 50 epochs of Training, for 400 Unit GRU
on seq. MNIST. Compared to SNiP, our method prevents spectral concentration at 0, with a mean
singular value magnitude of 0.31 to SNiP’s 0.18 This helps to explain our relative performance gain.

4 OTHER RELATED WORK

Methods for Pruning Recurrent Networks: Our method is the latest in a series of attempts to
generate sparse RNNs. Perhaps the most well-known algorithm for sparse network pruning is Narang
et al. (2017a). It is a modification to magnitude based pruning wherein the pruning threshold evolves
according to several hyperparameters that have to be tuned by the user. Kliegl et al. (2017) uses
iterative trace norm regularization to prune RNNs used for speech recognition. This effectively
reduces the sum of the singular values of the weight matrices. But we found in our experiments
that these values were often degenerate near 0. Furthermore, this technique is iterative. Narang
et al. (2017b) uses iterative ground lasso regularization to induce block sparsity in recurrent neural
networks. Wen et al. (2017) alters the structure of LSTMs to decrease their memory requirements.
Their intrinsic sparse structures make structural assumptions about the sparsity distribution across
the network. Dai et al. (2018) uses magnitude based pruning coupled with a special RNN structure

(a) SNiP (b) GraSP (c) Ours

Figure 3: Map of remaining connections, with the x-axis indicating the output size (flattened across
gates) and the y-axis indicated the input size.Our method is significantly more spread out across
neurons and gates than the others.
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to make RNNs more efficient. The pruning algorithm itself is magnitude based. See et al. (2016)
uses iterative pruning and retraining to prune a recurrent model for neural translation. The underlying
technique is simple iterative pruning, and the final pruning percentage is only 80%. While fine for
their application, we are interested in novel pruning techniques and higher levels of sparsity.

In summation, all the the methods discussed above utilized some variant of L1 or L2 pruning to
actually sparsify the network. The novel advances are all related to pruning schedules, modifications
to recurrent architectures, or small transformations of the L1 or L2 objective.

Other Pruning Techniques: Many extant pruning techniques are applicable to recurrent network
architectures, even if these methods were not designed from the ground up to work in the recurrent
case. Lee et al. (2018) and Wang et al. (2020) both provide a pruning objective that can be used to
prune networks before training begins. They are considered extensively in this work. In Frankle &
Carbin (2019), it is shown that at initialization networks contain a small sparse set of connections
that can achieve similar results to fully dense networks. However, no known method yet exists to
recover these sparse networks to the full extent demonstrated in that work. Han et al. (2015) showed
impressive results with magnitude based pruning. Follow up work made further use of magnitude-
based pruning techniques (Carreira-Perpinán & Idelbayev, 2018; Guo et al., 2016); however, these
techniques are primarily iterative.

Mean Replacement Pruning (Evci et al., 2018) uses the absolute-value of the Taylor expansion of the
loss to as a criterion for which units in a network should be pruned. This method can not be used
with BatchNorm and achieves results comparable to magnitude based pruning. Bayesian methods
have recently seen some success in pruning neural networks. (Ullrich et al., 2017), which is itself an
extension of Nowlan & Hinton (1992), is the standard citation here. In essence, this method works by
re-training a network while also fitting the weights to a GMM prior via a KL penalty. Molchanov
et al. (2017) is another Bayesian pruning technique that learns a dropout rate via variational inference
that can subsequently be used to prune the network. Finally, there exists several classical pruning
techniques. Ishikawa (1996); Chauvin (1989) enforced sparsity penalties during the training process.
LeCun et al. (1990); Hassibi et al. (1993) perform Hessian-based pruning, using the Hessian to get a
sensitivity metric for the network’s weights.

While many of the above methods are effective in general, they do not explicitly consider the specifics
of RNNs and sequential prediction.

Other Related Work Several interesting papers have recently taken a critical look at the problem
of network pruning (Liu et al., 2018; Crowley et al., 2018). The problem of network compression
is closely related to network pruning. It would be impossible to cite all of the relevant papers here,
and no good literature survey exists. Some worthwhile references are Gupta et al. (2015); Gong et al.
(2014); Courbariaux et al. (2016); Chen et al. (2018b); Howard et al. (2017). Both problems often
share a common goal of reducing the size of a network. Some notable papers explicitly consider
the problem of recurrent network compression (Ye et al., 2018; Lobacheva et al., 2017; Wang et al.,
2018).

In the context of the above work, our method is not iterative and can be fully completed before
training even begins. The tradeoffs in accuracy can be remedied by scaling up the network, since
there is no longer a need to store fully dense weights during training. Furthermore, our objective is
specifically adapted to the sequential prediction context in which RNNs are deployed. We are the first
pruning algorithm to consider the temporal Jacobian spectrum as a key to generating faster converging
and better performance sparse RNNs. Our method not only performs better in practice compared to
other zero-shot methods, but also yields key insight into the factors behind RNN performance. This
may aid the development of new architectures and training schemes for sequential prediction.

5 CLOSING REMARKS

In this work, we presented an effective and cheap single-shot pruning algorithm adapted toward
recurrent models. Throughout the work, we continually found the importance of the Jacobian
spectrum surprising and interesting. Future work could further examine the relationship between
network width, the Jacobian spectrum, and generalization.
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6 APPENDIX A - EXPERIMENT HYPERPARAMETERS

Unless otherwise specified, our model consists of a single-layered RNN, followed by an appropriately
sized softmax layer with sigmoidal activation. The softmax layer is initialized with standard Xavier.
We use a minibatch size of 64 samples during training, and optimize using the AdaM optimizer
(Kingma & Ba, 2014) with a learning rate of 1e-3. We use an initial hidden state of zeros for all
experiments.

For all networks, we only prune the recurrent layer while leaving prior and subsequent layers
untouched, since we are primarily interested in performance of recurrent layers. We trained all
networks with a single Nvidia P100 GPU.

6.1 SEQUENTIAL MNIST

For seq. MNIST, we follow the same process as SNiP, feeding in row-by-row. We used N (0, 0.1) for
our own method, and Glorot initialization for SNiP and GraSP. γ is computed from data sampled
from aN (0, 0.1) distribution. We use only the activations from the last time step. For L2, the density
was annealed according to the schedule {0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01} every 10k training
steps.

6.2 LANGUAGE BENCHMARKS

We use 2000-unit LSTMs for all language benchmarks. To reduce the variance of our comparison,
we freeze the embedding layer before training. We use sampled sequential cross-entropy loss with
1000 tokens for wiki103 and 1b, and standard cross-entropy for wiki2. We use He initialization for
all papers.

Wiki2 was trained for 20k training steps (13 epochs), while wiki103 was trained for 12k training
steps, and 1b was trained for 30k training steps.

7 APPENDIX B - ADDITIONAL STUDIES

7.1 INITIALIZATIONS

We benchmark the performance of our algorithm against random pruning using 3 additional initializa-
tions, seen in Table 6. With high variance, the first-order expansion we use to estimate our objective
fails to hold, so we do significantly worse than the random benchmark.

Initialization Scheme Ours Random
Glorot 1.219 1.36
N (0, 1) 3.30 1.38
uniform(0, 0.1) 1.73 1.32

Table 6: Benchmarking of validation Error % on Different Initializations, for Sequential MNIST
Task with 400 Unit GRU. Our algorithm successfully beats random on well-conditioned normal
distributions, but fails on high variance and the uniform distribution.

7.2 RUNTIME

We benchmark the runtimes of SNiP, GraSP and our own algorithm, using only a single batch and
time iteration for fairness, seen in Table 7.

8 APPENDIX C - TRAINING CURVES

We present a sample training curve of a 400 unit GRU for sequential MNIST below. As can be seen,
random pruning is only competitive algorithm in this instance.
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Pruning Scheme Runtime (sec-
onds)

SNiP 4.718
GraSP 16.406
Ours 4.876

Table 7: Benchmarking of Pruning Algorithm Runtimes; our method is faster than GraSP as the
Hessian is larger than the Jacobian, but slower than SNiP for a single time instance. It should be
noted that our algorithm works best when iterated across several time steps, while GraSP requires
iteration across the entire training set, and SNiP requires only a single computation.

Figure 4: Plot of Log Train Loss for a 400 Unit GRU, trained on Sequential MNIST. GraSP is the
worst performing, followed by SNiP and then Random, which is on par with our method. L2 is shown
as a lower bound. It is surprising that random is competitive, but it is free from the gate imbalance
exhibited by SNiP and GraSP.

Subsequently we present a sample training curve in Figure 5 for the 1b words experiment, detailed in
Table 4. Our algorithm provides significant benefit over random pruning, but still lags behind the
dense model.

Figure 5: Plot of Log Train Perplexity on the 1b dataset, with 2k LSTM network. Our model clearly
outperforms random pruning by a significant margin, however more work is needed before we achieve
near-dense performance.
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